
Open and Accessible Presentations
Erik Wilde

School of Information
UC Berkeley, USA

Email: dret@berkeley.edu

Abstract—E-learning often is perceived as something that, on
the technical level, can be addressed by designing an e-learning
system, which often is equipped with a Web-based interface.
We argue that this traditional approach of e-learning system
design should be reversed in today’s Web-oriented environment,
in the sense that e-learning applications should be designed as
well-behaving Web citizens and expose their services through
nothing else but the Web’s loose coupling principles. This article
presents a system for Web-based presentations which follows this
approach in publishing presentation material in a way that is as
Web-friendly as possible. We show how such a system can be used
as one building block in an e-learning infrastructure; replacing
the traditional view of monolithic e-learning systems with an
open and loosely coupled ecosystem of cooperating e-learning
Web applications.

I. INTRODUCTION

E-learning has come a long way from using standalone
computers as basic training tools, progressing to the use of
networked settings as an environment with better communi-
cations facilities, and is now facing the challenge of making
the transition from the traditional understanding of e-learning
applications as a class of standalone applications, to under-
standing e-learning as a discipline regarding the production,
management, structuring, distribution, usage, and embedding
of educational services and content within the context of
the Web. E-learning thus is facing the same fundamental
challenges as many other information-intensive disciplines:
How to make the leap from continuing to build essentially
closed systems with a Web interface, to building true Web-
based systems where the fundamental approach is to design,
build, and deploy services as part of the Web. This follows
the general idea of publishing Linked Data on the Web [1],
where data is made available in a form that is linked to other
data, and that makes it easy for other data to link to it.

This article presents a solution to one specific but fun-
damental part of e-learning on the Web: how to create and
present presentation material. In many cases, this is only
one part of an e-learning environment, but it often is the
hub from which supplemental resources are made available.
The approach presented in this article focuses on structuring
presentation material on the semantic level. The result are
Web-based presentations which can be easily published, are
embedded into the Web rather than just being published on the
Web, but still maintain the logical structure of the presentation
context, and contain additional metadata that allows applica-
tions to better access and reuse the presentation material. This
approach can serve as a blueprint for other educational content

as well. Ideally, e-learning applications should be designed to
“blend into the Web” so that they can benefit from the Web,
and that the Web can benefit from them.

In this article, we first investigate the fundamental chal-
lenges e-learning faces today. These challenges mostly arise
from the dynamics and the loosely coupled nature of today’s
Web [2]. We then progress to investigating these challenges
in more detail, looking at services and content as the two
main problems in bridging the gap between e-learning systems
and the Web as an information system. We then describe our
solution for structuring presentation material, and continue
with describing the way of how this content can be used for
presenting content with today’s browsers.

II. WEB INFORMATION MANAGEMENT

E-learning started out as computer-assisted learning, by
simply programming computers as training tools providing
more functionality than paper or books. With the advent of
computer networks, e-learning has followed two mainstream
approaches, based on different assumptions about the setting.
One approach is distance education, where learning material
is provided to a dispersed set of users. The second approach
is using computers to augment educational settings in which
people still meet in person. Both approaches have a lot
in common, but in distance education there typically is a
heavier focus on electronic means to foster communications
and collaboration.

The difference in terms of technologies is that distance
education settings often have less control over the computers
being used, whereas in-house systems might be able to rely
on a standardized set of classroom computers. Increasingly,
however, this assumption also is not true anymore, because
students have their own computers and want to be able to
access e-learning applications and content using their personal
computers. The result is that both scenarios, distance education
and in-house approaches, are facing the same challenge, which
is how to build e-learning systems that are designed for
the Web, and can be used with as few assumptions about
the educational setting (and the technical environment) as
possible.

Many e-learning systems resemble a specialized Content
Management System (CMS), with the ability to create, manage,
and distribute educational content. This basic task of manag-
ing educational content is often augmented with additional
functional modules, for example bulletin boards, chat tools,
mail groups, and wikis. Overall, many e-learning tools closely



resemble the popular notion of a portal, which typically is
a flexible, configurable, and personalizable interface for a
collection of managed content accessed through it.

This paper looks at a different approach: Instead of looking
at an e-learning system as a portal-like CMS with a cus-
tomizable interface, we look at it as a systematic way of
how to publish Web content, or, more generally speaking,
provide Web services. E-learning then moves from “using the
e-learning system” to simply “using the Web,” and the central
question is how to make the Web more e-learning friendly.
This approach is Web-centric and thus abandons the idea of a
centralized e-learning system or platform altogether. Instead,
an e-learning system is a set of loosely coupled Web services
and Web content, which can be used in the same way as
any Web service or Web content, but also is augmented to
facilitate e-learning by specifically supporting the needs of the
e-learning setting when designing the services and the content.

III. WEB SERVICES

A number of disciplines are currently in a transition phase
from standalone or closed client/server approaches, to de-
signing systems in a more open way. Typical examples for
disciplines in the midst of that transition are Geographic
Information Systems (GIS) or e-learning. These disciplines
have a rich history of designing and implementing systems
that are solving the specific problems they are investigating.
Technologically, they are usually based on the state of the art
in implementing user-facing software.

The current shift from building systems to exposing content
and services,1 however, requires these historically systems-
oriented disciplines to look at completely approaches of how
they expose their functionality. We see three possible stages
of development for e-learning system design, and the system
presented in this paper is a contribution to the third stage,
which we think is the future of e-learning system design.

1) E-learning systems can be designed as closed systems
which perform all their data management internally. This
does not exclude the possibility to have Web-based user
interfaces or import and export capabilities, but it es-
sentially means that the system only fully supports data
that is managed within the system. This design allows
the implementation of functionality more easily, because
everything can be managed locally, but is increasingly at
odds with the abundance of information that is available
on the Web, and the fact that a hard boundary between
the e-learning system and an information resource as
rich as the Web makes it hard for users to work with all
this information as easily and fluidly as possible.

2) A more open approach is to design it as a system
with programming interfaces, so that other programs
can interact with it. This encourages the evolution of an
ecosystem of applications interacting with the e-learning

1Indicators for this shift are cloud computing and service-orientation,
both approaches to shift the focus away from building systems to providing
serivces.

system, so that content and functionality available out-
side of the e-learning system can still be accessed and
used by the e-learning system. This raises the question
which technology such an API to build on, because in
a typical educational environment, there is a multitude
of other applications which might be candidates for
interacting with the e-learning system.2

3) A RESTful approach to designing e-learning systems is
to design all services in an e-learning system as Web
services (in the REST sense of the word), so that for
example there is no specific API for uploading a course
syllabus to a central course catalog, but instead there is a
syllabus document format, and the central course catalog
fetches syllabi from individual course sites as required.
Such an approach is more loosely coupled and open,
and effectively promotes the evolution of an educational
institution’s Web as its “e-learning system.”

Our work focuses on a RESTful design approach to e-
learning. The central premise in such a RESTful e-learning
approach is to identify relevant resource types, and to design
link-enabled representations for them. The main goal in a Web-
based environment then is to have a representation that is
semantically rich enough to allow repurposing of educational
content in various contexts, and to have a representation
which is usable by the end-user of such a system. On today’s
Web, this often translates to designing a vocabulary using
the Extensible Markup Language (XML) which encodes the
required semantics (our approach is described in Section V),
and to define a transformation from that vocabulary into an
HTML-based presentation which can be used interactively
(Section VI describes how to present in HTML). As a general
foundation of our specific content type, Section IV briefly
describes how Web content fits into the REST model and what
today’s content support on the Web looks like in terms of
features and constraints.

IV. WEB CONTENT

One of the basic assumptions of Web Architecture is that
resources should be identifiable by URI. For the types of
resources considered in this paper this translates to the re-
quirement that presentations and parts within them should have
URIs, so that users can refer to presentations or parts or even
individual “slides” by URI, tagging them, annotating them,
linking them with other resources, and generally using and
reusing them to build their own network of resources relevant
to the presentation material.3

In terms of Web technologies, HTML is used for publish-
ing structured documents on the Web, but has only limited
structuring and presentation support. Cascading Stylesheets

2In a university, for example, there are IT systems for student registration,
for facility management for booking rooms, for library services, for collabo-
rative tools for classes, and many other systems which often constitute a very
diverse landscape of services.

3Google’s recently launched Sidewiki is an example for a collaborative Web-
based application that can be easily applied for content that is made available
through well-identified Web resources.



(CSS) provide a language for controlling the presentation
of documents, and modern browsers support a rather so-
phisticated set of CSS features. For the specific scenario
discussed in this paper, however, there is only little support
in today’s CSS, because CSS so far has focused on scrollable
documents. However, the increased standards-compliance of
browsers makes it possible to use JavaScript for implement-
ing functionality which is not (yet) supported by HTML or
CSS. For presentation material, the first publicly available
approaches to build toolkits for HTML-based presentations
were the Simple Standards-Based Slide Show System (S5 ) and
Slidy. Both approaches focus on creating a single Web page
for a presentation.

The missing part in that landscape was the ability to start
from a structured description of a presentation, and use that
for generating one or more presentations, which can then
be generated and presented in a way which not only allows
richer structures within one presentation to be exposed (such
as presentation parts and links to them), but also associations
between individual HTML representations of one presentation
(references between lecture notes in the context of a course),
links to resources closely associated with the presentation
(such as images and examples), and of course links to any
other resources available on the Web.

Creating a richer presentation format for presentations not
only allows better support for generating Web content for
users, it also allows the generation of better metadata, for
example linking all presentations with document relationships,
and linking all presentation material (presentations plus the
associated resources) as one compound document. This means
that instead of algorithmically determining the boundaries of
compound documents on the Web [3], such a model makes it
easier for other applications to retrieve declarative information
about the boundaries of compound documents.

V. STRUCTURED PRESENTATIONS

As mentioned earlier, the main goal of the work presented
here is to expose information about presentation material in a
Web-friendly way. Our approach for doing this uses a mix of
HTML as the presentation language of the Web, and a custom
XML vocabulary for expressing those concepts which we
have identified as being relevant for presentation material. The
language (and the publishing system for it) is called Hotspot
and defines a rather small set of XML elements (about 20),
which are used in combination with regular HTML markup.

Figure 1 shows an example of a Hotspot document. It is
not fully representative for average Hotspot code, because it
mainly shows Hotspot elements, whereas a large percentage
of elements in an average Hotspot presentation will be HTML
elements, using features such as paragraphs, lists, tables, and
other basic HTML markup constructs. In addition to defining a
basic set of elements for representing presentation semantics,
Hotspot also allows to use custom elements and extensions
(described in more detail in Section VII), making it possible
to adapt it to scenarios that need additional semantics and/or
features when publishing presentation material.

The following description looks at the document shown in
Figure 1 in more detail. It explains some of the non-HTML
elements of the documents, and how they represent semantics
important for presentation material.

¬ Presentation structures are represented by nested ele-
ments, the presentation element identifies complete pre-
sentations, part elements can be further nested and represent
logical parts of a presentation, and slide elements represent
individual slides. These structures also provide support for
linking to presentation structures.

­ License information can be specified, which is useful
for licensing the complete presentation as a whole (exceptions
can be specified as well). The license information then can be
exposed in a way which allows automated metadata discovery,
for example by search engines looking for license information.

® Table of Contents (ToC) can be generated in various ways,
so that the structure of presentations are available in different
formats. In our day-to-day use of Hotspot, we have one ToC
in HTML for the course Web page, and one ToC in XML,
which is used as import by an automated syllabus management
system to get a list of dates and lectures for each course.

¯ Using index pages and category information, it is possible
to define various ways of making additional information
available, or to provide alternative access paths to information.
Typical examples for this are indices and glossaries, which
both can be implemented by this mechanism.

° Specific elements can be combined with behavior and/or
formatting, either simply for the sake of consistent formatting,
or for additional processing, such as picking up content and
compiling it for index or glossary pages.

± For content that is not well-supported by browsers,
extensions can be used which allow special content to be
processed and embedded into presentations. In this example,
an extension for processing LATEX content is used to embed
mathematical formulas and IPA characters into a presentation
(see Section VII for details).

² Transclusion is supported by a special element supporting
the inclusion of external files (completely or as line ranges)
while maintaining the information about their origin. This
ensures that there are no inconsistencies between external files
and the presentation.

Preparing and managing presentations in the format shown
in Figure 1 is not trivial, but this is also due to the fact that
presentation material by its very nature can be quite complex.
For example, for a full semester course on XML technologies
(27 lectures), the XML document is 400kB, using about 100
images and 100 transcluded examples. We currently do not
have a specialized editor, so the source has to be edited
by hand. This limits the potential user base, but we prefer
to be able to easily tweak the vocabulary and its semantics
over having to update a potentially complex editor whenever
making changes to the system. We plan to add a specialized
editor in the future, and since our vocabulary uses mostly
HTML elements, we plan to adapt an existing HTML editor
and extend it with support for the custom elements.

Once a presentation has been prepared in XML, it is



①

②

③
④

⑥

⑦

⑧

⑤

Fig. 1. XML Representation of a Presentation

processed using XSL Transformations (XSLT), transforming
the XML/HTML document into HTML only. This HTML,
however, then uses specialized formatting and scripting which
allows browser-based presentations, providing support for re-
mote presentations, timed logging of presentations, embedded
presentations, and improved structuring and navigation.

VI. PRESENTING IN HTML

The XML/HTML document described in the previous sec-
tion serves as input to a transformation which produces
HTML for Web-based presentations. Because of the explicit
presentation semantics in the source format, however, it would
also be possible to author other transformations, for example
producing a version that is targeted at high-quality print
production of lecture notes.

Figure 2 shows the HTML that is generated from the
document shown in Figure 1. The presentation structures
(¬) are represented by HTML container elements which can
be picked up by styling and scripting. Additionally, HTML
document relationship information is produced which can be
used for navigating the presentation structures. The license
information (­) is available as DC metadata and can be picked
up by crawlers. Semantically marked up terms (°) appear with
special formatting and can, if required, link back to index or
glossary pages (¯). Special content such as formulas (±) is
represented by embedded images which scale with the font
size. Transcluded content (²) is included in the HTML and
is linked to the original, so that it is easy to navigate to the
transcluded content.

The HTML shown in Figure 2 can be used in any modern

browser to create an interactive, paged presentation, complete
with all the features one would expect from on-screen presen-
tations (zooming, paging back and forth, switching between
paged and continuous display, following links). The HTML
uses a JavaScript library to achieve the presentation effects.
CSS-based templates can be used to apply a predefined layout
for presentations. Figure 3 shows the rendering of the HTML
from Figure 2, in this case using the Firefox browser. All major
browsers can be used, but IE is limited by its weaknesses
in JavaScript and CSS standards-compliance. Firefox, on the
other hand, is well-known for being resource-intensive, so for
large presentations (having hundred or more images), the more
resource-aware Opera browser has proven to be a better choice.

Once loaded by the browser, scripting creates a paged
presentation and allows users to navigate pages using keyboard
or mouse navigation. The presentation structures (¬) are used
for formatting in the layout’s header area, as well as for
additional metadata which can be used by the browser to make
the presentation more accessible.4 The license information
(­) is available directly through the information in the slide
footer, but is also detectable as HTML metadata. An alternative
way to using the HTML ToC, which is a separate HTML
page, is accessing the ToC information through the HTML
document relationships (®). Content that does not display well
across browsers (such as mathematical formulas) is rendered as
images (±) with carefully adjusted spacing and scaling so that
it always displays correctly. Transcluded content (²) is styled
in a way which makes its origins clear; it is also always linked

4In this example, the cmSiteNavigation extension of Firefox is used
to make document relationships navigable.



①

③

④

⑥

⑧

⑤

②

⑦

Fig. 2. HTML Generated from XML shown in Figure 1

to the source material, allowing direct access to all resources.
Presentations created by Hotspot should be well-behaving

Web citizens, using all the principles of good Web design in
the sense of making as much information available through
standardized structures as possible. We believe this already
is a big step forward from the usual practice of posting
presentations as PDF or other proprietary and opaque formats,
which are harder to mine for information.

VII. EXTENSIONS

The main idea of Hotspot is to create Web-based pre-
sentations for complex presentation material. While this by
itself is a useful functionality and only rarely addressed, our
main application is educational material, and therefore, it is
important that the presentation material can be customized
and put in context to improve the quality of the e-learning
content. Hotspot provides an extension mechanism which
allows additional code to be plugged into the system in a
simple way, so that both the XML-to-HTML conversion as
well as the HTML presentation can be customized.

One thing that HTML is notorious for is its lack of support
for mathematical formulas.5 For courses that use mathematical
formulas, we have thus developed the FormuLATEX extension
for Hotspot. It accepts mathematical formulas in LATEX nota-
tion, and renders them as images, item ± shows how this
works in all three figures. In addition to additional XSLT
which extracts all formulas from presentations, the extension
requires additional Perl code which reads all the formulas,

5This might start to change with the recently announced support for
MathML [4] in WebKit.

renders them using LATEX, and then crops and scales them
so that they properly scale with the textual content of the
presentation.

VIII. OFFLINE PRESENTATIONS

One of the main properties of Hotspot is to rely on the
Web as a platform. This means that along with the evolution
of that platform, new functionality can be used by Hotspot.
One example is the question of how offline presentations are
possible with Hotspot. Traditionally, browsers access docu-
ments on HTTP servers or from the file system, so that offline
presentations were possible by either running a local Web
server, or copying all required files to the file system. However,
on many of the newer devices (such as smartphones and tablet
computers), installation of HTTP servers or even access to the
file system is hard to do or impossible.

With the new extended functionality provided by the
HTML5 family of technologies, one of the interesting op-
portunities is to publish Offline Applications [5] on the Web.
Essentially, any Web resource can publish a list of required
related resources, and browsers are then expected to locally
store all these resources, so that the application becomes
usable even when being offline. Since Hotspot is nothing
but a set of resources required for presenting the material
(essentially, HTML content, CSS styles, JavaScript code and
auxiliary resources such as images or other media resources), it
is easily possible to use the offline capabilities of new browsers
to make presentations offline capable.

However, while the new capabilities are promising and very
exciting for any collaborative e-learning projects, because they



①

②

③

⑥

⑦

⑧

④⑤

Fig. 3. Browser Presentation of HTML shown in Figure 2

combine the Web’s interlinking capabilities with the ability
for users to take content and applications offline, there are
not yet well-developed user interfaces and ways for users to
control and manage the offline content they want to use. The
idea of “Web App Stores” is only starting to develop, and our
hypothesis is that once those models and the browser controls
associated with them have matured, they will become very
capable implementation platforms for combined online/offline
scenarios such as e-learning.

IX. FUTURE WORK AND CONCLUSIONS

As a major step towards establishing this landscape of
loosely couple e-learning resources described in Section II,
we plan to extend Hotspot to be able to cooperate with other
providers of timed and/or dated information resources. How-
ever, instead of integrating Hotspot with for example software
for managing assignments and lab sessions, our approach is
to establish cooperation by using a data format which will
be a representation of the data which is shared, essentially
enables the loose coupling between Hotspot and any other
provider of timed and/or dated information resources. This
design established cooperation around e-learning resources
through their accessible “surface” available on the Web itself,
rather than through hidden back channels that would introduce
tight coupling.

Hotspot is not a complete e-learning system, but it already
has helped to make presentation material easier to manage
for teachers and easier to use for students. The approach of

Hotspot can serve as a blueprint for a more fully-featured e-
learning system, which reverses the traditional approach of
building a closed system and then developing an interface
for it, to building and deploying functional modules which
can be freely used on the Web, and are then tied together
by identifying and cooperating around common concepts and
resources being used in that context. Creating structured
content always take a certain amount of effort, no matter how
good an editor is being used. However, educational material
typically has value over a rather long timespan, and we found
the ability to reuse and adapt content from previous years or
other presentations, and to transclude content without the need
to manually keep things consistent, something that payed off
in the long run.

REFERENCES

[1] M. Hausenblas, “Exploiting linked data to build web applications,” IEEE
Internet Computing, vol. 13, no. 4, pp. 68–73, 2009.

[2] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-
faceted metric for service design,” in 18th International World Wide Web
Conference, J. Quemada, G. León, Y. S. Maarek, and W. Nejdl, Eds.
Madrid, Spain: ACM Press, April 2009, pp. 911–920.

[3] P. Dmitriev, “As we may perceive: Finding the boundaries of compound
documents on the web,” in 17th International World Wide Web Conference
Posters. Beijing, China: ACM Press, April 2008, pp. 1029–1030.

[4] R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz,
M. Froumentin, R. Hunter, P. Ion, M. Kohlhase, R. Miner, N. Poppelier,
B. Smith, N. Soiffer, R. Sutor, and S. M. Watt, “Mathematical markup
language (mathml) version 2.0 (2nd edition),” World Wide Web Consor-
tium, Recommendation REC-MathML2-20031021, October 2003.

[5] A. van Kesteren and I. Hickson, “Offline web applications,” World Wide
Web Consortium, Note NOTE-offline-webapps-20080530, May 2008.


