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Abstract— This paper considers the clustering problem for references therein. These algorithms range from heuastic
large data sets. We propose an approach based on distributed gorithms to statistical modeling based algorithms. Amdme t
optimization. The clustering problem is formulated as an opi- previous algorithms, the statistical modeling based mdgho

mization problem of maximizing the classification gain. We Bow . .
that the optimization problem can be reformulated and decorm generally have better clustering performance compared wit

posed into small-scale sub optimization problems by usinghe Other types of algorithms, especially when the data claster
Dantzig-Wolfe decomposition method. Generally speakingthe are not well separated. The Expectation-Maximization (EM)

Dantzig-Wolfe method can only be used for convex optimizatin  glgorithms with mixture Gaussian modeling [2] [3] are the
problems, where the duality gaps are zero. Even though, the qior state-of-the-art statistical modeling based ctirsge

considered optimization problem in this paper is non-conve, we . . . . .
prove that thpe duality gF;p goes to zero, as the problem size algorithms. The EM algorithms can be considered as itexativ

goes to infinity. Therefore, the Dantzig-Wolfe method can be algorithms for computing the maximum likelihood estimatio
applied here. In the proposed approach, the clustering proem It has been proven that the likelihood functions do not desee
is iteratively solved by a group of computers coordinated byone  during iterations.

center processor, where each computer solves one indepentle However, it is well-known that the EM algorithms have

small-scale sub optimization problem during each iteratim, and tain limitati First ding t . ital
only a small amount of data communication is needed between certain limriations. Hrst, according 10 previous exper

the computers and center processor. Numerical results shothat ~ results, the EM algorithms may convergence very slowly [4],
the proposed approach is effective and efficient. [5]. It is shown in [6], that the EM algorithms are first-order

optimization algorithms, which provides a theoretical lexp
nation for the slow convergence speeds. In fact, it has been
a long-standing open problem that super-linear and second-
In the recent years, due to the rapid progress of data acouieer methods should be found and preferred for the clungteri
sition and communication technologies, it has become keadproblems [7]. Second, the EM algorithms do not converge and
easy to collect and store large amounts of data. Large degabdave numerical difficulties for certain types of instancéf [
of scientific measurements at the scale of terabyte or e&h For example, the EM algorithms do not converge, when
petabyte can be frequently observed in high energy physittse covariance matrices are singular. The EM algorithms als
astronomy, space exploration and human genome projeds. not converge, when the numbers of components in the
Large databases of financial data and sale transactiong atrtfixture modeling are greater than the actual numbers of data
scale of terabyte or petabyte can also be frequently obdervelusters.
These huge amounts of data usually contain valuable siigenti In addition, the standard EM algorithms require memory
and business information. For example, a large collection spaces proportional to the database size, therefore, do not
sale transaction data may contain important information e€ale well. Various scaling-up versions of the standard EM
consumer behaviors and market trends. However, the datgorithms have been proposed in the literature [9], [1@wH
analysis on such large databases presents many technijue @ver, these previous approaches are approximation dgwit
lenges. The database size is usually far larger than the nygembhe accuracy of the obtained results decreases as the ratio
size of any single computer. Many existing centralized dakeetween the database size and main processor memory space
analysis algorithms fail for these instances. In fact, nuagh size increases.
analysis problems for large databases are currently opeator In this paper, we propose a new clustering algorithm for
well-solved. large databases based on data compression principles and
In this paper, we consider one important data analysis prahixture Gaussian modeling. Following the approaches in
lem, the clustering problem for large databases. The cingte [11], we formulate the clustering problems as optimization
problem is the problem that a set of given data samplpsoblems. Instead of using a centralized approach, we pro-
are classified into different groups, so that, the data sasnppose a distributed algorithm to solve the global optimtati
within each group are similar according to certain metricproblems. In our approach, the global optimization problem
Clustering is a fundamental problem in data analysis. It h&ssdecomposed into small-scale sub optimization problesas u
many applications in pattern recognition, machine leaynining the Dantzig-Wolfe decomposition method [12]. Gengrall
data mining, computer vision, and signal processing. Fspeaking, the Dantzig-wolfe method can only be used in the
example, clustering is usually an important step in mangp datonvex optimization case, where the duality gaps are zero.
mining algorithms. Even though, the considered problem in this paper is non-
Many algorithms for clustering problems have been preonvex, we show that the duality gap goes to zeros as the prob-
viously discussed in the literature, see for example [1] aeim size goes to infinity. Therefore, the Dantzig-Wolfe noeth
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can be applied here. Our algorithm is especially suitabte fhosts. The final solution is obtained from the sub optimazati
the cases of distributed databases, where data are storetestlts. A diagram of the system is shown in Fif. 1.
multiple hosts or even at different geographical locatiarise
global optimal solutions can be computed with only intratho
computations, intra-host local database queries and al smal =]
amount of inter-host communications. Unlike many clusigri
algorithms for large databases, which compute approximate ‘ ’

Center processor

solutions, our algorithm computes exact solutions. Nuocagri
results show that the proposed algorithm does not have any
numerical difficulties for the case that the covariance ioasr

are singular. Numerical results also show that the algarith
has fast convergence speeds.

The rest of this paper is organized as follows. We present \
the proposed algorithm in Sectibn 1. We prove that the dyali Sub \ &
gap is vanishing for sufficiently large databases in Sediidn Optimization EL%
Numerical results are presented in Secfioh IV. We present th <" / ~
conclusion remark in Sectidn] V. 5y 7 parametr ) Database ho
Notation: We use bold face lower-case letters and bold .\@]? Update 5

face capital letters to denote the column vectors and nestric
respectively. For example, we uggo denote a column vector
a. We usea(d) to denote thei-th element of the vecto#. Fig. 1. The diagram of the system.
We useA! to denote the transpose of the matdx We use

Database host Database host

H(p1,...,ps) to denote the entropy function, The algorithm in this paper is built up on the data compres-
J sion based algorithm for clustering in [11]. The main idea be
Hpy,...,ps) = Z —p;log (ps). 1) hind the algorithm is that optimal data clustering shoutiLice

optimal adaptive data compression. That is, if we partithos
data set into several clusters and use one data compression
encoder for each cluster, then the optimal compression per-
formance is achieved if each cluster contains only the data
samples from one information source. The algorithm in [11]
Il. CLUSTERING ALGORITHM then formulates the data cluster problem as an optimization

In this paper, we consider a data set consisting\of problem, where the classification gain is maximized. The
data samplesg,,z-,...,xx, Where each data sample is &lassification gain is a measure of data compression eftigien
D dimensional vector. We assume that the data samples previously proposed in the data compression literaturg [13
randomly distributed with a mixture Gaussian distribution If the covariance matrices of all clusters are not singular,
That is, then the classification gain is inversely proportional te th
following function,

=1
We usedlog(x) to denote the natural logarithm of the number
We usedet(A) to denote the determinant of the matekx

p(Tn) = J
J
. 1 1 Nix—1 ‘ 2H(p1,...,pJ)+Zpilog(det (%)) (3)
;pz (27T)D/2d€t(2i)1/2 exp{_§($n _u’z) Ez (xn _ll'z)} i—1
(2) where,p; is the fraction of data samples in thieh cluster,
. . . and X; is the covariance matrix of thé-th cluster. The
Alternatively, we may considety, ..., z,,...,Zy as a mix-

above function is the objective function in our optimizatio

ture of data samples froni information sources, where eac . .
information sourge is G?ussian distributed. The Conswetformulatmn. In the sequel, we will always assume that the
) ovariance matrices of all clusters are not singular withou

T e s o o, omoer o 261 498 Tose of genraty. Secause 1 any covannce mani
e . ) ' is singular, we can minimize the following function in the

probab!hty distribution of each qurmaﬂon source. algorithm instead,

In this paper, we propose a distributed algorithm for the
above clustering problem. Our algorithm is efficient for the J )
case that the data set contains a large amount of data samples 2H(p1, - 5py) + Zpi log (det (2 +o,Ip))  (4)
The data samples can be stored at multiple computers or =1
database hosts. The proposed algorithm formulates theecluswhere, o2 is a sufficiently small positive number, addg, is
ing problem as an optimization problem and decomposes tiwe D dimensional identity matrix. This is equivalent to adding
optimization problem into multiple small-scale sub optimi white noise with covariance matrix2I , to the data samples
tion problems. Each sub optimization problem can be solvadd clustering the noise corrupted data samples insteaa. Th
at one database host using only locally stored data sanflesoptimality of the final obtained clustering results is notahu
center processor coordinates the computation at the datatmffected, ifo2 is small enough.



The proposed algorithm formulates the clustering probleaptimization problem in Eqii._10 is equivalent to the follogi

as an optimization problem. We introduce a variablg for
eachn,i, 1 < n < N, and1 < i < J. The variablea,;
is a likelihood that then-th data sample belongs to the
th information source. The meam;, covariance matrixs;,

and occurrence probability; are functions of the likelihood

variablesa,,;,

4 — St it )
21]:[:1 Qi
N
o <ZN_11 anl) z—:1 ani(@n — i) (@0 — ”Z)t 6)
Y i
pi = ]\; (7)

The formulated optimization problem is therefore,

J
IIEII {2H(p1, coopn)+ Zpi log (det (21))}
i=1

Subject to:a € Q (8)

where,a is a vector obtained by stacking all the variabigs,

optimization problem.
J

D
. ~ 2
min g ; g log (o
Ala---7AJ7a',L Di £ g( zd) )

;=1
Subject toa € Q, Aq,..

N
> ani =piN
n=1

where,o?; is thed-th diagonal element of the matri;. The
two optimization problems are equivalent, because

., Ay are unitary

(12)

J J D
> pilog(det (8:) <> B Y log (o)  (13)
=1 1

=1 d=

due to the Hadamard inequality [15, page 502, Thm. 16.8.2],
and clearly equality can be achieved by certdin..., A;.

We solve the optimization problem in Egh.]12 by an
alternating optimization approach. That is, we iterativiist
fix Ay,...,A; and optimize overa, and then fixa and
optimize overA;,...,A;. The latter optimization problem
is easy to solve, because the optin#al, ..., A; are clearly

the matrices, such thaB; becomes diagonal. The main
optimization problem is therefore reduced to

=1 J D
The final estimation results can be obtained by randomly mainz pi ) log (07,
rounding the optimal solution, of the above optimization i=1 d=1
problem as in [11]. The near-optimality of this optimizatio N
based approach has been shown in [11] and [14]. Subject to:a € Q, > an; = piN,
In the sequel, we show that the optimization problem in n=1
Eqn.[8 can be reduced into sub optimization problems thahere,A;,..., A; are fixed and given.
can be locally solved at each database host. The reductiom the third step of reformulating the problem, we use an
and reformulation procedure consists of four steps. iterative upper bounding and minimizing approach to sdee t
In the first step of reformulating the problem, we adopt aoptimization problem in Eqi_14. Let’, [t] denote the solution
approach of first solving the restricted optimization pesbs obtained in the-th iteration. Note that the objective function
with p; being fixed, in Eqn[I4 can be upper bounded as follows, due to the fact
that the objective function is concave with respectfo.

©)

J
Q_{a Zam—l,ogamgl}

(14)

g(ﬁlv cee 7§J)*
J J D
= min {2H(1’51, o Ba)+ > Bilog (det @-))} > B ) log (ofy)
a P i=1 d=1
N ! J D D ﬁ.
Subject toa € 2, and Z an; = piIN, forall i, (10) < Zﬁi Zlog (de[f]) + Z Z o—?dz[t] (de - de[t])
oyt i=1 d=1 i=1d=1 ¢

(15)

In the (¢ 4+ 1)-th iteration, we find a solutiom, such that
_ _ the corresponding?, minimizes the above upper bound. It
(P1,---,Ds)", can be seen clearly that the objective function never irserea
J during iterations. Therefore, the main optimization pesblis

Subject tOiZﬁi —1,0<p <1. (11) reduced to the following optimization problem.
i=1 J D

The problem in Eqn[_11 can be easily solved by using the min {ZZﬁiﬁided}
gradient descent approach. The main problem is therefore i=1d=1
reduced to the optimization problem in Egn] 10.

In the second step of reformulating the problem, we in-
troduce auxiliary unitary matriced;,...,A;. We define
B; = A%;AL fori = 1,...,J. It can be shown that the wheres;q = 1/02,t].

And then, we optimize ovepy,...
optimization solution,

,ps to find the overall

_min,
P1yeees pJ

N
Subject to:a € Q, > an; = piN,

n=1

(16)



In the fourth and final step of reformulating the problemyhere, eacly; is the optimization result of one sub optimiza-
we decompose the optimization problem in Egn. 16 into suion problem. Let;, denote the vector obtained by stacking all
optimization problems by using the Dantzig-Wolfe decompaariablesa,,; with n € N}. Let fi, denote the vector obtained
sition method. Each sub optimization problem can be localby stacking all parametef$;xq, i1 =1,...,J,d=1,...,D.
solved at each database host. The Dantzig-Wolfe decompo- S .
sition method is introduced initially for linear progranmmi o Ani 5 g ~ 2
problems [12]. The method has been then generalized to thefk " arfin {; zj\; dz_; Wﬁld(Azx"(d) = flika) }
convex optimization cases, where the duality gaps are zero, I e i]
(see for example [16] and references therein). For non@onv N _ Oni
optimization problems, the decomposition method generall * Zl ; AutkdBikd + ; Avi nGZNk N
can not be applied due to the non-zero duality gaps. Even ;.
though the optimization problem in EJn.]16 is not convex, we _ Z Z i
show in Theoreni_3]6 that the duality gap goes to zeros as
the number of data samplé@é goes to infinity. Therefore, the 7
decomposition method can be applied here. Subject tOZZam =1, 0<ay <1, forneN;. (20)

Let us assume that the data sampdgs...,z,,...,xN =1
are stored af{ database hosts. Lét};, denote the set of the
indexes of the data samples stored at thn host. We use
Az, (d) to denote thel-th element of the vectoA;z,,. The
optimization problem in Eqi._16 is equivalent to the follogi

It can be clearly checked that eagh can be solved locally at
each database host using only information about local data
samplesz,, n € N, with given parameters3;q, A, and

Lo A, ... Aj.
optimization problem. Lo . . .
P P Therefore, the proposed algorithm iteratively computes th
J K LA clustering result. During each iteration, each databas# ho
. An; ~ 2 !
Izllrfl {ZZ Z Z Wﬂid [Aizn (d) — Tikd] } solves one local small-scale optimization problem as in.Eqn
o i=1 k=1 neN, d=1 [20. The center processor then solves the global optimizatio
Subject to: problem as in Eqni_19 using the local optimization results.
J N The global optimization problem can be solved by using, for
Zam- =1, 0<an; <1, Zam-/N = Di, example, the subgradient method [16, Section 6.3.1].
i=1 n=1
1 I1l. VANISHING DUALITY GAP
Hikd = =N > aniAizn(d), (17) '
pil¥ T In this section, we prove that the duality gap between

where, i is the vector obtained by stacking all the variabled!® _Primal optimization problem in Eqif. [17 and the dual
{i;sa. The real numbefi;.; can be considered as a local guesdPtimization problem in Eqri. 18 goes to zero as the problem
or estimation of the mean of;z, (d) at thek-th database host. SiZ€ YV 90€s to infinity. We need the Azuma inequality in our
If all the local guesses are equal, then the above objectfi§cussion. A proof of the inequality can be found, for exemp
function is equal to the objective function in EqnJ 16. in [17][18]. _ _ _
Because the duality gap is approximately zero as proven-€Mma 3.1: (Azuma Inequalithet Z,,..., Zy be inde-
in Theorem[ 3B, the optimization problem in Ednl 17 jpendent random variables, witk, t_aklng values in a sety.
approximately equivalent to its Lagrangian dual problem 4SUme thata (measurable) functipn A, > Ay x-- - X Ay —

follows. R satisfies the following Lipschitz condition (L).
K D e (L) If the vectorsz, 2’ € Hff A; differ only in the kth
max min {Z Z Z Z C;? Bia(Aixy (d) — ﬁikd)Q} coordinate, thenf(z) — f(2')] <cx, k=1,...,N.
A el T D N, it Then, the random variabl& = f(7,,..., Zy) satisfies, for
J K D 1 N anyt > 0,
+D D> Auikd (ﬁikd 5N > am'Az'Z'n(d)> o2
=rkstdsl von=l P(X > EX +1) < exp ( ~ c2> : (21)
~ k
i=1 n=1 ]P)(X <EX — t) < exp =N 5 (22)

Subject toa € Q, (18) >
The basic idea is to use randomization. Randomization has
where, A denotes the vector obtained by stacking all variablggen used previously in establishing stronger duality rieeo
Auikda and Ap;. The above optimization problem is separablgve refer interested readers to [19] and references therein.
and can be rewritten as, p(a, i) denote the probability distribution @f andfi, where
the range of is 2, and

K J
mf"; Ti = Z} ApiPi; (19) min Az, (d) < fiipa < max Az, (d). 23)



We introduce the following randomized primal optimizatiorit can be check thaR} < PR*, and PR} — PR*, as
problem. e — 0. The dual of thePR, problemDR, is

i {3 5 3 S0 - | e S8 5 im0 - |

i=1 k=1neN} d=1
i=1 k=1 neN}, d=1 k

. D
Subject to: + Z Aikd ( lumd Z aniAizy, ( ] - e)

N
~ 1 i=1 k=1d=1
E l(ﬂikd — ﬁ Z amAzxn(d)>] = O, J K D 1
N U on=1 + Z Z Afikd < luzkd 5N Z aniAitn(d) | + 6)
1 _ =1
E lﬁ Z Qni — Di

+ ] )a

J
S @ { [ zam i
%Zam——@ﬁ +e}dﬁ

J K D
. Ani ) . o~ 2 =1
max min E{ZZ > = BialAa(d) — fia) } . 0, X > 0,05,(8) > 0, \75(7) > 0.

J K

1]

<.

ﬁ] =0, for all zi. (24)

+

—

—

The corresponding Lagrangian randomized dual problem is

+ [ eon@ {E

red) S5 o Subject to:A ;. ; > » Api (b » Api (b
J L (32)
+ / Z)‘m’ (B)E [N Z ani — Di ﬁ] dp It can be also checked th@tR* — DR*, ase — 0.
; Z:;{ b n=1 Now we show thatPR,. is a convex optimization problem.
N 1 Let p'(a, 1), p*(a, i) be two probability distributions satisfy-
+ ey ; Aika | Hika = N Zlam'Aix"(d)] - (29) ing all the constraints in th&® R, problem. Let

p(a’aﬁ) = apl (a’vﬁ) + (1 - a)p2 (a'7ﬁ)a (33)
Let us denote the optimal solutions of the primal opti-
mization problem in Eqri—_17, randomized primal optimizatiowhere,0 < o < 1. Equivalently, we may introduce a random
problem in Eqn[24, dual optimization problem in En] 1g/ar|ablez P(z=1) = a, Pz = 2) = 1-q; pla,p) =
and randomized dual optimization problem in Eqnl 25 by (a.R), if 2 =1, andp(a, ) = p*(a, 1), if 2 = 2. We can
P*, PR*, D*, and DR* respectively. We have the following Show thaty(a, 1) satisfies the constraint in Eqn.130 as follows.

lemmas. N oo Noa
. E nt _ A,L' ~ — nt _ A,L' o~ d
Lemma 3.2: LZl N D ,u] / Lz_:l N D ] p(alp)da
PR* < P* (26) N oo
Proof: The lemma follows from the fact that each :/ > N~ Pi|pla,z = 1|@)da
deterministic variable can be considered as a random Variab n=1 N
with a singleton probability distribution. ] / ni
— P » & T 2 d
Lemma 3.3: + nz::l N 7 ple, i) da
N Q.
~ pr<D en [Z g —@-] p'(@l@)p(= = 1[i)da
Proof: Similar as the proof of Lemmia_3.2. [ | n=1
Lemma 3.4: N Ui )
+ 1% - 5| e = 21
PR* = DR* (28) n=1
Proof: We may define the following®R. optimization <p(z=1ple+p(z =2[me <e (34)
problem. Similarly,

ﬁ] > e (35)

n=1

J K al Ang  ~
mlg E{ZZ Zanzﬁld(A xn( ) ﬁikd)2} E[ W_pz

(29)  We can also show that(a, i) satisfies the constraint in Eqn.

Subject to: [37 by using the fact that the expectation is a linear funetion
Finally, the objective function in Egri._R9 is also convex,

[ Zam Dil b ] < e, for all f, (30) because the expectation is a linear functional. Theretbee,

optimization problemP R, is a convex optimization problem.

Because,PR,. is a convex optimization problem and the
<e (31) Slater condition holdsPR: = DR} according to the strong
duality theorem [20, Thm. 6.7]. Therefor®R* = DR*. ®

ﬁikd - @—N nX:: aniAimn(d)




Lemma 3.5:Assumemax,, ., ||z, —zn,||2 <V, for afixed the above average. We can further modify the atibveto a
upper bound/, where||-|| denotes the Euclidean norm. Thercertaina € Q, @ = (..., dy;, . ..), such that
PR* — P*, asN goes to infinity. N
Pro_of: Le@ p*(a, ) denote the optimal solution of thg_ Z?im'/N — B, (42)
randomized primal problem. We can construct a probability

distribution p(a, ) as follows. . o o .
and the corresponding objective function is raised by attmos

(J — 1) max{B;q}V?e. We can now set

N
_p*(ﬁ) Hp*(anlvvanJ|ﬁ)a (36)
n=1

N
1
where, the probability distributions at the right hand are Hikd = 5N = () 43)

marginal distributions. It can be checked that the proligbil
pla, i) achieves the exactly same objective function an
constraint function values in the randomized primal probées

%Iearly, an; and ;e satisfy all the constraints in the primal
problem. Therefore,

the probability distribution* (a, iz). Therefore, we can assume J K D ~
that p*(a, i) takes the form in Eqri_36 without the loss of P*<ZZ Z Z (Aizr (d) — [iika)’]
generality. i=1 k=1n€N}, d
We define the typical seT (¢) as (@) J. XK i ,
N SZIZXA;Z — Bia(Aizn(d) — fiika)
T(e) = {(a,ﬁ) S G| <e forall 2} 37) T
=N +(J - Dmax{§;}V2 (44)

= 1 —2Jexp(—2€2N)
The probability thate, i) is not in the typical sef (¢) can be
upper bounded by using the Azuma inequality and the uni
bound as follows.

Mere, (a) follows from the fact that;;4 are the minimizer
of the above quadratic function. The lemma then follows from

y v the fact thatPR* < P*. [ |
- (i Theorem 3.6:The duality gapP* — D* between the primal
Plla,n) ¢ T(e)] < ZP > ~ " Pi| = 61 problem and dual problem goes to zero as the data sample
=l n=l numberN goes to infinity.
> €

IV. NUMERICAL RESULTS

INA
[~
—
a=!

=1

/2 exp (—262N) p(f)df In th!s section_, we prese_nt numerical re;ults for the pregos
clustering algorithm. In Figld2, we depict the result of the
proposed algorithm for the case of two overlapping clusters
in a two dimensional space. Both the two clusters have zero
Due to the fact that the objective function is non-negativ8}€an- Their covariance matrices are as follows.
the average achieved objective function valuegdyz) in the { 80000 52000 ] [ 192800  —118800

Mk

i=1
< 2Jexp (—2¢*N) (38)

typical set, 52000 35600 —118800 74000 (45)
J XK DG, The total data sample number2848 and each cluster contains
E { S > ]C; Bia(Aizx,(d) — ﬁikd)Q‘ T(E)} 1024 data samples. We assume that the data samples can be
' observed by two database hosts, where the first database host
PR* (39) can only observe th#024 data samples from the first cluster,
~ P((a,p) € T(e)) and the second database host can only observe(the data
samples from the second cluster. After the clustering tesul
obtained, we randomly selet28 data samples from the first
P((a, i) € T(e)] > 1 —2J exp (—252N) (40) cluster andl28 data samples from the second cluster and plot
these data samples in the figure. The data samples classified
Therefore, we have that the average of the objective functifhto one cluster are plotted as red circles and the data sampl
in the typical set is bounded by classified into the other cluster are plotted as blue squares
The percentage of missed classified data sampl&s3i2J%.
{ZZ Z Z Un; Bia(Aszn(d) — ﬁikd)Q‘ T(e)} The clustering errors mainly occur at the rggions where the
Pl oy Vil two clusters overlap. The algorithm starts with two randoml
PR* selected unitary matriced;, and A,. We observe that these
< 1_9J 3 (41) matrices converge quickly. We also experiment with the sase
— 2J exp(—2€2N) .
that each database host observes a mixture of data samples
There must exist onéa, z) in the typical set, such thatfrom the two clusters with various percentages. The obthine
the corresponding objective function is less than or egoal tesults are not significantly different from the result iy FE2.

Also by the above discussions,




has zero mean and covariance matrix
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The total data sample numberig48 and each cluster contains
1024 data samples. There are two database hosts, the first
o 1000 500 0 500 1000 database host can only observe tt24 data samples from

the first cluster, and the second database host can onlyvebser
the 1024 data samples from the second cluster. The percentage
of missed classified data samples2i29%. The results for

the cases that each database host observes a mixture of data

In Fig.[3, we depict the result of the proposed algorithm foi2TPles from the two clusters with various percentages are
the case of two overlapping clusters with one cluster havit’ﬂé)t significantly different from the result in the figure.
a singular covariance matrix. Both the two clusters have zer
mean. Their covariance matrices are as follows.

-600

Fig. 2. Clustering results for two overlapping clusters.
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optimization problem, a term21,, 02 = 0.5, is added to the ol
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the cases that each database host observes a mixture of data

samples from the two clusters with various percentages &g 4. Clustering result for the case that the two clustersehdifferent

not significantly different from the result in the figure. Themeans.

proposed clustering algorithm does not have any numerical o

convergence difficulties for these cases. In summary, we find that the proposed clustering algorithm
has low missed classification probability and fast convecge
speeds. The algorithm does not have numerical or conveggenc
- difficulties for the case of singular covariance matricese T
qug; ] proposed algorithm is a promising approach for future large
200l mﬁfﬁuu | scale data analysis.
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V. CONCLUSION
o This paper proposes a large-scale data clustering algorith
based on distributed optimization. We show that the duality
] gap of the considered optimization problem goes to zero
o as the problem size goes to infinity. Therefore, the global
koo w00 500 0 500 1000 optimization problem can be decomposed into small-scdie su
optimization problems by using the Dantzig-Wolfe method.
Fig. 3. Clustering result for the case that one cluster hasgulsr covariance The small-scale sub optlmlzat!on problems can be solvetjusi
matrix. a group of computers coordinated by one center processor.
Numerical results show that the proposed algorithm is effec
In Fig.[4, we depict the result of the proposed algorithm fdive, efficient and does not have numerical or convergence
the case of two clusters with different means. The first elustdifficulties.
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