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Abstract— This paper considers the clustering problem for
large data sets. We propose an approach based on distributed
optimization. The clustering problem is formulated as an opti-
mization problem of maximizing the classification gain. We show
that the optimization problem can be reformulated and decom-
posed into small-scale sub optimization problems by using the
Dantzig-Wolfe decomposition method. Generally speaking,the
Dantzig-Wolfe method can only be used for convex optimization
problems, where the duality gaps are zero. Even though, the
considered optimization problem in this paper is non-convex, we
prove that the duality gap goes to zero, as the problem size
goes to infinity. Therefore, the Dantzig-Wolfe method can be
applied here. In the proposed approach, the clustering problem
is iteratively solved by a group of computers coordinated byone
center processor, where each computer solves one independent
small-scale sub optimization problem during each iteration, and
only a small amount of data communication is needed between
the computers and center processor. Numerical results showthat
the proposed approach is effective and efficient.

I. I NTRODUCTION

In the recent years, due to the rapid progress of data acqui-
sition and communication technologies, it has become readily
easy to collect and store large amounts of data. Large databases
of scientific measurements at the scale of terabyte or even
petabyte can be frequently observed in high energy physics,
astronomy, space exploration and human genome projects.
Large databases of financial data and sale transactions at the
scale of terabyte or petabyte can also be frequently observed.
These huge amounts of data usually contain valuable scientific
and business information. For example, a large collection of
sale transaction data may contain important information of
consumer behaviors and market trends. However, the data
analysis on such large databases presents many technique chal-
lenges. The database size is usually far larger than the memory
size of any single computer. Many existing centralized data
analysis algorithms fail for these instances. In fact, mostdata
analysis problems for large databases are currently open ornot
well-solved.

In this paper, we consider one important data analysis prob-
lem, the clustering problem for large databases. The clustering
problem is the problem that a set of given data samples
are classified into different groups, so that, the data samples
within each group are similar according to certain metrics.
Clustering is a fundamental problem in data analysis. It has
many applications in pattern recognition, machine learning,
data mining, computer vision, and signal processing. For
example, clustering is usually an important step in many data
mining algorithms.

Many algorithms for clustering problems have been pre-
viously discussed in the literature, see for example [1] and

references therein. These algorithms range from heuristical-
gorithms to statistical modeling based algorithms. Among the
previous algorithms, the statistical modeling based methods
generally have better clustering performance compared with
other types of algorithms, especially when the data clusters
are not well separated. The Expectation-Maximization (EM)
algorithms with mixture Gaussian modeling [2] [3] are the
major state-of-the-art statistical modeling based clustering
algorithms. The EM algorithms can be considered as iterative
algorithms for computing the maximum likelihood estimation.
It has been proven that the likelihood functions do not decrease
during iterations.

However, it is well-known that the EM algorithms have
certain limitations. First, according to previous experimental
results, the EM algorithms may convergence very slowly [4],
[5]. It is shown in [6], that the EM algorithms are first-order
optimization algorithms, which provides a theoretical expla-
nation for the slow convergence speeds. In fact, it has been
a long-standing open problem that super-linear and second-
order methods should be found and preferred for the clustering
problems [7]. Second, the EM algorithms do not converge and
have numerical difficulties for certain types of instances [4],
[8]. For example, the EM algorithms do not converge, when
the covariance matrices are singular. The EM algorithms also
do not converge, when the numbers of components in the
mixture modeling are greater than the actual numbers of data
clusters.

In addition, the standard EM algorithms require memory
spaces proportional to the database size, therefore, do not
scale well. Various scaling-up versions of the standard EM
algorithms have been proposed in the literature [9], [10]. How-
ever, these previous approaches are approximation algorithms.
The accuracy of the obtained results decreases as the ratio
between the database size and main processor memory space
size increases.

In this paper, we propose a new clustering algorithm for
large databases based on data compression principles and
mixture Gaussian modeling. Following the approaches in
[11], we formulate the clustering problems as optimization
problems. Instead of using a centralized approach, we pro-
pose a distributed algorithm to solve the global optimization
problems. In our approach, the global optimization problem
is decomposed into small-scale sub optimization problems us-
ing the Dantzig-Wolfe decomposition method [12]. Generally
speaking, the Dantzig-wolfe method can only be used in the
convex optimization case, where the duality gaps are zero.
Even though, the considered problem in this paper is non-
convex, we show that the duality gap goes to zeros as the prob-
lem size goes to infinity. Therefore, the Dantzig-Wolfe method
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can be applied here. Our algorithm is especially suitable for
the cases of distributed databases, where data are stored at
multiple hosts or even at different geographical locations. The
global optimal solutions can be computed with only intra-host
computations, intra-host local database queries and a small
amount of inter-host communications. Unlike many clustering
algorithms for large databases, which compute approximate
solutions, our algorithm computes exact solutions. Numerical
results show that the proposed algorithm does not have any
numerical difficulties for the case that the covariance matrices
are singular. Numerical results also show that the algorithm
has fast convergence speeds.

The rest of this paper is organized as follows. We present
the proposed algorithm in Section II. We prove that the duality
gap is vanishing for sufficiently large databases in SectionIII.
Numerical results are presented in Section IV. We present the
conclusion remark in Section V.

Notation: We use bold face lower-case letters and bold
face capital letters to denote the column vectors and matrices
respectively. For example, we useaaa to denote a column vector
aaa. We useaaa(d) to denote thed-th element of the vectoraaa.
We useAAAt to denote the transpose of the matrixAAA. We use
H(p1, . . . , pJ) to denote the entropy function,

H(p1, . . . , pJ) =

J∑

i=1

−pi log (pi) . (1)

We uselog(x) to denote the natural logarithm of the numberx.
We usedet(AAA) to denote the determinant of the matrixAAA.

II. CLUSTERING ALGORITHM

In this paper, we consider a data set consisting ofN
data samples,xxx1,xxx2, . . . ,xxxN , where each data sample is a
D dimensional vector. We assume that the data samples are
randomly distributed with a mixture Gaussian distribution.
That is,

p(xxxn) =
J∑

i=1

pi
1

(2π)D/2det(ΣΣΣi)1/2
exp

{
−
1

2
(xxxn − µµµi)

tΣΣΣ−1
i (xxxn −µµµi)

}

(2)

Alternatively, we may considerxxx1, . . . ,xxxn, . . . ,xxxN as a mix-
ture of data samples fromJ information sources, where each
information source is Gaussian distributed. The considered
problem is therefore estimating the membership of each data
sample to one of theJ information sources, and also the
probability distribution of each information source.

In this paper, we propose a distributed algorithm for the
above clustering problem. Our algorithm is efficient for the
case that the data set contains a large amount of data samples.
The data samples can be stored at multiple computers or
database hosts. The proposed algorithm formulates the cluster-
ing problem as an optimization problem and decomposes the
optimization problem into multiple small-scale sub optimiza-
tion problems. Each sub optimization problem can be solved
at one database host using only locally stored data samples.A
center processor coordinates the computation at the database

hosts. The final solution is obtained from the sub optimization
results. A diagram of the system is shown in Fig. 1.

Center processor

Database host Database host

Database host
Parameter
Update

Sub
Optimization
Result

Internet

Fig. 1. The diagram of the system.

The algorithm in this paper is built up on the data compres-
sion based algorithm for clustering in [11]. The main idea be-
hind the algorithm is that optimal data clustering should induce
optimal adaptive data compression. That is, if we partitionthe
data set into several clusters and use one data compression
encoder for each cluster, then the optimal compression per-
formance is achieved if each cluster contains only the data
samples from one information source. The algorithm in [11]
then formulates the data cluster problem as an optimization
problem, where the classification gain is maximized. The
classification gain is a measure of data compression efficiency
previously proposed in the data compression literature [13].

If the covariance matrices of all clusters are not singular,
then the classification gain is inversely proportional to the
following function,

2H(p1, . . . , pJ) +

J∑

i=1

pi log (det (ΣΣΣi)) (3)

where,pi is the fraction of data samples in thei-th cluster,
and ΣΣΣi is the covariance matrix of thei-th cluster. The
above function is the objective function in our optimization
formulation. In the sequel, we will always assume that the
covariance matrices of all clusters are not singular without
the loss of generality. Because, if any covariance matrix
is singular, we can minimize the following function in the
algorithm instead,

2H(p1, . . . , pJ) +
J∑

i=1

pi log
(
det
(
ΣΣΣi + σ2

nIIID
))

(4)

where,σ2
n is a sufficiently small positive number, andIIID is

theD dimensional identity matrix. This is equivalent to adding
white noise with covariance matrixσ2

nIIID to the data samples
and clustering the noise corrupted data samples instead. The
optimality of the final obtained clustering results is not much
affected, ifσ2

n is small enough.
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The proposed algorithm formulates the clustering problem
as an optimization problem. We introduce a variableani for
eachn, i, 1 ≤ n ≤ N , and 1 ≤ i ≤ J . The variableani
is a likelihood that then-th data sample belongs to thei-
th information source. The meanµµµi, covariance matrixΣΣΣi,
and occurrence probabilitypi are functions of the likelihood
variablesani,

µµµi =

∑N
n=1 anixxxn∑N
n=1 ani

(5)

ΣΣΣi =

(
1

∑N
n=1 ani

)
N∑

n=1

ani(xxxn −µµµi)(xxxn −µµµi)
t (6)

pi =

∑N
n=1 ani
N

. (7)

The formulated optimization problem is therefore,

min
aaa

{
2H(p1, . . . , pJ) +

J∑

i=1

pi log (det (ΣΣΣi))

}

Subject to:aaa ∈ Ω (8)

where,aaa is a vector obtained by stacking all the variablesani,

Ω =

{
aaa

∣∣∣∣∣

J∑

i=1

ani = 1, 0 ≤ ani ≤ 1

}
. (9)

The final estimation results can be obtained by randomly
rounding the optimal solutiona∗ni of the above optimization
problem as in [11]. The near-optimality of this optimization
based approach has been shown in [11] and [14].

In the sequel, we show that the optimization problem in
Eqn. 8 can be reduced into sub optimization problems that
can be locally solved at each database host. The reduction
and reformulation procedure consists of four steps.

In the first step of reformulating the problem, we adopt an
approach of first solving the restricted optimization problems
with pi being fixed,

g(p̃1, . . . , p̃J)
∗

= min
aaa

{
2H(p̃1, . . . , p̃J) +

J∑

i=1

p̃i log (det (ΣΣΣi))

}

Subject to:aaa ∈ Ω, and
N∑

n=1

ani = p̃iN, for all i, (10)

And then, we optimize over̃p1, . . . , p̃J to find the overall
optimization solution,

min
p̃1,...,p̃J

g(p̃1, . . . , p̃J)
∗,

Subject to:
J∑

i=1

p̃i = 1, 0 ≤ p̃i ≤ 1. (11)

The problem in Eqn. 11 can be easily solved by using the
gradient descent approach. The main problem is therefore
reduced to the optimization problem in Eqn. 10.

In the second step of reformulating the problem, we in-
troduce auxiliary unitary matricesAAA1, . . . ,AAAJ . We define
BBBi = AAAiΣΣΣiAAA

t
i, for i = 1, . . . , J . It can be shown that the

optimization problem in Eqn. 10 is equivalent to the following
optimization problem.

min
AAA1,...,AAAJ ,aaa

J∑

i=1

p̃i

D∑

d=1

log
(
σ2
id

)
,

Subject to:aaa ∈ Ω, AAA1, . . . ,AAAJ are unitary
N∑

n=1

ani = p̃iN (12)

where,σ2
id is thed-th diagonal element of the matrixBBBi. The

two optimization problems are equivalent, because

J∑

i=1

p̃i log (det (ΣΣΣi)) ≤
J∑

i=1

p̃i

D∑

d=1

log
(
σ2
id

)
(13)

due to the Hadamard inequality [15, page 502, Thm. 16.8.2],
and clearly equality can be achieved by certainAAA1, . . . ,AAAJ .

We solve the optimization problem in Eqn. 12 by an
alternating optimization approach. That is, we iteratively first
fix AAA1, . . . ,AAAJ and optimize overaaa, and then fixaaa and
optimize overAAA1, . . . ,AAAJ . The latter optimization problem
is easy to solve, because the optimalAAA1, . . . ,AAAJ are clearly
the matrices, such thatBBBi becomes diagonal. The main
optimization problem is therefore reduced to

min
aaa

J∑

i=1

p̃i

D∑

d=1

log
(
σ2
id

)
,

Subject to:aaa ∈ Ω,
N∑

n=1

ani = p̃iN, (14)

where,AAA1, . . . ,AAAJ are fixed and given.
In the third step of reformulating the problem, we use an

iterative upper bounding and minimizing approach to solve the
optimization problem in Eqn. 14. Letσ2

id[t] denote the solution
obtained in thet-th iteration. Note that the objective function
in Eqn 14 can be upper bounded as follows, due to the fact
that the objective function is concave with respect toσ2

id.

J∑

i=1

p̃i

D∑

d=1

log
(
σ2
id

)

≤
J∑

i=1

p̃i

D∑

d=1

log
(
σ2
id[t]

)
+

J∑

i=1

D∑

d=1

p̃i
σ2
id[t]

(
σ2
id − σ2

id[t]
)

(15)

In the (t + 1)-th iteration, we find a solutionaaa, such that
the correspondingσ2

id minimizes the above upper bound. It
can be seen clearly that the objective function never increase
during iterations. Therefore, the main optimization problem is
reduced to the following optimization problem.

min
aaa

{
J∑

i=1

D∑

d=1

p̃iβidσ
2
id

}

Subject to:aaa ∈ Ω,
N∑

n=1

ani = p̃iN, (16)

whereβid = 1/σ2
id[t].



4

In the fourth and final step of reformulating the problem,
we decompose the optimization problem in Eqn. 16 into sub
optimization problems by using the Dantzig-Wolfe decompo-
sition method. Each sub optimization problem can be locally
solved at each database host. The Dantzig-Wolfe decompo-
sition method is introduced initially for linear programming
problems [12]. The method has been then generalized to the
convex optimization cases, where the duality gaps are zero,
(see for example [16] and references therein). For non-convex
optimization problems, the decomposition method generally
can not be applied due to the non-zero duality gaps. Even
though the optimization problem in Eqn. 16 is not convex, we
show in Theorem 3.6 that the duality gap goes to zeros as
the number of data samplesN goes to infinity. Therefore, the
decomposition method can be applied here.

Let us assume that the data samplesxxx1, . . . ,xxxn, . . . ,xxxN

are stored atK database hosts. LetNk denote the set of the
indexes of the data samples stored at thek-th host. We use
AAAixxxn(d) to denote thed-th element of the vectorAAAixxxn. The
optimization problem in Eqn. 16 is equivalent to the following
optimization problem.

min
aaa,µ̂̂µ̂µ

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ani
N

βid [AAAixxxn(d)− µ̂ikd]
2

}

Subject to:
J∑

i=1

ani = 1, 0 ≤ ani ≤ 1,

N∑

n=1

ani/N = p̃i,

µ̂ikd =
1

p̃iN

N∑

n=1

aniAAAixxxn(d), (17)

where,µ̂̂µ̂µ is the vector obtained by stacking all the variables
µ̂ikd. The real number̂µikd can be considered as a local guess
or estimation of the mean ofAAAixxxn(d) at thek-th database host.
If all the local guesses are equal, then the above objective
function is equal to the objective function in Eqn. 16.

Because the duality gap is approximately zero as proven
in Theorem 3.6, the optimization problem in Eqn. 17 is
approximately equivalent to its Lagrangian dual problem as
follows.

max
λλλ

min
aaa,µ̂̂µ̂µ

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ani
N

βid(AAAixxxn(d)− µ̂ikd)
2

}

+
J∑

i=1

K∑

k=1

D∑

d=1

λµikd

(
µ̂ikd −

1

p̃iN

N∑

n=1

aniAAAixxxn(d)

)

+
J∑

i=1

λpi

[
N∑

n=1

ani/N − p̃i

]

Subject to:aaa ∈ Ω, (18)

where,λλλ denotes the vector obtained by stacking all variables
λµikd andλpi. The above optimization problem is separable
and can be rewritten as,

max
λλλ

K∑

k=1

f∗
k −

J∑

i=1

λpip̃i, (19)

where, eachf∗
k is the optimization result of one sub optimiza-

tion problem. Letaaak denote the vector obtained by stacking all
variablesani with n ∈ Nk. Let µ̂̂µ̂µk denote the vector obtained
by stacking all parameterŝµikd, i = 1, . . . , J , d = 1, . . . , D.

f∗
k = min

aaak,µ̂̂µ̂µk

{
J∑

i=1

∑

n∈Nk

D∑

d=1

ani
N

βid(AAAixxxn(d)− µ̂ikd)
2

}

+
J∑

i=1

D∑

d=1

λµikdµ̂ikd +
J∑

i=1

λpi

∑

n∈Nk

ani
N

−
J∑

i=1

K∑

k=1

D∑

d=1

λµikd

p̃N

∑

n∈Nk

aniAAAixxxn(d)

Subject to:
J∑

i=1

ani = 1, 0 ≤ ani ≤ 1, for n ∈ Nk. (20)

It can be clearly checked that eachf∗
k can be solved locally at

each database host using only information about local data
samplesxxxn, n ∈ Nk with given parametersβid, λλλ, and
AAA1, . . . ,AAAJ .

Therefore, the proposed algorithm iteratively computes the
clustering result. During each iteration, each database host
solves one local small-scale optimization problem as in Eqn.
20. The center processor then solves the global optimization
problem as in Eqn. 19 using the local optimization results.
The global optimization problem can be solved by using, for
example, the subgradient method [16, Section 6.3.1].

III. VANISHING DUALITY GAP

In this section, we prove that the duality gap between
the primal optimization problem in Eqn. 17 and the dual
optimization problem in Eqn. 18 goes to zero as the problem
sizeN goes to infinity. We need the Azuma inequality in our
discussion. A proof of the inequality can be found, for example
in [17][18].

Lemma 3.1: (Azuma Inequality)Let Z1, . . . , ZN be inde-
pendent random variables, withZk taking values in a setΛk.
Assume that a (measurable) functionf : Λ1×Λ2×· · ·×ΛN →
R satisfies the following Lipschitz condition (L).

• (L) If the vectorsz, z′ ∈
∏N

1 Λi differ only in the kth
coordinate, then|f(z)− f(z′)| < ck, k = 1, . . . , N .

Then, the random variableX = f(Z1, . . . , ZN) satisfies, for
any t ≥ 0,

P(X ≥ EX + t) ≤ exp

(
−2t2
∑N

1 c2k

)
, (21)

P(X ≤ EX − t) ≤ exp

(
−2t2
∑N

1 c2k

)
. (22)

The basic idea is to use randomization. Randomization has
been used previously in establishing stronger duality theories.
We refer interested readers to [19] and references therein.Let
p(aaa, µ̂̂µ̂µ) denote the probability distribution ofaaa and µ̂̂µ̂µ, where
the range ofaaa is Ω, and

min
n

AAAixxxn(d) ≤ µ̂ikd ≤ max
n

AAAixxxn(d). (23)
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We introduce the following randomized primal optimization
problem.

min
p(aaa,µ̂̂µ̂µ)

E

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ani
N

βid(AAAixxxn(d)− µ̂ikd)
2

}

Subject to:

E

[(
µ̂ikd −

1

p̃iN

N∑

n=1

aniAAAixxxn(d)

)]
= 0,

E

[
1

N

N∑

n=1

ani − p̃i

∣∣∣∣∣ µ̂̂µ̂µ
]
= 0, for all µ̂̂µ̂µ. (24)

The corresponding Lagrangian randomized dual problem is

max
λλλ

min
p(aaa,µ̂̂µ̂µ)

E

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ani
N

βid(AAAixxxn(d) − µ̂ikd)
2

}

+

∫ J∑

i=1

λpi(µ̂̂µ̂µ)E

[
1

N

N∑

n=1

ani − p̃i

∣∣∣∣∣ µ̂̂µ̂µ
]
dµ̂̂µ̂µ

+

J∑

i=1

K∑

k=1

D∑

d=1

λµikdE

[
µ̂ikd −

1

p̃iN

N∑

n=1

aniAAAixxxn(d)

]
. (25)

Let us denote the optimal solutions of the primal opti-
mization problem in Eqn. 17, randomized primal optimization
problem in Eqn. 24, dual optimization problem in Eqn. 18,
and randomized dual optimization problem in Eqn. 25 by
P ∗, PR∗, D∗, andDR∗ respectively. We have the following
lemmas.

Lemma 3.2:

PR∗ ≤ P ∗ (26)
Proof: The lemma follows from the fact that each

deterministic variable can be considered as a random variable
with a singleton probability distribution.

Lemma 3.3:

DR∗ ≤ D∗ (27)
Proof: Similar as the proof of Lemma 3.2.

Lemma 3.4:

PR∗ = DR∗ (28)
Proof: We may define the followingPRǫ optimization

problem.

min
p(aaa,µ̂̂µ̂µ)

E

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ani
N

βid(AAAixxxn(d)− µ̂ikd)
2

}

(29)

Subject to:
∣∣∣∣∣E
[

1

N

N∑

n=1

ani − p̂i

∣∣∣∣∣ µ̂̂µ̂µ
]∣∣∣∣∣ ≤ ǫ, for all µ̂̂µ̂µ, (30)

∣∣∣∣∣µ̂ikd −
1

p̃iN

N∑

n=1

aniAAAixxxn(d)

∣∣∣∣∣ ≤ ǫ. (31)

It can be check thatPR∗
ǫ ≤ PR∗, and PR∗

ǫ → PR∗, as
ǫ → 0. The dual of thePRǫ problemDRǫ is

max
λλλ−,λλλ+

min
p(aaa,µ̂̂µ̂µ)

E

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ani
N

βid(AAAixxxn(d)− µ̂ikd)
2

}

+
J∑

i=1

K∑

k=1

D∑

d=1

λ−
µikd

(
E

[
µ̂ikd −

1

p̃iN

N∑

n=1

aniAAAixxxn(d)

]
− ǫ

)

+
J∑

i=1

K∑

k=1

D∑

d=1

(−1)λ+
µikd

(
E

[
µ̂ikd −

1

p̃iN

N∑

n=1

aniAAAixxxn(d)

]
+ ǫ

)

+

∫ J∑

i=1

λ−
pi(µ̂̂µ̂µ)

{
E

[
1

N

N∑

n=1

ani − p̃i

∣∣∣∣∣ µ̂̂µ̂µ
]
− ǫ

}
dµ̂̂µ̂µ

+

∫ J∑

i=1

(−1)λ+
pi(µ̂̂µ̂µ)

{
E

[
1

N

N∑

n=1

ani − p̂i

∣∣∣∣∣ µ̂̂µ̂µ
]
+ ǫ

}
dµ̂̂µ̂µ

Subject to:λ−
µikd ≥ 0, λ+

µikd ≥ 0, λ−
pi(µ̂̂µ̂µ) ≥ 0, λ+

pi(µ̂̂µ̂µ) ≥ 0.

(32)

It can be also checked thatDR∗
ǫ → DR∗, asǫ → 0.

Now we show thatPRǫ is a convex optimization problem.
Let p1(aaa, µ̂̂µ̂µ), p2(aaa, µ̂̂µ̂µ) be two probability distributions satisfy-
ing all the constraints in thePRǫ problem. Let

p(aaa, µ̂̂µ̂µ) = αp1(aaa, µ̂̂µ̂µ) + (1− α)p2(aaa, µ̂̂µ̂µ), (33)

where,0 ≤ α ≤ 1. Equivalently, we may introduce a random
variable z, P(z = 1) = α, P(z = 2) = 1 − α; p(aaa, µ̂̂µ̂µ) =
p1(aaa, µ̂̂µ̂µ), if z = 1, andp(aaa, µ̂̂µ̂µ) = p2(aaa, µ̂̂µ̂µ), if z = 2. We can
show thatp(aaa, µ̂̂µ̂µ) satisfies the constraint in Eqn. 30 as follows.

E

[
N∑

n=1

ani
N

− p̂i

∣∣∣∣∣ µ̂̂µ̂µ
]
=

∫ [ N∑

n=1

ani
N

− p̂i

]
p(aaa|µ̂̂µ̂µ)daaa

=

∫ [ N∑

n=1

ani
N

− p̂i

]
p(aaa, z = 1|µ̂̂µ̂µ)daaa

+

∫ [ N∑

n=1

ani
N

− p̂i

]
p(aaa, z = 2|µ̂̂µ̂µ)daaa

=

∫ [ N∑

n=1

ani
N

− p̂i

]
p1(aaa|µ̂̂µ̂µ)p(z = 1|µ̂̂µ̂µ)daaa

+

∫ [ N∑

n=1

ani
N

− p̂i

]
p2(aaa|µ̂̂µ̂µ)p(z = 2|µ̂̂µ̂µ)daaa

≤ p(z = 1|µ̂̂µ̂µ)ǫ+ p(z = 2|µ̂̂µ̂µ)ǫ ≤ ǫ (34)

Similarly,

E

[
N∑

n=1

ani
N

− p̂i

∣∣∣∣∣ µ̂̂µ̂µ
]
≥ ǫ (35)

We can also show thatp(aaa, µ̂̂µ̂µ) satisfies the constraint in Eqn.
31 by using the fact that the expectation is a linear functional.
Finally, the objective function in Eqn. 29 is also convex,
because the expectation is a linear functional. Therefore,the
optimization problemPRǫ is a convex optimization problem.

Because,PRǫ is a convex optimization problem and the
Slater condition holds,PR∗

ǫ = DR∗
ǫ according to the strong

duality theorem [20, Thm. 6.7]. Therefore,PR∗ = DR∗.



6

Lemma 3.5:Assumemaxn,m ||xxxn−xxxm||2 ≤ V , for a fixed
upper boundV , where||·||2 denotes the Euclidean norm. Then
PR∗ → P ∗, asN goes to infinity.

Proof: Let p∗(aaa, µ̂̂µ̂µ) denote the optimal solution of the
randomized primal problem. We can construct a probability
distribution p̂(aaa, µ̂̂µ̂µ) as follows.

p̂(aaa, µ̂̂µ̂µ) = p∗(µ̂̂µ̂µ)

N∏

n=1

p∗(an1, . . . , anJ |µ̂̂µ̂µ), (36)

where, the probability distributions at the right hand are
marginal distributions. It can be checked that the probability
p̂(aaa, µ̂̂µ̂µ) achieves the exactly same objective function and
constraint function values in the randomized primal problem as
the probability distributionp∗(aaa, µ̂̂µ̂µ). Therefore, we can assume
that p∗(aaa, µ̂̂µ̂µ) takes the form in Eqn. 36 without the loss of
generality.

We define the typical setT (ǫ) as

T (ǫ) =

{
(aaa, µ̂̂µ̂µ)

∣∣∣∣∣

∣∣∣∣∣

N∑

n=1

ani
N

− p̃i

∣∣∣∣∣ ≤ ǫ, for all i

}
. (37)

The probability that(aaa, µ̂̂µ̂µ) is not in the typical setT (ǫ) can be
upper bounded by using the Azuma inequality and the union
bound as follows.

P [(aaa, µ̂̂µ̂µ) /∈ T (ǫ)] ≤
J∑

i=1

P

[∣∣∣∣∣

N∑

n=1

ani
N

− p̃i

∣∣∣∣∣ ≥ ǫ

]

≤
J∑

i=1

∫
P

[∣∣∣∣∣

N∑

n=1

ani
N

− p̃i

∣∣∣∣∣ ≥ ǫ

∣∣∣∣∣ µ̂̂µ̂µ
]
p(µ̂̂µ̂µ)dµ̂̂µ̂µ

≤
J∑

i=1

∫
2 exp

(
−2ǫ2N

)
p(µ̂̂µ̂µ)dµ̂̂µ̂µ

≤ 2J exp
(
−2ǫ2N

)
(38)

Due to the fact that the objective function is non-negative,
the average achieved objective function values by(aaa, µ̂̂µ̂µ) in the
typical set,

E

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

âni
N

βid(AAAixxxn(d)− µ̂ikd)
2

∣∣∣∣∣T (ǫ)

}

≤
PR∗

P((aaa, µ̂̂µ̂µ) ∈ T (ǫ))
(39)

Also by the above discussions,

P [(aaa, µ̂̂µ̂µ) ∈ T (ǫ)] ≥ 1− 2J exp
(
−2ǫ2N

)
(40)

Therefore, we have that the average of the objective function
in the typical set is bounded by

E

{
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

âni
N

βid(AAAixxxn(d)− µ̂ikd)
2

∣∣∣∣∣T (ǫ)

}

≤
PR∗

1− 2J exp(−2ǫ2N)
(41)

There must exist one(̂ââa, µ̄̄µ̄µ) in the typical set, such that
the corresponding objective function is less than or equal to

the above average. We can further modify the aboveâ̂âa into a
certainã̃ãa ∈ Ω, ã̃ãa = (. . . , ãni, . . .), such that

N∑

n=1

ãni/N = p̃i, (42)

and the corresponding objective function is raised by at most
(J − 1)max{βid}V 2ǫ. We can now set

µ̃ikd =
1

p̃iN

N∑

n=1

ãniAAAixxxn(d). (43)

Clearly, ãni and µ̃ikd satisfy all the constraints in the primal
problem. Therefore,

P ∗≤
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ãni
N

βid

[
(AAAixxxn(d)− µ̃ikd)

2
]

(a)

≤
J∑

i=1

K∑

k=1

∑

n∈Nk

D∑

d=1

ãni
N

βid(AAAixxxn(d)− µ̄ikd)
2

≤
PR∗

1− 2J exp(−2ǫ2N)
+ (J − 1)max{βi}V

2ǫ (44)

where, (a) follows from the fact that̃µikd are the minimizer
of the above quadratic function. The lemma then follows from
the fact thatPR∗ ≤ P ∗.

Theorem 3.6:The duality gapP ∗−D∗ between the primal
problem and dual problem goes to zero as the data sample
numberN goes to infinity.

IV. N UMERICAL RESULTS

In this section, we present numerical results for the proposed
clustering algorithm. In Fig. 2, we depict the result of the
proposed algorithm for the case of two overlapping clusters
in a two dimensional space. Both the two clusters have zero
mean. Their covariance matrices are as follows.

[
80000 52000
52000 35600

]
,

[
192800 −118800
−118800 74000

]
. (45)

The total data sample number is2048 and each cluster contains
1024 data samples. We assume that the data samples can be
observed by two database hosts, where the first database host
can only observe the1024 data samples from the first cluster,
and the second database host can only observe the1024 data
samples from the second cluster. After the clustering result is
obtained, we randomly select128 data samples from the first
cluster and128 data samples from the second cluster and plot
these data samples in the figure. The data samples classified
into one cluster are plotted as red circles and the data sample
classified into the other cluster are plotted as blue squares.
The percentage of missed classified data samples is5.32%.
The clustering errors mainly occur at the regions where the
two clusters overlap. The algorithm starts with two randomly
selected unitary matricesAAA1, andAAA2. We observe that these
matrices converge quickly. We also experiment with the cases
that each database host observes a mixture of data samples
from the two clusters with various percentages. The obtained
results are not significantly different from the result in Fig. 2.
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Fig. 2. Clustering results for two overlapping clusters.

In Fig. 3, we depict the result of the proposed algorithm for
the case of two overlapping clusters with one cluster having
a singular covariance matrix. Both the two clusters have zero
mean. Their covariance matrices are as follows.

[
80000 52000
52000 35600

]
,

[
192800 0

0 0

]
. (46)

The total data sample number is2048 and each cluster contains
1024 data samples. There are two database hosts, and the first
database host can only observe the1024 data samples from the
first cluster, and the second database host can only observe the
1024 data samples from the second cluster. In the formulated
optimization problem, a termσ2

nIII2, σ2
n = 0.5, is added to the

objective function. The clustering results of randomly selected
256 data samples are shown in the figure. The percentage
of missed classified data samples is1.71%. The results for
the cases that each database host observes a mixture of data
samples from the two clusters with various percentages are
not significantly different from the result in the figure. The
proposed clustering algorithm does not have any numerical or
convergence difficulties for these cases.

−1500 −1000 −500 0 500 1000
−400
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−200

−100

0

100

200

300

400

Fig. 3. Clustering result for the case that one cluster has a singular covariance
matrix.

In Fig. 4, we depict the result of the proposed algorithm for
the case of two clusters with different means. The first cluster

has zero mean and covariance matrix
[

80000 52000
52000 35600

]
. (47)

The second cluster has mean[800, 800]t and covariance matrix

[
192800 −118800
−118800 74000

]
. (48)

The total data sample number is2048 and each cluster contains
1024 data samples. There are two database hosts, the first
database host can only observe the1024 data samples from
the first cluster, and the second database host can only observe
the1024 data samples from the second cluster. The percentage
of missed classified data samples is2.29%. The results for
the cases that each database host observes a mixture of data
samples from the two clusters with various percentages are
not significantly different from the result in the figure.
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200

400
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Fig. 4. Clustering result for the case that the two clusters have different
means.

In summary, we find that the proposed clustering algorithm
has low missed classification probability and fast convergence
speeds. The algorithm does not have numerical or convergence
difficulties for the case of singular covariance matrices. The
proposed algorithm is a promising approach for future large-
scale data analysis.

V. CONCLUSION

This paper proposes a large-scale data clustering algorithm
based on distributed optimization. We show that the duality
gap of the considered optimization problem goes to zero
as the problem size goes to infinity. Therefore, the global
optimization problem can be decomposed into small-scale sub
optimization problems by using the Dantzig-Wolfe method.
The small-scale sub optimization problems can be solved using
a group of computers coordinated by one center processor.
Numerical results show that the proposed algorithm is effec-
tive, efficient and does not have numerical or convergence
difficulties.
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