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Abstract—We are developing a compiler system, Melasy+,
which is at a level higher than those of various model checking
and hardware description languages. Melasy+ describes a single
code and allows model checking and operation tests on an actual
machine via a code generator for each language. In this study,
for an XML intermediate representation code which was output
by Melasy+, the elements which consists the target circuit are
analyzed to generate a detailed list and then static analysis of the
circuit is carried out. The Netlist after regeneration is a digraph
and the meta-information obtained at the analysis is given to its
edge. By exploring the digraph, a static analysis function of to
detect structural error and/or redundant part, such as unused
portion of circuit, asynchronous loop structure, register-register
critical path, can be realized.

I. INTRODUCTION

Electronic devices operate in a variety of environments
due to the progress of IT technologies. Many social systems
depend on these technologies and their reliabilities and highly
reliable hardware is essential to maintain the social systems.
To maintain the reliability of hardware, it is necessary to
have functions such as integrated self test and there is a
tendency of the increase in the scale and complexity of circuit.
In hardware design, therefore, an environment is required
where high reliability of both the required circuit itself and
the self test circuit are secured and design / verification can
be carried out efficiently [1][2]. Compilers to obtain objects
and executable modules for a target system through code
generation by implementing the target system [3][4] were
developed. In recent years, hardware compilers [5][6][7][8]
have been used which generate circuit configuration informa-
tion directly from the code written in a relatively high-level
language to describe the design of the hardware. There are
model checking tools [9][10][11] such as NuSMV [12] to
check the validity of hardware design as a matter of form.
The validity of design can be evaluated automatically by using
these tools. However, to carry out model check using NuSMV,
it is necessary to use a very low-level language and a process is
required to newly describe the system for verification purpose
which was designed in a language such as VHDL [13] or
Verilog [14] using NuSMV. Describing the system in the

same hardware several times in different languages is difficult
in terms of consistency in design and it is also inefficient
from the viewpoint of process management. To solve these
problems, a development environment was required in which
a system can be described clearly and the tasks from design,
verification to implementation can be carried out consistently.
We have been developed a meta hardware description language
Melasy+ [15] with a purpose to automatically carry out code
generation for various existing languages, such as hardware
description languages and languages for model checking, and
to carry out the tasks from verification to implementation
consistently. Melasy+ of the previous studies does not have
a function to check the behavior and description of hardware
described as Melasy+ code by itself. Therefore, to check errors
in the design, it was necessary to go back to the final code
generation for various processing systems. In this study, we
suggest the enhanced functions for checking the description of
Melasy+ code in an earlier stage and analyzing the described
circuit in the Melasy+ environment. The check and analysis of
the description are realized by regenerating a detailed Netlist
based on an XML intermediate file used for code generation
for various processing systems and by scanning on the Netlist.
By carrying out the analysis of the Netlist, the check of
components generated by the described Melasy+, detection of
asynchronous loop structures, count of logic gate stages and
the like can be carried out. Using the results of this study,
the analysis of description, which should be carried out by
another processing system in the conventional environment,
can be carried out with Melasy+ only. By enhancing the
analysis function to Melasy+ itself, it is possible to promote
the improvement of upper-level design at the stage earlier than
that in the conventional environment.

II. META HARDWARE DESCRIPTION LANGUAGE:
MELASY+

A. Overview

Melasy+ is a processing system at a level higher than
that of existing processing systems such as NuSMV and
VHDL. Melasy+ consists of an intermediate code generator
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Fig. 1. Positioning of Melasy+ compiler and code generation

and code generators for various processing systems (Figure 1).
The intermediate generator is implemented as a C++ class
library and the Melasy+ code gives a description using the
language functions of C++. By providing the Melasy+ code
to the intermediate code generator, an intermediate code is
obtained. By providing the obtained intermediate code to the
code generators for various processing systems, codes for the
languages are obtained.

B. Language Functions

The Melasy+ code gives a description as a class enhance-
ment of C++ and uses the syntax and functions of C++.
However, the standard types such as int and char cannot be
used to hold values in a description by Melasy+. Instead, a
Logic type or Digit type is used to hold values in Melasy+. The
Logic type holds a value of 1 (one) bit and represents a binary
state of low or high. The Digit type represents a value of fixed-
length bit and can specify a bit width to a template argument.
To substitute a value, int type or const char type is used.
When describing hardware, Melasy+ describes a functional
part by component to configure the whole hardware with the
connections and hierarchical structure of the components. The
description of a component is carried out using the function
of the Component class. Input and output are defined using
the functions such as in, out and sync. The functions such as
switch, case and default are used for the definition of outputs
and special conditional branching syntax can be used. It is
also possible to use the language functions of C++ such as
for and if. The defined component is called as a function and
is used after the instantiation of it. For the reusable parts in
a circuit description, the codes can be reused by calling the
same definitions.

C. Generation of XML Intermediate Code

An executable file can be obtained by compiling the
Melasy+ code to which a C++ library file, or an intermediate
code generator, is included. By executing the executable file
obtained, code generation is carried out to obtain an interme-
diate representation in the XML format.

D. Code Generators for Various Processing Systems

Now two processing systems, NuSMV and VHDL, are
compatible with the code generation. Both code generators
are described using Python and their inputs are the XML
intermediate code of Melasy+. The code generator for NuSMV
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Fig. 2. Design cycle using generated codes or intermediate codes

generates a .smv file and the code generator for VHDL
generates a .vhd code.

III. GENERATION OF NETLIST

A. Reconstruction of Netlist from XML Intermediate Code

Although the intermediate representation code described
in the XML format of Melasy+ contains the information to
configure a circuit, the information is not specific. Therefore, it
is not suitable for structure analysis and the like. In this study,
with a purpose to carry out an analysis of the hardware design
described by the Melasy+ code, a Netlist is regenerated from
the intermediate representation code in the XML format. By
reproducing a structure on software after providing a specific
circuit structure to the Netlist to be regenerated, exploration
of circuit structure in structure analysis and the like is made
possible. The purpose is to improve upper-level design at the
stage earlier than that of the conventional studies (Figure 2),
based on the information obtained through the implementation
of structure analysis on the Netlist. A Netlist generator is
implemented as a C++ library file. It consists of a definition
of the class configuring the Netlist and a parser whose input
is an XML intermediate representation code. The Node class
can hold the meta-information which can be obtained when the
Netlist is analyzed in addition to the information representing
the circuit configuration elements. The circuit structure on the
Netlist is comprised of a series of instances of the Node class
representing I/O ports and logic gates. The XML intermediate
representation code is parsed to generate Node instances which
correspond to the circuit configuration elements appeared. The
circuit components can be represented through instantiation by
providing the information of the circuit configuration elements
to the Node class. The generated Node instances are connected
based on the wiring information of the XLM intermediate
representation code. The circuit structure is reproduced by
generating the Node instances for all the circuit configuration
elements described in the XML intermediate code and by con-
necting them. The DTD definitions defining the descriptions
which may appear in the XML intermediate representation
code are shown in Figure 3 in the form of source code.

B. Circuit Configuration Management Table

When generating Node instances, a Netlist is realized by
reflecting the information of the circuit components formed
by the Node instances to a circuit configuration management



<! ELEMENT melasy (component +)>
<! ELEMENT component ( in | out | instance ) * >
<! ATTLIST component name CDATA #REQUIRED>
<! ELEMENT in EMPTY>
<! ATTLIST in name CDATA #REQUIRED>
<! ATTLIST in type CDATA #REQUIRED>
<! ENTITY % expr "( op | op1 | port | const | switch )">
<! ELEMENT out (%expr ;)>
<! ATTLIST out name CDATA #REQUIRED>
<! ATTLIST out type CDATA #REQUIRED>
<! ATTLIST out sync (sync | async ) " sync ">
<! ELEMENT instance (portmap * )>
<! ATTLIST instance name CDATA #REQUIRED>
<! ATTLIST instance type CDATA #REQUIRED>
<! ELEMENT portmap (port ,%expr ;)>
<! ELEMENT op(%expr ;,% expr ;)>
<! ATTLIST op name
(and | or | xor | plus | minus | mult | div | mod)
#REQUIRED>
<! ELEMENT op1(%expr ;)>
<! ATTLIST op1 name
(not )
#REQUIRED>
<! ELEMENT port EMPTY>
<! ATTLIST port type (self | in | instance ) # REQUIRED>
<! ATTLIST port name CDATA #REQUIRED>
<! ATTLIST port instance CDATA #IMPLIED>
<! ELEMENT const EMPTY>
<! ATTLIST const type CDATA #REQUIRED>
<! ATTLIST const value CDATA #REQUIRED>
<! ELEMENT switch (condition , case + , default ?)>
<! ELEMENT condition (%expr ;)>
<! ELEMENT case (const ,%expr ;)>
<! ELEMENT default (%expr ;)>

Fig. 3. DTD definitions of the XML intermediate representation code

1 <out name ="oA" type ="Logic " sync ="sync ">
2 <op1 name="not ">
3 <op name="and">
4 <op name="or ">
5 <port type =" in " name=" iA " />
6 <port type =" in " name=" iB " />
7 </ op>
8 <port type =" in " name=" iC " />
9 </ op>
10 </ op1>
11 </ out >
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Fig. 4. Example of Node instance connection for output port
definition

table. By tracing the circuit configuration management table,
a component on the Netlist can be accessed uniquely. The
circuit configuration management table has the lists of the
following instances: (1) Node instances representing an input
port by component definition, (2) Node instances representing
an output port, (3) Node instances representing an I/O port
of instances in a component definition, and (4) instances
expanding in a component.

C. Construction of Circuit Structure

As shown in Figure 3 in the form of source code,
in the XML intermediate representation code, all the cir-
cuit descriptions are included in the component defini-
tions. The component definitions can be roughly divided
into three types; input port definition (<in />), output
port definition (<out ></out>) and instance definition
(<instance></instance> ).
For an input port definition, a port name described in a tag

and a component name with its data type and input definition
are provided to the Node class to generate an instance. The
address information of the generated instance is added to the
circuit configuration management table as a definition of the
relevant component.
An output port definition contains the connection infor-

mation for the construction of a logical path to a logic
gate extending from the defined output or to the input port.
Figure 4 shows an example in which the connection infor-
mation described in the output port definition is analyzed and
expanded. Although the source code in Figure 4 is indented, it
is processed for readability and the original XML intermediate
representation code is not indented. The connection informa-
tion has a nested structure where the information appears from
the left side in ascending order according to the distance from
the output definitions. The information at the far right of the
nested structure must be a pair of port definitions.
The processing for the output port definition generates the

Node instance representing an output port and constructs
a logical path while generating and connecting the Node
instances representing the logic gates based on the connection
information. First, a Node instance corresponding to the output
port definition is generated and its address is added to the
circuit configuration management table. For the subsequent
connection information, they are processed by a unit defined
by two tags and in the order of appearance. For the connection
information representing a logic gate, a Node instance is gen-
erated as a logic gate and the instance is connected to the path
being created. For the connection information representing
a port definition, the port represented by the information is
traced on the circuit configuration management table and the
path is connected to the path being created to terminate the
path. When one of the close tags of the connection information
representing a logic gate (</op> and </op1>) appears, go
back to the last Node instance before the Node instance of the
path being currently created. When the processing proceeds to
the close tag of the output port definition (</out>), complete
the construction of all the paths extending from the output
port.
For an instance declaration, the component definition speci-

fied by a declaration in the Netlist is referred. The structure in
the component definition referred is duplicated at the place of
the instance declaration. However, the intermediate code gen-
erator of Melasy+ does not hold the order of the definitions of
the components in the source code during the code generation.
Therefore, when an instance declaration appears in the XML



intermediate code, there is a possibility that the component
to be instantiated has not defined yet. The Netlist generator
expands the definitions of the components, in ascending order
of their dependency on the other components, to the XML
intermediate representation code using a hierarchical structure
analysis function described below. By expanding in ascending
order of the independency on the other components, it is
possible to avoid a situation where the target component has
not defined yet when it is referred.

IV. STATIC STRUCTURE ANALYSIS

A. Check of Circuit Description

As the scale and complexity of a circuit increase, it becomes
more difficult for the designer to grasp the whole circuit
description. Additionally, since Melasy+ allows the use of
control syntax such as ”for and if” statements, it is not possible
to check a specific port name and the like at the stage when the
Melasy+ code is written. By exploring the Netlist generated, it
is possible to check the configuration information of the circuit
described. By scanning the circuit configuration management
table, it is possible to check the port names for which the
problem of label name has been resolved and the unused parts
of the circuit description.

B. Analysis of Component Hierarchical Structure

When another component definition is expanded in the com-
ponent definition by an instance declaration, the component
to be expanded cannot reproduce the circuit structure properly
if all the elements have been defined. Therefore, the Netlist
must be generated with the components in ascending order of
their dependency on the other components. It is necessary to
analyze the circuit structure to reveal its hierarchical structure
of the components.
The component definition depends on the other components

when it contains the instance declaration. The instance declara-
tion of the XML intermediate representation code is extracted
and the Node instance representing the instance declaration
is generated. By adding the Node instance generated to the
circuit configuration management table and showing which
instance declaration is included in the component definition,
the hierarchical structure is grasped. The Node instance repre-
senting the instance declaration traces the instance declaration
contained in the component definition referring the former
declaration on the circuit configuration management table. By
connecting to the Node instance traced, it is possible to trace
the dependence relationship of the components through the
connections of the instance declarations.

C. Count of Logic Gate Stages

A critical path can be derived by counting the stages of the
logic gates for each component definition. In each component
definition of the Netlist, the order in which the logic is
determined by tracing a node instance from an input port
is held at each Node instance. When the path encounters a
binary operator, the input side with a longer path is selected
to determine the value. After the values are set for all the

ABX

SC

4

3

2

1

0

SC

ABX

and

xor

xor

or

and

3

2

Fig. 5. Count of stages for all the adders

output ports, the longest path is reported as the critical path
of the component. Figure 5 shows an example in which the
stages are counted for all the adders.

D. Detection of Asynchronous Loop Structure

An asynchronous loop structure is a structure which has its
value on the circuit structure or has at least one element whose
input is determined by its value. When an asynchronous loop
structure exists, the operation result is not stabilized and the
value continues to change. Asynchronous loop structures in the
same component definition can be detected by semantic anal-
ysis, but those across multiple component definitions cannot
be detected. By carrying out the static structure analysis of the
Netlist, it is possible to detect asynchronous loop structures.
For a global output port of the Netlist, if the same Node
instance is passed twice while scanning all the paths to an input
port, there is an asynchronous loop structure which includes
the part.
Specifically, Figure 6 shows the result of asynchronous

loop structure detection experiment for a high-performance
bus arbiter circuit [16] by static structure analysis. Figure 7
shows the image of the detected asynchronous loop structure.

V. LOGIC CYCLE SIMULATOR

A. Purpose and Scope of Logic Simulator

A zero-delay logic cycle simulator function for Netlist was
designed as a function to check the behavior of the circuit
described. The logic simulation in this study is a zero-delay
simulation to track the logic transition of a circuit using a cycle
time in a virtual unit time by assuming that all the delay times
of the basic logic gates are constant and all the delay times
of the connecting signal lines are zero. It is also assumed that
there is a sufficient time interval between an input and the next
input. Due to these characteristics, a circuit structure which
contains an asynchronous loop structure cannot be simulated.



Fig. 6. Example of detection of asynchronous loop structure

Furthermore, a gate stage number table is prepared that holds
the order in which the logic gates determine the logic and
manages the addresses of all the elements and the number
of the steps using the count function of logic gate stages
described above. The values of the inputs and outputs to be
handled are true, false and unknown.

B. Change of Output to Input

Observation of the logic transition is carried out by pro-
viding a virtual unit time simulating the clock and an input
scenario to the Netlist. Along with the virtual unit time based
on the input scenario, an input is provided to a globally
accessible input port.
The procedure of the logic simulation is as follows. First,

when the virtual unit time is 0, check if an input scenario
specifying the initialization exists. When there is an input
scenario specifying initialization, change the output of the
port specified according to the input scenario. According to
the input of the initialization, all the elements carry out their
operation in the order in which the logic is determined based

on the gate stage number table. If the initialization is not
carried out, the output of the port is unknown at the initial
state. All the elements access to the elements from which
they receive their inputs, in the order in which the logic is
determined, and check if there is an output. If there is an
output, the value being output is taken as its input. When an
element has an input and the operation is carried out, the result
is output to substitute it to its output value.

C. Description of Input Scenario

Observation of the logic transition is carried out by pro-
viding a virtual unit time simulating the clock and an input
scenario to the Netlist. Along with the virtual unit time based
on the input scenario, an input is provided to a globally
accessible input port.
The virtual unit time is given by a natural number starting

from 0. It is only used for the purpose to manage the order
in which the inputs are provided. It is assumed that there is a
sufficient time interval from an input to the next input and all
the operations are completed when the next input is provided.
There is no restriction on the input scenario that it must be
described in the order of virtual unit time.
The input port name is given by the port name used by

the XML intermediate code. The label must be one for which
the problem has been resolved. The input port described in the
input scenario is limited to one that can be accessible globally.
The value must be provided either true or false. It is not

assumed in the input scenario.

VI. CONCLUSIONS AND FUTURE WORK

A Netlist which has a specific structure of circuit description
was generated from the Melasy+ intermediate code. By car-
rying out the static structure analysis of the Netlist generated,
it was verified that the check of circuit description, analysis
of component dependence relationship, count of gate stages,
and detection of asynchronous loop structure are possible. To
check the behavior of circuit description, a logic simulator
using the Netlist was designed.
By enabling the check and static structure simulation of

circuit description with Melasy+ only, it is possible to reflect
the analysis result to upper-level design and improve design
at an earlier stage.
First, the future challenge is to evaluate the series of design

and verification tools, which are the deliverables of this study,
using actual size problems. Evaluation through the comparison
of the design efficiency using the existing hardware design
environment and that using the environment provided this
study, as well as evaluation of the change in calculation time
of the static structure analysis function due to increased circuit
scale, are planned.
Next, we plan to expand the static structure analysis func-

tion. A logic simulation function will be implemented and the
False-path detection function and the optimum solution pre-
sentation function for cutting of asynchronous loop structure
will be expanded. The abstract circuit information obtained
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from the analysis function will be held by component defini-
tion and the circuit information with an appropriate level of
abstraction will be provided when needed. Furthermore, we
also plan to expand the Netlist. Finally, we will redesign the
Melasy+ compiler. Essentially, a circuit representation like a
Netlist can be obtained when an intermediate representation
code is generated. We aim to design an intermediate represen-
tation that holds much information than that held by an XML
text format and implement a better code generator.
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