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Support Vector Machines (SVMs) is a popular classification and regression 

prediction tool that uses supervised machine learning theory to maximize the predictive 

accuracy. This paper focuses on the field programmable gate array (FPGA) 

implementation of a Support Vector Machine classification system. Owing to the 

advanced parallel calculation feature provided by FPGA, a fast data classification can be 

achieved by the FPGA-based two-class SVM classifier. The classification system works 

both in linear mode or non-linear mode, depending on the dimensions of the classification. 

Simulated results demonstrate that the classification system is effective in fast data 

classification, as well as a promising technique used in Smart Grid to strengthen the 

communication security. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

For last two decades, machine-learning researchers have been working on the area 

of improving classifier effectiveness, at the same time, the exploration of 

machine-learning has led to a new generation of state-of-the-art classification algorithms, 

such as support vector machines (SVMs) [1], boosted decision trees, regularized logistic 

regression, neural networks, and random forests. Many of these algorithms, including 

support vector machines, have been applied with success to information analysis 

problems, especially data classification and regression. Support vector machines 

appeared in the early nineties as optimal margin classifiers in the context of Vapnik’s 

statistical learning theory [1]. Since then, SVMs have been successfully applied to 

massive information analysis problems in the real-world, often providing satisfied results 

compared with many other algorithms. The SVMs algorithm process the data by 
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minimizing an empirical risk in a well-posed and consistent way based on regularization 

theory. SVM classification is a kind of large-margin classifier: it is a vector space based 

machine learning algorithm where the goal is to find a decision boundary between two 

classes that is maximally far from any point in the training data. The basis of SVMs is the 

projection of the low-dimensional training data in a higher dimensional feature space; it 

is easier to separate the input data in this higher dimensional feature space. Moreover, 

through this projection it is possible that training data–which cannot be separated linearly 

in the low-dimensional feature space–can be separated linearly in the high-dimensional 

space using Kernel Functions. 

Machine Learning is considered to be a subfield of artificial intelligence and 

focuses on the development of techniques and algorithms which enable the computer to 

learn. Its purpose is to solve practical problems using Machine Learning theory, and 

many algorithms are developed which enable the machine to learn and perform 

real-world tasks and activities. As a Machine Learning method, the support vector 

machine was initially popular with the NIPS community and is now an active part of the 

Machine Learning research around the world. SVM becomes famous when it is used for 

pattern recognition; it gives accuracy comparable to sophisticated neural networks with 

elaborated features in a handwriting recognition task [2]. It is also being used for many 
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applications, such as hand writing analysis, face analysis and so forth, especially for 

pattern classification and regression–based applications. The foundations of Support 

Vector Machines (SVM) have been developed by Vapnik and gained popularity due to 

many promising features, such as better empirical performance. The formulation uses the 

Structural Risk Minimization (SRM) principle–which has been shown to be superior 

[3]–to the traditional Empirical Risk Minimization (ERM) principle, a method used by 

conventional neural networks. SRM minimizes an upper bound on the expected risk, 

where as ERM minimizes the error on the training data. It is this difference which equips 

SVM with a greater ability to generalize, which is the goal in statistical learning. SVMs 

were developed in order to solve the classification problem, but recently they have been 

extended to solve regression problems [4]. 

Due to the powerful Machine Learning algorithm and high prediction accuracy, 

the applications of SVMs progressively increased in last decade, especially in 

classification problems and pattern recognition problems, as well as providing a good 

general performance for a wide range of regression and classification tasks. By 

optimizing the use of the available computing resources, the performance of the SVMs 

can be maximized. Implementing SVM classifiers on suitable computing devices like 

FPGAs can exploit the potential of custom precision algorithms. FPGAs are 
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semiconductor devices, which contain programmable logic elements called ‘logic blocks’. 

With the development of integrated circuit technologies, modern FPGAs contain coarse 

grain components, such as memory blocks and embedded multipliers or digital signal 

processing blocks (DSPs). The implementation of complex combinational functions–such 

as multipliers onto the programmable logic blocks–has enabled the FPGA devices to 

boost their performance efficiency. Nowadays, FPGA devices offer a vast amount of DSP 

blocks and a hierarchy of different memory sizes, thus providing a high level of 

flexibility and large amounts of parallel computational power. The reprogrammable 

feature of FPGAs offers a significant advantage against application-specific cases, and 

targets different classification problems which may vary in size, dimensionality, and 

dynamic range constraints. Additionally, modern FPGA devices are able to provide equal 

or superior performance at a lower power cost than general purpose processing units [5]. 

1.2 Related Work 

 This section overviews some previous FPGA- or GPU- mapped works on the 

SVM classification. There exists a fair amount of work on accelerating both the SVM 

training and classification for general-purpose processors and DSPs, which aim to 

provide higher performance on such platforms. The work in [6] presents an evaluation of 
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SVM implementation on embedded processor architectures, and proposes architectural 

modifications in order to improve their performance. An analysis was performed in [7] 

where critical parts of the SVM algorithm were mapped between hardware and software, 

demonstrating how hardware can be used to accelerate SVM computations. An attempt to 

implement SVMs on a microcontroller was presented in [8], and dealt with issues such as 

limited memory and hardware. Recently, Graphics Processing Units (GPUs) have been 

utilized in the implementation of SVMs [9], Their parallel nature shows significant 

speedups when compared with general-purpose processors. However, caution need to be 

taken when implementing using GPUs. Efficient programming was needed in order to 

provide high performance, primarily because of GPU’s fixed hardware, especially the 

interconnection which may not suit the computation or data flow of some applications. 

Due to the potential real-time information processing performance advantages 

they offer for both data training and classification, hardware implementations of SVMs 

have gained noticeable interest in recent years. Significant progress has been made in the 

implementation of SVMs on custom hardware, mostly on FPGAs. A homogeneous 

FPGA-based architecture for the SVM training was introduced in [10], and the results can 

be potentially extended for the acceleration of the SVM classification. Another 

homogeneous work was presented in [11], where a parallel FPGA co-processor is 
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proposed for the inner product calculations using the available DSP units of the targeted 

device. The kernel computations are performed by the host CPU, unlike in [10], where 

floating-point pipelines are utilized for the Kernel Functions. The integrated solution in 

[11] targets a large FPGA device and succeeds in accelerating the SVM classification. 

Nevertheless, this paper didn’t exploit the heterogeneity and the fully custom-arithmetic 

potential of modern FPGA devices, nor did it target the precision requirements of the 

training problem. The multipliers were implemented solely by hard-logic DSP blocks, 

and the large amount of the FPGA’s soft-logic was not efficiently utilized. The work in 

[12] presents an in-depth analysis of their SVM training architecture on a Xilinx Virtex II 

device. This paper could potentially be exploited for a classification solution. However, 

due to the resource constraints of the targeted device, it didn’t exploit the parallelization 

potential of modern FPGAs. In [13], a novel implementation based on logarithmic 

number systems (LNS) was presented. The LNS-based implementation of the SVM 

kernel was also adopted in [14] in order to produce a hardware-friendly approach. These 

works focus more on the potential of using LNS for the SVM problem rather than the 

acceleration of the problem, because the targeted devices are small and only one 

Multiply-ACcumulate (MAC) unit was used for all the dot-product evaluations. The 

FPGA architecture proposed in [15] employs a hardware-friendly approach for the kernel 
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evaluations based on CORDIC algorithm, the paper wasn’t optimized in utilizing FPGA 

logic resources in order to speed-up the SVM classification. The SVM classification was 

used for video shot boundary detection in [16]. Only linear SVMs were targeted and the 

FPGA device was used for the dot-product mapping of the SVM algorithm. 

For the other works, such as [17] and [18], implement the SVM classification 

problem on the parallel computing resources of a GPU using NVidia’s compute unified 

device architecture [19] programming environment. Their main differences are related to 

the chosen floating-point precision for the kernel computations and the usage of the host 

CPU for the processing of some part of the kernel evaluations, before the results are fed 

to the GPU. Furthermore, the GPU work in [20] targets a geometric interpretation of the 

SVM training problem [21] based on Gilbert’s algorithm [22], while the classification 

implementation is similar to [17] and [18]. 

1.3 Project Objectives  

 Based on the issues listed above, a FPGA-based SVM classification system is 

presented in order to achieve a fast two-class data classifier. This work focuses on an 

FPGA implementation for the two-class SVM classifier, including both linear and 

non-linear classification which fully exploits the parallel processing power of the FPGA 
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computing resources and offers scalability and adaptively to the targeted classification 

problems under the available resource constraints. The proposed system has two main 

characteristics: 

1) It is a strong computational tool with the great power and high prediction 

accuracy to solve the data classification problem using the SVM Machine 

Learning algorithm.  

2) Owing to the advanced parallel calculation feature provided by FPGA, the 

system provides a fast two-class data classification with a satisfying time 

consumption and field integration ability. 

The objective is to resolve fast classification problems under the precision 

requirements using modern FPGA devices, as well as to build a multilayer two-way 

communication network using the FPGA-based SVM classification system in order to 

secure the privacy and integrity of communications between parties in Smart Grid for 

future applications. 

1.4 Synopsis of Thesis 

This thesis presents and discusses the design and testing of the FPGA based SVM 

classification system. It begins by reviewing the Machine Learning–based algorithm, 
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which is called the Support Vector Machine, in order to provide the basic information, 

knowledge and ideas about how the SVM algorithm provides class prediction for the 

unknown data based on the labeled data (training dataset). 

The SVM algorithm for the classification system is discussed in the next step, the 

section includes the mathematics expression of the algorithm and details of the algorithm 

flow for FPGA implementation. This is done by first figuring out the mathematical 

expression of the SVM algorithm and how to transform the mathematic functions to a 

FPGA–applicable algorithm. Then, it is time to think about how to apply the proposed 

algorithm on the target device. The design of modules is discussed next, which can work 

both separately and in parallel, Then the modules are mapped appropriately in order to 

construct a classification system. Next, a FPGA–based SVM classification system is built. 

The system can work in both linear and non-linear modes. After that, the testing results 

are collected and analyzed in order to draw a conclusion of the research. In the last 

section, the probable future work is discussed. 

1.5 Outline of Thesis 

The remainder of the thesis is organized as follows. In Section 2, the Machine 

Learning theory and support vector machine algorithm are introduced. The design of the 
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SVM algorithms used in the classification system is detailed in Section 3. The FPGA 

architecture mapping of the proposed algorithm is presented in Section 4. In Section 5, 

the implementation results of the SVM classification system are analyzed. Conclusions 

and future work are given in the final section. 
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Chapter 2 

Literature Review 

2.1 Outline  

This chapter consists of two parts. The first part presents the background 

knowledge of Machine Learning and the Support Vector Machine algorithm, which are 

important in understanding this study. The SVM algorithm is one of the most popular 

Machine Learning based algorithms. The second part introduces the current status and 

advantages of modern PFGAs. 

2.2 Support Vector Machine Concepts and Applications 

Kernel-based techniques, such as Support Vector Machines, Bayes Point 

Machines, Kernel Principal Component Analysis, and Gaussian Processes, represent a 

major development in Machine Learning algorithms. Support vector machines (SVMs) 
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are a group of supervised learning methods that can be applied to classification or 

regression.  

Support Vector Machines represent an extension of nonlinear models of the 

Generalized Portrait Algorithm developed by Vapnik and Lerner [23]. The SVM 

algorithm is based on the Statistical Learning theory and the Vapnik–Chervonenkis (VC) 

dimension [24]. The Statistical Learning theory, which describes the properties of 

learning machines that allow them to give reliable predictions, was reviewed by Vapnik 

in three books: Estimation of Dependencies Based on Empirical Data [25], The Nature of 

Statistical Learning Theory [1], and Statistical Learning Theory [26]. In the current 

formulation, the SVM algorithm was developed at AT&T Bell Laboratories by Vapnik et 

al [27–33]. 

 

Figure 2-1: Maximum separation hyperplane. 
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SVM models were originally defined for the classification of linearly separable 

classes of objects. Such an example is presented in Figure 2-1. For these two-dimensional 

objects that belong to two classes (class +1 and class -1), it is easy to find a line that 

separates them perfectly. 

For any particular set of two-class objects, an SVM finds the unique hyperplane 

having the maximum margin (denoted with δ in Figure 2-1). The hyperplane H1 defines 

the border with class +1 objects, whereas the hyperplane H2 defines the border with class 

-1 objects. Two objects from class +1 define the hyperplane H1, and three objects from 

class -1 define the hyperplane H2. These objects, represented inside circles in Figure 2-1, 

are called support vectors. A special characteristic of SVM is that the solution to a 

classification problem is represented by the support vectors that determine the maximum 

margin hyperplane.  

 

Figure 2-2: Linear separation in feature space. 
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SVM can also be used to separate classes that cannot be separated with a linear 

classifier (Figure 2-2, left). In such cases, the coordinates of the objects are mapped into a 

feature space using nonlinear functions called feature functions ϕ. The feature space is a 

high-dimensional space in which the two classes can be separated with a linear classifier 

(Figure 2-2, right).  

 
Figure 2-3: Support vector machines map the input space into a high-dimensional feature 

space. 

As presented in Figure 2-2 and 2-3, the nonlinear feature function ϕ combines the 

input space (the original coordinates of the objects) into the feature space, which can 

even have an infinite dimension. Because the feature space is high dimensional, it is not 

practical to directly use feature functions ϕ when computing the classification hyperplane. 

Instead, the nonlinear mapping induced by the feature functions is computed with special 

nonlinear functions called kernels. Kernels have the advantage of operating in the input 
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space, where the solution of the classification problem is a weighted sum of kernel 

functions evaluated at the support vectors. 

To illustrate the SVM capability of training nonlinear classifiers, consider the 

patterns from Table 2.1. This is a synthetic dataset of two-dimensional patterns, designed 

to investigate the properties of the SVM classification algorithm. All figures from this 

chapter presenting SVM models for various datasets were prepared with a slightly 

modified version of Gunn’s MATLAB toolbox. In all figures, class +1 patterns are 

represented by +, whereas class -1 patterns are represented by black dots. The SVM 

hyperplane is drawn with a continuous line, whereas the margins of the SVM hyperplane 

are represented by dotted lines. Support vectors from the class +1 are represented as + 

inside a circle, whereas support vectors from the class -1 are represented as a black dot 

inside a circle. 

Partitioning of the dataset from Table 2.1 with a linear kernel is shown in Figure 

2-4a. It is obvious that a linear function is not adequate for this dataset because the 

classifier is not able to discriminate the two types of patterns; all patterns are support 

vectors. A perfect separation of the two classes can be achieved with a degree 2 

polynomial kernel (Figure 2-4b).  
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Table 2.1: 

Linearly Non-separable Patterns Used for the SVM Classification Models in Figure 2-4 
and 2-5. 

Pattern x1 x2 Class 

1 2 4.5 1 

2 2.5 2.9 1 

3 3 1.5 1 

4 3.6 0.5 1 

5 4.2 2 1 

6 3.9 4 1 

7 5 1 1 

8 0.6 1 -1 

9 1 4.2 -1 

10 1.5 2.5 -1 

11 1.75 0.6 -1 

12 3 5.6 -1 

13 4.5 5 -1 

14 5 4 -1 

15 5.5 2 -1 

This SVM model has six support vectors, namely, three from class +1 and three 

from class -1. These six patterns define the SVM model and can be used to predict the 

class membership for new patterns. The four patterns from class +1 situated in the space 

region bordered by the +1 margin and the five patterns from class -1 situated in the space 

region delimited by the -1 margin are not important in defining the SVM model, and they 

can be eliminated from the training set without changing the SVM solution. 
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Figure 2-4: SVM classification models for the dataset from Table 2.1. 

In this example, the use of nonlinear kernels provides the SVM with the ability to 

model complicated separation hyperplanes. However, because there is no theoretical tool 

to predict which kernel will give the best results for a given dataset, experimenting with 

different kernels is the only way to identify the best function. An alternative solution to 

discriminate the patterns from Table 2.1 is offered by a degree 3 polynomial kernel 

(Figure 2-5a) that has seven support vectors, namely, three from class +1 and four from 

class -1. The separation hyperplane becomes even more convoluted when a degree 10 

polynomial kernel is used (Figure 2-5b). It is clear that this SVM model, with 10 support 

vectors (4 from class +1 and 6 from class -1), is not an optimal model for the dataset from 

Table 2.1. 
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Figure 2-5: SVM classification models obtained with the polynomial kernel for the 
dataset from Table 2.1: (a) polynomial of degree 3; (b) polynomial of degree 10. 

2.3 Modern Field Programmable Gate Array Devices 

The Field Programmable Gate Array (FPGA) is a semiconductor device that can 

be programmed after manufacturing. Instead of being restricted to any predetermined 

hardware function, an FPGA allows you to program product features and functions, adapt 

to new standards, and reconfigure hardware for specific applications even after the 

product has been installed in the field, hence the name "field-programmable". FPGA can 

be used to implement any logical function that an application-specific integrated circuit 

(ASIC) could perform, but the ability to update the functionality after shipping offers 

advantages for many applications [34]. 

Unlike previous generation FPGAs using I/Os with programmable logic and 

interconnects, today's FPGAs consist of various mixes of configurable embedded SRAM, 
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high-speed transceivers, high-speed I/Os, logic blocks, and routing. Specifically, an 

FPGA contains programmable logic components called Logic Elements (LEs) and a 

hierarchy of reconfigurable interconnects that allow the LEs to be physically connected. 

You can configure LEs to perform either complex combinational functions or merely 

simple logic gates, like AND and XOR. In most FPGAs, the logic blocks also include 

memory elements, which may be simple flipflops or more complete blocks of memory 

[35]. 

As FPGAs continue to evolve, the devices have become more integrated. Hard 

intellectual property blocks built into the FPGA fabric provide rich functions, while also 

lowering power and cost and freeing up logic resources for product differentiation. 

Newer FPGA families are being developed with hard embedded processors, transforming 

the devices into systems on a chip (SoC) [36]. 

Compared to ASICs or ASSPs, FPGAs offer many design advantages, including: 

1) 1.Performance—Taking advantage of hardware parallelism, FPGAs exceed 

the computing power of Digital Signal Processors (DSPs) by breaking the 

paradigm of sequential execution and accomplishing more per clock cycle. 

BDTI, a noted analyst and benchmarking firm, released benchmarks showing 

how FPGAs can deliver many times the processing power per dollar of a DSP 
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solution in some applications. Controlling inputs and outputs (I/O) at the 

hardware level also provides faster response times and specialized 

functionality in order to closely match application requirements. 

2) Time to market—FPGA technology offers both flexibility and rapid 

prototyping capabilities in the face of increased time-to-market concerns. You 

can test an idea or concept and verify it in hardware without going through the 

long fabrication process of custom ASIC design. You can then implement 

incremental changes and iterate on an FPGA design within hours, instead of 

weeks. Commercial off-the-shelf (COTS) hardware is also available with 

different types of I/O already connected to a user-programmable FPGA chip. 

The growing availability of high-level software tools decreases the learning 

curve with layers of abstraction and often offers valuable IP cores (prebuilt 

functions) for advanced control and signal processing. 

3) Cost—The Nonrecurring Engineering (NRE) expense of custom ASIC design 

far exceeds that of FPGA-based hardware solutions. The large initial 

investment in ASICs is easy to justify for OEMs shipping thousands of chips 

per year, but many end–users need custom hardware functionality for the tens 

to hundreds of systems in development. The very nature of programmable 
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silicon means you have no fabrication costs or long lead times for assembly. 

Because system requirements often change over time, the cost of making 

incremental changes to FPGA designs is negligible when compared to the 

large expense of respinning an ASIC [37]. 

4) Reliability—While software tools are the programming environment, FPGA 

circuitry is truly a “hard” implementation of program execution. 

Processor-based systems often involve several layers of abstraction to help 

schedule tasks and share resources among multiple processes. The driver layer 

controls hardware resources and the OS manages memory and processor 

bandwidth. For any given processor core, only one instruction can be executed 

at a time, and processor-based systems are continually at risk of time-critical 

tasks preempting one another. FPGAs, which do not use OSs, minimize 

reliability concerns with truely parallel execution and deterministic hardware 

dedicated to every task. 

5) Long-term maintenance—As mentioned earlier, FPGA chips are 

field-upgradable and do not require the time and expense involved with ASIC 

redesign. For example, digital communication protocols, have specifications 

that can change over time, and ASIC-based interfaces may cause maintenance 
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and forward-compatibility challenges. Furthermore, FPGA chips are 

reconfigurable and can keep up with future modifications that might be 

necessary. As a product or system matures, you can make functional 

enhancements without spending time redesigning hardware or modifying the 

board layout. 
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Chapter 3 

Support Vector Machine 

3.1 Outline 

 At first, an introduction about support vector machine algorithm and its 

applications are given. Then in the third subsection, details of linear SVM algorithm are 

presented including mathematical expression and geometric interpretation. And 

non-linear SVM algorithm with the Kernel Function is introduced. The whole chapter is a 

mathematical understanding of the SVM algorithm, prepared for the FPGA 

implementation in next chapter. 

3.2 Algorithm Introduction 

Support Vector Machines (SVM) [1] are considered one of the most powerful 

classification tools due to their state-of-the-art Machine Learning algorithm based on the 

Vapnik-Chervonenkis learning theory [38]. SVMs can be defined as supervised learning 
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models which construct a hyperplane or a set of hyperplanes in a high dimensional 

feature space, and used for classification and regression analysis. The algorithm is trained 

with a Machine Learning theory to maximize predictive accuracy using optimization 

theory that implements a learning bias derived from statistical learning theory [39]. With 

the strong regularization properties–which refer to the generalization of the model to new 

data–SVM can be an efficient tool with which to solve classification problems [40]. A 

classification task usually involves training and testing data which consist of some data 

instances [41]. Each instance in the training set contains one target values and several 

attributes. The goal of SVM is to produce a model which predicts target value of data 

instances in the testing set, which are given only the attributes [42]. In SVMs, a dataset 

consisting of pairs of input vectors and desired outputs is called the training dataset, 

which is used to design and construct the decision function of the system and, hence, this 

procedure is usually considered as an instance of supervised learning. Known labels help 

indicate whether the system is performing in a right way or not. This information points 

to a desired response, validating the accuracy of the system, or be used to help the system 

to learn to act correctly [43]. During the training phase, the system identifies the Support 

Vectors (SVs) [44], which are those data points that can best build a separation model for 

the classes. Those vectors are then used to predict the class of any future data point 



25 
 

during the classification phase. The classification phase is a step which gives prediction 

of unknown samples. According to the prediction model from the training phase, new 

data can be classified based on different key features. During the classification phase, 

training datasets can be updated with newly obtained data and work as an “online” model 

to provide most accurate prediction.  

3.3 Linear Support Vector Machine 

Multi-class classifications can be break up into two-class classification units and 

non-linear classification problem can be solved by replacing inner product calculation 

with Kernel Functions. 

Given 2 classes 1C  and 2C , ( ) ( ) ( ){ }1 2 2 N,   y ,   y ,   yN= 1T X X X  is a 

training dataset consisting of samples taken from 1C  and 2C  , where M
n RX ∈ , 

{ }1-   ,1∈ny . If nX  belongs to class 1C , then 1=ny ; If nX  belongs to class 2C , then 

1−=ny . Finding a real function ( )Xg  in MR , for any new sample with unknown class, 

have 

( )
( )

1

2

0,     
0,     

g C
g C

> ∈
 < ∈

X X
X X       or      

( ){ }
( ){ }

1

2

sgn 1,      
sgn 1,   

g C
g C

 = ∈
 = − ∈

X X
X X

       (1) 

( )Xg  is the decision (classification) function. When ( )Xg  is linear function, it’s called 

linear SVM, and when ( )Xg  is non-linear function, it’s called non-linear SVM.  
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As showed in Figure 3-1, the goal of linear SVM is to find a classification line 

( )Xg  between 1C  and 2C . It is known that under high-dimensional circumstance,  

( )Xg  is a hyperplane. For linear separable classes 1C  and 2C , more than one 

hyperplanes can be applied to separate them accurately. Assuming that two classes can be 

separated by hyperplane l , lying on each of l  are two parallax hyperplanes 1l  and 2l  

with no learning sample points between them. The region bounded by them is called the 

“margin”. Thus the objective of SVMs is to maximize the distance between the classes’ 

hyperplanes or, in other words, to maximize the “margin”. After some paragraphs, you 

may have another heading, in which case you will use a subsection heading as below. 

 

 

Figure 3-1: SVM separating hyperplane. 
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The expression of the separating hyperplane is: 

( ) 0g b= ⋅ + =X W X                          (2) 

Where ⋅  denotes an inner product. and W the normal vector to the hyperplane. The 

parameter 
b
W  determines the offset of the hyperplane from the origin along the 

normal vector W . 

And the hyperplanes 1l  and 2l  can be described by the expression： 

1

2

: 1
: 1

l b
l b

⋅ + =
⋅ + = −

W X
W X                          (3) 

The distance between these two hyperplanes is 2 / W , then the problem to maximize the 

“margin” become the problem to minimize W  . In order to simplify the calculation, 

substitute W  with 21
2 W , then the problem can be expressed as a constrained 

optimization problem: 

( )

2

,

1min 2
. . 1,     1,   2,   ,   

b

n ns t y b n N⋅ ⋅ + ≥ =
W

W

W X 

             (4) 

Using Lagrange multipliers solve the constrained optimization problem, we can get the 

classification function: 

( ) k

N

n
knnn

N

n
nnn yyyg +−= ∑∑

== 11
,, XXXXX αα               (5) 

Apply Wolfe’s dual form to solve (4) and transform the constrained optimization problem 

to a concise form: 
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3.4 Non-linear Support Vector Machine 

In many real-world classification problems, it is often not feasible to linearly 

separate the data in the original space. SVMs can overcome this problem by mapping the 

input space to a higher dimensional one where a linear separation may be feasible. Then 

the non-linear SVM can be expressed as: 

( ) ( )

pi

yts

yy

i

p

i
ii

p

i
i

p

i

p

j
jijiji

i

  ,  ,2  ,1     ,0

0..
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1

11 1

=≥

=

+Φ⋅Φ−

∑

∑∑∑

=

== =

α

α

ααα
α

XX

             (7) 

Where ( )•Φ  is a mapping function that transform non-linear problem to linear separable 

problem. Actually, there is no necessity to find ( )•Φ  if we can calculate ( ) ( )ji XX Φ⋅Φ . 

Introducing Kernel Function: 

( ) ( ) ( )jijiK XXXX Φ⋅Φ=,                      (8) 

By replacing dot product with kernel function. This allows the algorithm to fit the 

maximum-margin hyperplane in a transformed feature space. It is a feasible way to 

achieve non-linear SVM classification.  

http://en.wikipedia.org/wiki/Dot_product�
http://en.wikipedia.org/wiki/Kernel_(integral_operator)�
http://en.wikipedia.org/wiki/Feature_space�
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Common Kernel Functions: 

Polynomial: ( ) ( )pK 1−⋅=⋅ YXYX                                         (9) 

Gaussian radial basis function: ( ) σ

2YX

YX
−

−
=⋅ eK                            (10) 

Hyperbolic tangent: ( ) ( )δλ −⋅=⋅ YXYX tanhK                              (11) 

Out of many possible Kernel Functions, of special interest are those which satisfy 

Mercer’s condition [45] and can be expressed as an inner product in the high-dimensional 

space. By applying the kernel, there is no need to explicitly map the data to the 

higher-dimensional space [46].  
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Chapter 4 

FPGA Architecture Mapping 

4.1 Outline 

In this chapter, the detailed algorithm flow for the FPGA implementation is given 

to build the classification system. Then computing modules used to construct the 

classifiers are designed and tested. After that, the system FPGA architecture mapping is 

presented and the data processing flow are introduced. 

4.2 Linear SVM 

The SVM classification algorithm can be expressed with several concepts and 

equations, but to implement the algorithm, a feasible expression needs to be introduced in 

the implementation.    

For the training phase of the algorithm, the classification function needs to be 

constructed. Using
[ )

( )
0, , 1, ,
max , ,

n n
L b

α ∗∈ ∞ = ∞
W A



, solve for Lagrange multiplier
nα  in (7). Let: 
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                ( )
1

, , 1 0

1,   2,   ,   

N

n k k n k
n k

L b y y

n N

αα =

∂ = − ⋅ + =
∂

=

∑W A X X



               (12) 

Then we can get all the Lagrange multipliers Nααα   ,  ,  , 21  , as a result, the normal 

vector of the classification function ( )g b= ⋅ +X W X  is: 

1

N

n n n
n

yα
=

=∑W X                          (13) 

According to the geometrical significance of linear constrained convex 

optimization problem, only constrains with 0>kα  is effective. Within the SVM 

classification problem, the training samples with 0>kα  are support vectors, and they 

are just on the two sides of the “margin”. All the support vectors have to meet constrain: 

( )1 0k ky b− ⋅ ⋅ + =W X                         (14) 

Considering 1=ky  , we can easily construct the classification function: 

( ) k

N

n
knnn

N

n
nnn yyyg +−= ∑∑

== 11
,, XXXXX αα              (15) 

To solve SVM classification problem with PFGA, we need to design a compatible 

expression of the algorithm rather than apply the equations and functions mentioned 

above. 
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Table 4.1: 

Linear SVM classification algorithm. 

Algorithm 1: Linear SVM classifier 
set matrix x=[ Test sample ];    

matrix X=[ Training samples ]; 
matrix Y=[ Class identity ]; 
matrix B=Y'; 

for i=1 to n, 
for j=1 to n, 
multiply matrix X(i,:) by matrix X(j,:)' 
set matrix A(i,j)=X(i,:)*X(j,:)'; 
end 
end 
for k=1 to n, 
   for l=1 to n, 
   do multiply matrix A(k,l) by matrix Y(l) 

set matrix A(k,l)=A(k,l)*Y(l); 
   end 
   end 
divide matrix A by matrix B   
set matrix C=A\B; 
for m=1 to n, 
    multiply matrix C(m) by matrix Y(m) and matrix X(m,:) 

set matrix Z(m,:)=C(m)*Y(m)*X(m,:); 
    end 
set matrix W=[sum of the first column of matrix Z, sum of the second column of matrix 
Z]; 
calculate parameter b=Y(1)-W*X(1,:)'; 
build the classification function G=W*x'+b 
classification result G = Ans 

{ }
{ }

1

2

sgn 1,      
sgn 1,   

G C
G C

= ∈
 = − ∈

X
X
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The rationale behind the design of the SVM classifier is the exploitation of the 

parallel computational power offered by the FPGA resources, as well as the high memory 

bandwidth offered by the FPGA internal memories in the most efficient way. As we can 

see in Algorithm 1, the computation of g(X) involves matrix–vector operations, which 

can be very complicated using FPGAs during actual calculating procedure. The problem 

can be divided into smaller segments and parallel units can be used to implement the 

segments. Therefore, the matrix calculating is performed by processing units, such as 

adders and multipliers. These processing units perform parallel computations architecture 

in the design in order to significantly speed up the decision function. 

To construct the classifier, the computing modules are needed first. For the linear 

SVM classifier, as we can see from Table 4.1, matrix calculation is the key issue. 

Performing matrix calculating will cost a huge amount of computational resource and 

significantly increase the computation time. Due to this issue, matrix calculations are 

broken into computing units which can work in parallel in our design, modules like 

adders and multipliers are designed and assembled to construct the classification system. 
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4.2.1 Computing Modules for Linear SVM 

The computing modules designed for the system are 18 bit signed fixed-point 

adders and multipliers with 1 sign bit 7 bit before decimal point 10 bit after. A fixed point 

package is used to build the computing units. The fixed-point math packages are based on 

the VHDL 1076.3 numeric_std package and use the signed and unsigned arithmetic from 

within that package. This makes them highly efficient as the numeric_std package is well 

supported by simulation and synthesis tools. The package defines two new types “ufixed” 

which is unsigned fixed point, and “sfixed” which is signed fixed point [47].  

 
Figure 4-1: Computing modules for linear SVM classifier. 

By applying fixed-point package to designed computing units, the computational 

accuracy is slightly dropped because of the restriction of the fixed bits. Any data with 

accuracy higher than 1/210 can’t be process and expressed precisely. A single computing 

 
 

 

VCC
a INPUT

VCC
b INPUT

resultOUTPUTa[7..-10]

b[7..-10]

result[8..-10]

adder01

inst

VCC
a[18..0] INPUT

VCC
b[18..0] INPUT

res[18..0]OUTPUTa[7..-10]

b[7..-10]

res[7..-10]

multiplier01

inst



35 
 

error for the adder and multiplier can reach to 1/29 and D/29 separately (where D is one of 

the input data). Training data sampled in a small area can cause an error which has 

significant influence on the results. Although the chance of the error mentioned above 

occurred is very low, by avoiding specific sampling area, this error can be controlled 

blow 1.5%, integrated with all possibilities, this error can be ignored. Overall, the total 

computational accuracy is satisfied while the computation resource consumption is 

limited within an acceptable range.  
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 Figure 4-2: Linear SVM classifier architecture. 
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After appropriate mapping, the assembled computing units will run synergistically 

to achieve the classification system. Every computing unit on the same hierarchy works 

in parallel to boost the performance of the system.  

The proposed FPGA architecture for the linear SVM classifier is shown in Figure 

4-2. The SVs (training datasets) are loaded into the internal FPGA memories, while the 

classification data points are streamed into the FPGA through the Test data units. The 

multiply units construct the polynomials of the classification function with training 

dataset and Lagrange multipliers, and all the multiply units works in parallel. The adder 

tree in the architecture builds the classification function g(X) with the parameter b and 

polynomials, which multiply units constructed. After unclassified data is streamed into 

the FPGA board, classification function g(X) runs a classifying procedure with it based 

on the training dataset. Results are then sent to the comparing unit and the class of the 

unknown points can be recognized according to the comparison result. The top level 

mapping code is showed in Table 4.2 This design uses integer and 18 bit signed fixed 

point binary data to fulfill the calculation, with 1 sign bit 7 bit before decimal point, and 

10 bit after. 

Table 4.2: 

Top-level Architecture Mapping of Linear SVM classification.  
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Architecture 1: Linear SVM classifier 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.fixed_pkg.all; 
entity fixed_top is  
port(sv11,sv12,sv21,sv22,sv31,sv32, 
     sv41,sv42,sv51,sv52,sv61,sv62, 
     sv71,sv72,sv81,sv82,sv91,sv92, 
     sv101,sv102,ya1,ya2,ya3,ya4,ya5, 
     ya6,ya7,ya8,ya9,ya10,test1, 
     test2,b: in  sfixed(7 downto -10); 
     res: out  sfixed(7 downto -10)); 
end fixed_top; 
architecture structure of fixed_top is  
component adder01 is  
port(a, b: in sfixed(7 downto -10); 
     res: out sfixed(7 downto -10)); 
end component; 
component multiplier01 is  
port(a, b: in  sfixed(7 downto -10); 
     res: out  sfixed(7 downto -10)); 
end component; 
signal a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 
       b1,b2,b3,b4,b5,b6,b7,b8,b9,b10, 
       c1,c2,c3,c4,c5,c6,c7,c8,c9,c10, 
       d1,d2,d3,d4,e1,e2,f1,f2,g1,g2, 
       h1:sfixed(7 downto -10); 
begin 
u1:multiplier01 port map(sv11,ya1,a1); 
u2:multiplier01 port map (sv21,ya2,a2); 
u3:multiplier01 port map (sv31,ya3,a3); 
u4:multiplier01 port map (sv41,ya4,a4); 
u5:multiplier01 port map (sv51,ya5,a5); 
u6:multiplier01 port map (sv61,ya6,a6); 
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u7:multiplier01 port map (sv71,ya7,a7); 
u8:multiplier01 port map (sv81,ya8,a8); 
u9:multiplier01 port map (sv91,ya9,a9); 
u10:multiplier01 port map (sv101,ya10,a10); 
u11:multiplier01 port map (ya1,sv12,b1); 
u12:multiplier01 port map (ya2,sv22,b2); 
u13:multiplier01 port map (ya3,sv32,b3); 
u14:multiplier01 port map (ya4,sv42,b4); 
u15:multiplier01 port map (ya5,sv52,b5); 
u16:multiplier01 port map (ya6,sv62,b6); 
u17:multiplier01 port map (ya7,sv72,b7); 
u18:multiplier01 port map (ya8,sv82,b8); 
u19:multiplier01 port map (ya9,sv92,b9); 
u20:multiplier01 port map (ya10,sv102,b10); 
u21:adder01 port map (a1,a2,c1); 
u22:adder01 port map (b1,b2,c3); 
u23:adder01 port map (a3,a4,c2); 
u24:adder01 port map (b3,b4,c4); 
u25:adder01 port map (a5,a6,c5); 
u26:adder01 port map (b5,b6,c7); 
u27:adder01 port map (a7,a8,c6); 
u28:adder01 port map (b7,b8,c8); 
u29:adder01 port map (a9,a10,c9); 
u30:adder01 port map (b9,b10,c10); 
u31:adder01 port map (c1,c2,d1); 
u32:adder01 port map (c3,c4,d3); 
u33:adder01 port map (c5,c6,d2); 
u34:adder01 port map (c7,c8,d4); 
u35:adder01 port map (d1,d2,e1); 
u36:adder01 port map (d3,d4,e2); 
u37:adder01 port map (e1,c9,f1); 
u38:adder01 port map (e2,c10,f2); 
u39:multiplier01 port map (f1,test1,g1); 
u40:multiplier01 port map (f2,test2,g2); 
u41:adder01 port map (g1,g2,h1); 
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u42:adder01 port map (h1,b,res); 
end architecture structure ; 

4.3 Non-linear SVM 

Based on the comparison results of accuracy and performance of different Kernel 

Functions, we applied Gaussian radial basis function: ( ) σ

2YX

YX
−

−
=⋅ eK  in our 

non-linear SVM algorithm. The classification function constructed for non-linear SVM 

is: 

( ) ( ) ( ) k

N

n
knnn

N

n
nnn yKyKyg +−= ∑∑

== 11
,, XXXXX αα              (16) 

4.3.1 Computing Modules for Non-linear SVM 

The computing modules designed for the non-linear system are adders, multiplier, 

square calculators and exp calculators:   

1) Adder01 is an 18bit integer adder to add up the results from square calculation 

modules which shows the square of the difference between support vector and test point. 

2) Adder02 is an 18bit 3 ports fixed-point adder; it adds up b and total of the 

multipliers, and accuracy is 1/214. 
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3) Adder03 is an 18bit 11 ports fixed-point adder; it sums up the results of the 

multipliers, and accuracy is 1/214. 

4) Multiplier is an 18bit 3 ports fixed-point multiplier; it multiplies the results of 

the exp calculator by the parameter yα. 

4) Square is a square calculation module which shows the square of the difference 

between support vector and test point. 

5) Exp_cal is a table-driven calculation module which shows the calculation result 

of exp(-x/0.72). 

 

Table 4.3: 

Exp calculator design code. 

Architecture 2: Exp calculator 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.fixed_pkg.all; 
entity exp_cal is 
port ( a: in integer range 0 to 262140; 
       b: out sfixed(3 downto -14)); 
end exp_cal; 
architecture behavior of exp_cal is 
begin 
      with a select 
          b<= "000000000000000000" when 0 , 
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              "000000111111110101" when 1 , 
              "000000001111111010" when 2 , 
              "000000000011111110" when 3 , 
              "000000000000111101" when 4 , 
              "000000000000001111" when 5 , 
              "000000000000000011" when 6 , 
                          … 
              "000000000000000000" when others; 
       
end behavior; 

 
The fixed point package is also used to build the computing units. By applying 

fixed-point package to designed computing units, the computational accuracy can be 

satisfied while the computation resource consumption is limited within an acceptable 

range. After appropriate mapping, the assembled computing units will run synergistically 

to achieve the classification system. Every computing unit on the same hierarchy works 

in parallel to boost the performance efficiency of the system. 

Table 4.4 

Non-linear SVM classification algorithm. 

Algorithm. 2: Non-linear SVM classifier 
set matrix x=[ Test sample ];    

matrix X=[ Training samples ]; 
matrix Y=[ Class identity ]; 
matrix B=Y'; 

for i=1 to n, 
for j=1 to n, 
calculate classification function parameters using matrix X and Gaussian radial basis 
function and give the result to matrix 
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A(i,j)=exp(-((X(i,1)-X(j,1))^2+(X(i,2)-X(j,2))^2)/(2*(0.6)^2)); 
end 
end 
for k=1 to10, 
   for l=1 to 10, 
   multiply matrix A(k,l) by matrix Y(l) and give the result to matrix A(k,l); 
   end 
   end 
dived matrix A by matrix B and give the result to matrix C; 
for q=1 to 10, 
calculate C(q)*Y(q)*exp(-((X(q,1)-X(1,1))^2+(X(q,2)-X(1,2))^2)/(2*(0.6)^2)) and 
give the result to h(q); 
end 
calculate the sum of all the elements in matrix h and give the result to matrix H; 
calculate parameter b=Y(1)-H; 
for p=1 to 10, 
calculate matrix 
g(p)=C(p)*Y(p)*exp(-((X(p,1)-x(1))^2+(X(p,2)-x(2))^2)/(2*(0.6)^2)); 
end 
calculate the sum of matrix g and give the result to matrix W; 
build the classification function G=W+b 

{ }
{ }

1

2

sgn 1,      
sgn 1,   

G C
G C

= ∈
 = − ∈

X
X  

By replacing the dot product with the Kernel Function, we construct a non-linear 

SVM classification algorithm. As we can see in Table 4.4–besides the matrix 

calculation–the exponential function calculation is introduced. Neither fixed point 

calculation nor floating point calculation for exponential function can be efficiently 

implemented on FPGA. The advantage of parallel computing cannot be fully played out 

for massive exp computing. In the proposed algorithm, we designed a table-driven 
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exponential function calculation module to fulfill the actual exp calculation. The 

application of the table-driven exponential module saved a large amount of PFGA 

computing resources, and the accuracy is reliable according to the simulation test. The 

matrix calculating is also performed in parallel by processing units similar to linear 

algorithm. The parameter σ in the Gaussian radial basis function is set to 0.6 in our 

design.  
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Figure 4-3: Non-linear SVM classifier architecture. 

The non-linear SVM classifier FPGA architecture is shown in Figure 4-3. Like 

the linear design, training datasets are loaded in the internal FPGA memories through SV 
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units, and then together with test data, they are streamed into square difference units. 

These units calculate the square difference of test points and training points. Next, results 

are sent to exp units which perform exponential function calculation in order to achieve 

the Kernel Function. These exp units work as table-driven modules. Not only they fulfill 

the exponential function calculation but also the rest of the Gaussian radial basis function 

including parameters. The top level mapping code is showed in Table 4.5 

Table 4.5: 

Top-level Architecture Mapping of Non-linear SVM classification.  

Architecture 3: Non-linear SVM Classifier 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.fixed_pkg.all; 
entity nonlinear_top is  
port(sv11,sv12,sv21,sv22,sv31,sv32, 
     sv41,sv42,sv51,sv52,sv61,sv62, 
     sv71,sv72,sv81,sv82,sv91,sv92, 
     sv101,sv102,x1,x2: in integer range 0 to 262140; 
     ya1,ya2,ya3,ya4,ya5,ya6,ya7, 
     ya8,ya9,ya10,b: in sfixed(3 downto -14); 
     res: out  sfixed(3 downto -14)); 
end nonlinear_top; 
architecture structure of nonlinear_top is  
component adder01 is  
port(a, b: in integer range 0 to 262140; 
     res: out integer range 0 to 262140); 
end component; 



45 
 

component multiplier01 is  
port(a, b: in  sfixed(3 downto -14); 
     res: out  sfixed(3 downto -14)); 
end component; 
component square is 
port (a, b: in integer range 0 to 262140; 
     res: out  integer range 0 to 262140); 
end component; 
component exp_cal is 
port ( a: in integer range 0 to 262140; 
       b: out sfixed(3 downto -14)); 
end component; 
component adder02 is 
port(a, b: in sfixed(3 downto -14); 
     res: out sfixed(3 downto -14)); 
end component; 
component adder03 is 
port(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10: in sfixed(3 downto -14); 
     res: out sfixed(3 downto -14)); 
end component; 
 
signal a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 
       a11,a12,a13,a14,a15,a16,a17,a18, 
       a19,a20,b1,b2,b3,b4,b5,b6,b7,b8, 
       b9,b10: integer range 0 to 262140; 
signal c1,c2,c3,c4,c5,c6,c7,c8, 
       c9,c10,d1,d2,d3,d4,d5,d6,d7,d8, 
       d9,d10,e1:sfixed(3 downto -14); 
begin 
u1:square port map(sv11,x1,a1); 
u2:square port map(sv12,x2,a2); 
u3:square port map(sv21,x1,a3); 
u4:square port map(sv22,x2,a4); 
u5:square port map(sv31,x1,a5); 
u6:square port map(sv32,x2,a6); 
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u7:square port map(sv41,x1,a7); 
u8:square port map(sv42,x2,a8); 
u9:square port map(sv51,x1,a9); 
u10:square port map(sv52,x2,a10); 
u11:square port map(sv61,x1,a11); 
u12:square port map(sv62,x2,a12); 
u13:square port map(sv71,x1,a13); 
u14:square port map(sv72,x2,a14); 
u15:square port map(sv81,x1,a15); 
u16:square port map(sv82,x2,a16); 
u17:square port map(sv91,x1,a17); 
u18:square port map(sv92,x2,a18); 
u19:square port map(sv101,x1,a19); 
u20:square port map(sv102,x2,a20); 
u21:adder01 port map(a1,a2,b1); 
u22:adder01 port map(a3,a4,b2); 
u23:adder01 port map(a5,a6,b3); 
u24:adder01 port map(a7,a8,b4); 
u25:adder01 port map(a9,a10,b5); 
u26:adder01 port map(a11,a12,b6); 
u27:adder01 port map(a13,a14,b7); 
u28:adder01 port map(a15,a16,b8); 
u29:adder01 port map(a17,a18,b9); 
u30:adder01 port map(a19,a20,b10); 
u31:exp_cal port map(b1,c1); 
u32:exp_cal port map(b2,c2); 
u33:exp_cal port map(b3,c3); 
u34:exp_cal port map(b4,c4); 
u35:exp_cal port map(b5,c5); 
u36:exp_cal port map(b6,c6); 
u37:exp_cal port map(b7,c7); 
u38:exp_cal port map(b8,c8); 
u39:exp_cal port map(b9,c9); 
u40:exp_cal port map(b10,c10); 
u41:multiplier01 port map (c1,ya1,d1); 
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u42:multiplier01 port map (c2,ya2,d2); 
u43:multiplier01 port map (c3,ya3,d3); 
u44:multiplier01 port map (c4,ya4,d4); 
u45:multiplier01 port map (c5,ya5,d5); 
u46:multiplier01 port map (c6,ya6,d6); 
u47:multiplier01 port map (c7,ya7,d7); 
u48:multiplier01 port map (c8,ya8,d8); 
u49:multiplier01 port map (c9,ya9,d9); 
u50:multiplier01 port map (c10,ya10,d10); 
u51:adder03 port map (d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,e1); 
u52:adder02 port map (e1,b,res); 
end architecture structure ; 

The table-driven module saved a large amount of computing resources by 

transferring massive floating calculations into a fast table look up mechanism. Due to the 

mathematical properties of Gaussian radial basis function, the table can be restricted to an 

acceptable size. The adder tree and multipliers construct the classification functions with 

parameter b. Class identities of test data will be shown after the comparing unit. The 

calculating units in the architecture use integer and 18 bit signed fixed point binary data 

to fulfill the calculation, with 1 sign bit, 2 bit before the decimal point and 14 bit after the 

decimal point. 
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Chapter 5 

Implementation Results 

5.1 Testing Environment Devices  

The targeted device for the proposed architecture was the Altera’s Cylone II 

EP2C70F896. The results can be easily expanded to other targeted devices by changing 

the resource constraints of the design flow. The architecture is captured in VHDL and the 

fixed-point modules are generated by the Altera tools and packages [48]. The targeted 

operating frequency is between 200–250 MHz For the testing data, we create 4 random 

sampling datasets for linear and non-linear SVM classifier separately. 

5.2 Result Analysis of Linear Classifier 

For linear SVM design, we build 4 different two-class linear datasets (dataset A, 

B, C, D) to test the classifier. The size of each dataset is 400, 20 of which will be used for 

SVM training, with a testing size of 50. According to the cumulative results of each 
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datasets, the test results given by the classification system is satisfying and the consumed 

time meets our requirements for the design. The results accuracy, however, may be 

slightly different based on the amount of training data and the density of the support 

vectors. 

Table 5.1： 

Testing results of linear models. 
 Accuracy Recognition rate 
Model A 99.58% 100% 
Model B 99.63% 98% 
Model C 99.62% 100% 
Model D 99.61% 100% 

As we can see from Table 5.1, based on 4 different linear test models, the 

calculation error is around 0.39% (e1), and the recognition rate is satisfactory. The 

recognition rate is related to the training and test datasets we choose, the classification 

results can vary with the selection of the testing points. Based on the algorithm proposed 

above and the calculation error obtained from the amount of testing calculation, an 

expected recognition error (E1) is inevitable. With the algorithm accuracy ∆1 (1/210), the 

expected recognition error can be calculated as E1=2(e1+∆1) =0.975%. If applied on a 

certain amount of test data, the actual recognition error will regress towards E1. Although 

the time required for different classification models is unpredictable, it is far easier and 

more reliable than a PC with a 2.27-GHz Intel i5 duo processer with 3 GB of RAM, for 
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the computing time is reduced by approximately 30%-50%. Figure 5-1 depicts the 

detailed comparison in terms of time usage.  

 
Figure 5-1：Linear SVM time consumption comparison. 

5.3 Result Analysis of Non-linear Classifier 

For the non-linear SVM classification design, 4 different 400-size nonlinear 

datasets are built to test the non-linear classifier. The training size for each dataset is 20 

and the testing size is 40. The cumulative results are also satisfactory. The calculation 

error is around 0.041%, which is better than the linear design.  

Table 5.2： 

Testing results of non-linear models. 
 Accuracy Recognition rate 

Model A1 99.95% 97.5% 
Model B1 99.96% 100% 
Model C1 99.94% 100% 
Model D1 99.99% 95% 
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From Table 5.2, high recognition rates are obtained for the test models and 

datasets we chose. Like the linear classification, we obtain a 0.041% calculation error (e2), 

which we get from the amount of testing calculations and the non-linear algorithm 

accuracy (∆2). The expected recognition rate error for non-linear system (E2) can be 

calculated as E2=2(e2+∆2) =0.832%. Due to the table-driven exp units we introduced into 

our design, the time consumption for the non-linear SVM classification system 

significantly dropped; compared to the 2.27-GHz Intel i5 duo processer with 3 GB of 

RAM PC, the computing time is reduced by approximately 60%. Figure 5-2 is the 

detailed time consumption. 

 
Figure 5-2: Non-linear SVM time consumption comparison. 

For the time consumption result showed in Figure 5-1 and Figure 5-2, compare to 

a PC with a 2.27-GHz Intel i5 duo processer, we can see a marked time consumption 
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targeted FPGA in this work is between 200–250 MHz, it’s about 20 times less than the 

2.27-GHz Intel i5 duo processer. The actual time consumption reduction ratio is 

significantly higher than what we can see from Figure 5-1 and Figure 5-2. Further test 

can be accomplished by implement SVM on a FPGA board with a higher operating 

frequency then a PC processor. As one of the latest version of advanced FPGAs, Altera’s 

Stratix 10 devices are manufactured with the revolutionary Intel 14 nm 3D Tri-Gate 

transistor technology, the targeted operating frequency can reach to over one gigahertz. If 

we implement our SVM classification system on Altera’s Stratix 10 sevice for the future 

research, with the strong computing power of industry’s first gigahertz FPGAs, the real 

parallel computation advantage of PFGA will be revealed. Using expanded FPGA boards 

to solve complicated real-world problem with massive computational work is also a 

feasible way to test the time consumption preference of FPGA based SVM. 

 



53 
 

 

Chapter 6 

Conclusion and Future work 

6.1 Summary and Conclusions  

This paper presents a FPGA-based SVM classification system which can be used 

for fast data classification. The implementation results show that the designed FPGA 

implementation of SVM classification system works adequately as a fast two-class 

classification system with a high-accuracy and satisfying computing time. The 

performance of the SVM classifier as a fast recognition classification system fulfills the 

proposed requirements. For the further work, it is very promising that smart meters 

embedded with SVM classifiers can provide fast intrusion detection in order to protect 

the whole secure communication system, like a firewall.  

6.2 Future Work 
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The SVM classification system is usually applied to cyber-security area. Most of 

these applications are used as a fast intrusion detector by running a classification 

procedure with the unknown data. Compare to the traditional SVM implementation, our 

FPGA-based SVM classification system has broad application space, especially in cyber 

infrastructure security field such as Smart Grid security. The adaptability and excellent 

performance offered by FPGA-based SVM classifier provides a feasible solution for 

Smart Grid security issues. 

The core of the Smart Grid is the use of intelligent communication networks as 

the platform that enables grid instrumentation, analysis, and control of utility operations, 

from power generation to transmission and distribution. One of the most important 

foundations of a Smart Grid is the interoperability that enables all of the required devices, 

technologies, applications, and agents (energy producers, consumers, and operators) to 

interact in the Smart Grid network. Although Smart Grid communications can assist in 

transforming the energy industry–such as by playing a critical role in maintaining high 

levels of reliability, performance, and manageability–they also introduce the need for 

integrated security infrastructures [49]. It is inevitable that adding digital intelligence and 

two-way functionality to the power grid will increase the risk of cyber attacks and 

vulnerabilities like confidentiality, integrity, and availability (CIA) [50]. More endpoints 
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and interconnected networks mean more ways for security problems to get in and 

proliferate [51]. Many of the technologies being deployed to support Smart Grid projects 

such as smart meters, sensors, and advanced communications networks can increase the 

vulnerability of the grid to attack. [52] In addition, a Smart Grid equipped with intelligent 

electronic devices cannot survive if the communications infrastructure is insecure and 

vulnerable to cyber attacks. Devising effective strategies for securing the computing and 

communication networks that will be central to the performance and availability of the 

envisioned electric power infrastructure and for protecting the privacy of Smart 

Grid-related data is our top priority [51]. Due to this issue, a reliable two-way 

communication solution with security mechanisms regarding to the cyber-physical 

security of the Smart Grid [53] is extremely important.  

For future work, a multilayer, two-way communication network using the 

FPGA-based SVM classification system will be built in order to secure the privacy and 

integrity of communications between parties in Smart Grid. The real-time communication 

ability of the Smart Grid will enable utilities to optimize and modernize the power grid in 

order to realize its full potential [54]. From Figure 6-1, we can see the whole network 

combined with electricity suppliers, local maintenance facilities, smart buildings and 

smart meters. At the top layer of the network, the electrical supplier will gather real-time 
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power usage report from smart meters, making the most efficiency power plan according 

to all the data received. Smart meters [55] on the lowest layer play a key role in securing 

the whole communication network. For consumers, smart meters protect users’ privacy 

by hiding unnecessary personal information from the electricity supplier. In terms of 

electricity suppliers, all irrelevant information except for the consumption report will be 

blocked by smart meters just like a firewall to prevent malicious intrusions. This new 

communication network will be constructed using various communication paths, 

including fiber optic cable, twisted pair, broadband over power line, and wireless 

technologies [43]. Smart meters are extremely attractive targets for malicious intrusions, 

for their vulnerabilities can easily be monetized [52]. There are enormous amounts of 

communications going through smart meters all the time, and checking the safety of 

every communication will tremendously delay the whole communication system. In fact, 

it is also impractical to apply complicated devices and mechanisms on smart meters in 

order to run a security check with all the communications. 
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Figure 6-1: Diagram illustration for a multilayer two-way communication network. 

To secure smart meters [56] on the lowest level, we then introduce a Support 

Vector Machine classification system based on FPGA as the security mechanism running 

on smart meters. The SVM classification system will be integrated into smart meters and 

work as a firewall for the whole communication system, and after being trained with the 

datasets that contain known attack types, SVM classification system will look through all 

the communications with a quick inspection. Based on the data features, SVM classifier 

will then detect attacks from normal communication. Regular communications are 

allowed in the network without significant delay, while malicious intrusions and 
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unknown datasets are sent to the upper levels, such as local maintenance facilities and 

electricity suppliers to be processed. The time consumption is acceptable. FPGA chips 

running SVM classifier integrated into Smart Grid is also a feasible choice.  
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