
A Thesis

entitled

FPGA Implementation of a Support Vector Machine based

Classification System and its Potential Application in Smart Grid

by

Xiaohui Song

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Master of Science Degree in Electrical Engineering

Dr. Hong Wang, Committee Chair

Dr. Lingfeng Wang, Co-Committee Chair

Dr. Weiqing Sun, Committee Member

Dr. Patricia R. Komuniecki, Dean
College of Graduate Studies

The University of Toledo

December 2013

Copyright 2013, Xiaohui Song

This document is copyrighted material. Under copyright law, no parts of this document
may be reproduced without the expressed permission of the author.

iii

An Abstract of

FPGA Implementation of a Support Vector Machine based
Classification System and its Potential Application in Smart Grid

by

Xiaohui Song

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Master of Science Degree in Electrical Engineering

The University of Toledo

December 2013

Support Vector Machines (SVMs) is a popular classification and regression

prediction tool that uses supervised machine learning theory to maximize the predictive

accuracy. This paper focuses on the field programmable gate array (FPGA)

implementation of a Support Vector Machine classification system. Owing to the

advanced parallel calculation feature provided by FPGA, a fast data classification can be

achieved by the FPGA-based two-class SVM classifier. The classification system works

both in linear mode or non-linear mode, depending on the dimensions of the classification.

Simulated results demonstrate that the classification system is effective in fast data

classification, as well as a promising technique used in Smart Grid to strengthen the

communication security.

iv

For my lovely, brilliant wife, Lu Wang. Your love, patience, support and understanding

have encouraged me to finish this study and thesis

v

Acknowledgements

First, I would like to express the deepest appreciation to my advisors Dr. Hong

Wang and Dr. Lingfeng Wang, who have the attitude and the substance of a genius: they

continually and convincingly conveyed a spirit of adventure in regard to research and

scholarship, and an excitement in regard to teaching. Without their guidance and

persistent help this thesis would not have been possible.

I would like to thank my committee member Dr. Weiqing Sun, for his dedication

and precious time from a busy schedule.

In addition, I would like to express my gratefulness and respect to my parents and

friends. Their encouragements are responsible for all that I have and will achieve.

vi

Contents

Abstract………………………………………………………………………..…………iii

Acknowledgements ...v

Contents .. vi

List of Tables ... ix

List of Figures ...x

List of Abbreviations ... xi

Chapter 1 ...1

Introduction ...1

1.1 Background and Motivation ...1

1.2 Related Work ...4

1.3 Project Objectives ..7

1.4 Synopsis of Thesis ...8

1.5 Outline of Thesis ..9

Chapter 2 ... 11

Literature Review .. 11

2.1 Outline ... 11

2.2 Support Vector Machine Concepts and Applications .. 11

vii

2.3 Modern Field Programmable Gate Array Devices .. 18

Chapter 3 ... 23

Support Vector Machine .. 23

3.1 Outline ... 23

3.2 Algorithm Introduction .. 23

3.3 Linear Support Vector Machine ... 25

3.4 Non-linear Support Vector Machine ... 28

Chapter 4 ... 30

FPGA Architecture Mapping ... 30

4.1 Outline ... 30

4.2 Linear SVM ... 30

4.2.1 Computing Modules for Linear SVM .. 34

4.3 Non-linear SVM .. 39

4.3.1 Computing Modules for Non-linear SVM ... 39

Chapter 5 ... 48

Implementation Results ... 48

5.1 Testing Environment Devices .. 48

5.2 Result Analysis of Linear Classifier ... 48

5.3 Result Analysis of Non-linear Classifier ... 50

Chapter 6 ... 53

Conclusion and Future work .. 53

6.1 Summary and Conclusions ... 53

viii

6.2 Future Work ... 53

References ... 59

ix

List of Tables

2.1 Linearly Non-separable Patterns Used for the SVM Classification Models in Figure

2-4 and 2-5………………………………………………………………...……………..15

4.1 Linear SVM classification algorithm………………………………………………...31

4.2 Top-level Architecture Mapping of Linear SVM classification……………...……...36

4.3 Exp calculator design code…………………………………………………………..40

4.4 Non-linear SVM classification algorithm……………………………………………41

4.5 Top-level Architecture Mapping of Non-linear SVM classification………..……….44

5.1 Testing results of linear models………………………………………...……………49

5.2 Testing results of non-linear models……………………………………………..….50

x

List of Figures

2-1 Maximum separation hyperplane………………………………………...………….12

2-2 Linear separation in feature space……………………………………………..…….13

2-3 Support vector machines map the input space into a high-dimensional feature

space……………………………………………………………………………………...14

2-4 SVM classification models for the dataset from Table 2.1………………………….17

2-5 SVM classification models obtained with the polynomial kernel for the dataset from

Table 2.1…………………………………………………………………………………18

3-1 SVM separating hyperplane…………………………………………………………26

4-1 Computing modules for linear SVM classifier………………………………….…...34

4-2 Linear SVM classifier architecture…………………………………………..….…...35

4-3 Non-linear SVM classifier architecture……………………………………………...43

5-1 Linear SVM time consumption compares……………………..…….………………50

5-2 Non-linear SVM time consumption compares………………………………………51

6-1 Diagram illustration for a multilayer two-way communication network……………57

xi

List of Abbreviations

ASIC…………. Application Specific Integrated Circuit
ASSP.................. Application Specific Standard Product

CIA………….... Confidentiality, Integrity, and Availability
CORDIC………….... Coordinated Rotation Digital Computer
COTS………….... Commercial off The Shelf

DSP………….... Digital Signal Processing

ERM………….... Empirical Risk Minimization

FPGA…………....Feild Programmable Gate Array

GPU…………....Graphics Processing Unit

LE………….... Logic Element
LNS………….... Logarithmic Number Systems

MAC………….... Multiply ACcumulate

NIPS ………...... Neural Information Processing Systems
NRE………….... Nonrecurring Engineering

OEM………….... original equipment manufacturer

SoC…………....Systems on a Chip
SRAM………….... Static Random Access Memory
SRM ………….... Structural Risk Minimization
SV………….... Support Vectors
SVM ………....... Support Vector Machine

1

Chapter 1

Introduction

1.1 Background and Motivation

For last two decades, machine-learning researchers have been working on the area

of improving classifier effectiveness, at the same time, the exploration of

machine-learning has led to a new generation of state-of-the-art classification algorithms,

such as support vector machines (SVMs) [1], boosted decision trees, regularized logistic

regression, neural networks, and random forests. Many of these algorithms, including

support vector machines, have been applied with success to information analysis

problems, especially data classification and regression. Support vector machines

appeared in the early nineties as optimal margin classifiers in the context of Vapnik’s

statistical learning theory [1]. Since then, SVMs have been successfully applied to

massive information analysis problems in the real-world, often providing satisfied results

compared with many other algorithms. The SVMs algorithm process the data by

2

minimizing an empirical risk in a well-posed and consistent way based on regularization

theory. SVM classification is a kind of large-margin classifier: it is a vector space based

machine learning algorithm where the goal is to find a decision boundary between two

classes that is maximally far from any point in the training data. The basis of SVMs is the

projection of the low-dimensional training data in a higher dimensional feature space; it

is easier to separate the input data in this higher dimensional feature space. Moreover,

through this projection it is possible that training data–which cannot be separated linearly

in the low-dimensional feature space–can be separated linearly in the high-dimensional

space using Kernel Functions.

Machine Learning is considered to be a subfield of artificial intelligence and

focuses on the development of techniques and algorithms which enable the computer to

learn. Its purpose is to solve practical problems using Machine Learning theory, and

many algorithms are developed which enable the machine to learn and perform

real-world tasks and activities. As a Machine Learning method, the support vector

machine was initially popular with the NIPS community and is now an active part of the

Machine Learning research around the world. SVM becomes famous when it is used for

pattern recognition; it gives accuracy comparable to sophisticated neural networks with

elaborated features in a handwriting recognition task [2]. It is also being used for many

3

applications, such as hand writing analysis, face analysis and so forth, especially for

pattern classification and regression–based applications. The foundations of Support

Vector Machines (SVM) have been developed by Vapnik and gained popularity due to

many promising features, such as better empirical performance. The formulation uses the

Structural Risk Minimization (SRM) principle–which has been shown to be superior

[3]–to the traditional Empirical Risk Minimization (ERM) principle, a method used by

conventional neural networks. SRM minimizes an upper bound on the expected risk,

where as ERM minimizes the error on the training data. It is this difference which equips

SVM with a greater ability to generalize, which is the goal in statistical learning. SVMs

were developed in order to solve the classification problem, but recently they have been

extended to solve regression problems [4].

Due to the powerful Machine Learning algorithm and high prediction accuracy,

the applications of SVMs progressively increased in last decade, especially in

classification problems and pattern recognition problems, as well as providing a good

general performance for a wide range of regression and classification tasks. By

optimizing the use of the available computing resources, the performance of the SVMs

can be maximized. Implementing SVM classifiers on suitable computing devices like

FPGAs can exploit the potential of custom precision algorithms. FPGAs are

4

semiconductor devices, which contain programmable logic elements called ‘logic blocks’.

With the development of integrated circuit technologies, modern FPGAs contain coarse

grain components, such as memory blocks and embedded multipliers or digital signal

processing blocks (DSPs). The implementation of complex combinational functions–such

as multipliers onto the programmable logic blocks–has enabled the FPGA devices to

boost their performance efficiency. Nowadays, FPGA devices offer a vast amount of DSP

blocks and a hierarchy of different memory sizes, thus providing a high level of

flexibility and large amounts of parallel computational power. The reprogrammable

feature of FPGAs offers a significant advantage against application-specific cases, and

targets different classification problems which may vary in size, dimensionality, and

dynamic range constraints. Additionally, modern FPGA devices are able to provide equal

or superior performance at a lower power cost than general purpose processing units [5].

1.2 Related Work

 This section overviews some previous FPGA- or GPU- mapped works on the

SVM classification. There exists a fair amount of work on accelerating both the SVM

training and classification for general-purpose processors and DSPs, which aim to

provide higher performance on such platforms. The work in [6] presents an evaluation of

5

SVM implementation on embedded processor architectures, and proposes architectural

modifications in order to improve their performance. An analysis was performed in [7]

where critical parts of the SVM algorithm were mapped between hardware and software,

demonstrating how hardware can be used to accelerate SVM computations. An attempt to

implement SVMs on a microcontroller was presented in [8], and dealt with issues such as

limited memory and hardware. Recently, Graphics Processing Units (GPUs) have been

utilized in the implementation of SVMs [9], Their parallel nature shows significant

speedups when compared with general-purpose processors. However, caution need to be

taken when implementing using GPUs. Efficient programming was needed in order to

provide high performance, primarily because of GPU’s fixed hardware, especially the

interconnection which may not suit the computation or data flow of some applications.

Due to the potential real-time information processing performance advantages

they offer for both data training and classification, hardware implementations of SVMs

have gained noticeable interest in recent years. Significant progress has been made in the

implementation of SVMs on custom hardware, mostly on FPGAs. A homogeneous

FPGA-based architecture for the SVM training was introduced in [10], and the results can

be potentially extended for the acceleration of the SVM classification. Another

homogeneous work was presented in [11], where a parallel FPGA co-processor is

6

proposed for the inner product calculations using the available DSP units of the targeted

device. The kernel computations are performed by the host CPU, unlike in [10], where

floating-point pipelines are utilized for the Kernel Functions. The integrated solution in

[11] targets a large FPGA device and succeeds in accelerating the SVM classification.

Nevertheless, this paper didn’t exploit the heterogeneity and the fully custom-arithmetic

potential of modern FPGA devices, nor did it target the precision requirements of the

training problem. The multipliers were implemented solely by hard-logic DSP blocks,

and the large amount of the FPGA’s soft-logic was not efficiently utilized. The work in

[12] presents an in-depth analysis of their SVM training architecture on a Xilinx Virtex II

device. This paper could potentially be exploited for a classification solution. However,

due to the resource constraints of the targeted device, it didn’t exploit the parallelization

potential of modern FPGAs. In [13], a novel implementation based on logarithmic

number systems (LNS) was presented. The LNS-based implementation of the SVM

kernel was also adopted in [14] in order to produce a hardware-friendly approach. These

works focus more on the potential of using LNS for the SVM problem rather than the

acceleration of the problem, because the targeted devices are small and only one

Multiply-ACcumulate (MAC) unit was used for all the dot-product evaluations. The

FPGA architecture proposed in [15] employs a hardware-friendly approach for the kernel

7

evaluations based on CORDIC algorithm, the paper wasn’t optimized in utilizing FPGA

logic resources in order to speed-up the SVM classification. The SVM classification was

used for video shot boundary detection in [16]. Only linear SVMs were targeted and the

FPGA device was used for the dot-product mapping of the SVM algorithm.

For the other works, such as [17] and [18], implement the SVM classification

problem on the parallel computing resources of a GPU using NVidia’s compute unified

device architecture [19] programming environment. Their main differences are related to

the chosen floating-point precision for the kernel computations and the usage of the host

CPU for the processing of some part of the kernel evaluations, before the results are fed

to the GPU. Furthermore, the GPU work in [20] targets a geometric interpretation of the

SVM training problem [21] based on Gilbert’s algorithm [22], while the classification

implementation is similar to [17] and [18].

1.3 Project Objectives

 Based on the issues listed above, a FPGA-based SVM classification system is

presented in order to achieve a fast two-class data classifier. This work focuses on an

FPGA implementation for the two-class SVM classifier, including both linear and

non-linear classification which fully exploits the parallel processing power of the FPGA

8

computing resources and offers scalability and adaptively to the targeted classification

problems under the available resource constraints. The proposed system has two main

characteristics:

1) It is a strong computational tool with the great power and high prediction

accuracy to solve the data classification problem using the SVM Machine

Learning algorithm.

2) Owing to the advanced parallel calculation feature provided by FPGA, the

system provides a fast two-class data classification with a satisfying time

consumption and field integration ability.

The objective is to resolve fast classification problems under the precision

requirements using modern FPGA devices, as well as to build a multilayer two-way

communication network using the FPGA-based SVM classification system in order to

secure the privacy and integrity of communications between parties in Smart Grid for

future applications.

1.4 Synopsis of Thesis

This thesis presents and discusses the design and testing of the FPGA based SVM

classification system. It begins by reviewing the Machine Learning–based algorithm,

9

which is called the Support Vector Machine, in order to provide the basic information,

knowledge and ideas about how the SVM algorithm provides class prediction for the

unknown data based on the labeled data (training dataset).

The SVM algorithm for the classification system is discussed in the next step, the

section includes the mathematics expression of the algorithm and details of the algorithm

flow for FPGA implementation. This is done by first figuring out the mathematical

expression of the SVM algorithm and how to transform the mathematic functions to a

FPGA–applicable algorithm. Then, it is time to think about how to apply the proposed

algorithm on the target device. The design of modules is discussed next, which can work

both separately and in parallel, Then the modules are mapped appropriately in order to

construct a classification system. Next, a FPGA–based SVM classification system is built.

The system can work in both linear and non-linear modes. After that, the testing results

are collected and analyzed in order to draw a conclusion of the research. In the last

section, the probable future work is discussed.

1.5 Outline of Thesis

The remainder of the thesis is organized as follows. In Section 2, the Machine

Learning theory and support vector machine algorithm are introduced. The design of the

10

SVM algorithms used in the classification system is detailed in Section 3. The FPGA

architecture mapping of the proposed algorithm is presented in Section 4. In Section 5,

the implementation results of the SVM classification system are analyzed. Conclusions

and future work are given in the final section.

11

Chapter 2

Literature Review

2.1 Outline

This chapter consists of two parts. The first part presents the background

knowledge of Machine Learning and the Support Vector Machine algorithm, which are

important in understanding this study. The SVM algorithm is one of the most popular

Machine Learning based algorithms. The second part introduces the current status and

advantages of modern PFGAs.

2.2 Support Vector Machine Concepts and Applications

Kernel-based techniques, such as Support Vector Machines, Bayes Point

Machines, Kernel Principal Component Analysis, and Gaussian Processes, represent a

major development in Machine Learning algorithms. Support vector machines (SVMs)

12

are a group of supervised learning methods that can be applied to classification or

regression.

Support Vector Machines represent an extension of nonlinear models of the

Generalized Portrait Algorithm developed by Vapnik and Lerner [23]. The SVM

algorithm is based on the Statistical Learning theory and the Vapnik–Chervonenkis (VC)

dimension [24]. The Statistical Learning theory, which describes the properties of

learning machines that allow them to give reliable predictions, was reviewed by Vapnik

in three books: Estimation of Dependencies Based on Empirical Data [25], The Nature of

Statistical Learning Theory [1], and Statistical Learning Theory [26]. In the current

formulation, the SVM algorithm was developed at AT&T Bell Laboratories by Vapnik et

al [27–33].

Figure 2-1: Maximum separation hyperplane.

13

SVM models were originally defined for the classification of linearly separable

classes of objects. Such an example is presented in Figure 2-1. For these two-dimensional

objects that belong to two classes (class +1 and class -1), it is easy to find a line that

separates them perfectly.

For any particular set of two-class objects, an SVM finds the unique hyperplane

having the maximum margin (denoted with δ in Figure 2-1). The hyperplane H1 defines

the border with class +1 objects, whereas the hyperplane H2 defines the border with class

-1 objects. Two objects from class +1 define the hyperplane H1, and three objects from

class -1 define the hyperplane H2. These objects, represented inside circles in Figure 2-1,

are called support vectors. A special characteristic of SVM is that the solution to a

classification problem is represented by the support vectors that determine the maximum

margin hyperplane.

Figure 2-2: Linear separation in feature space.

14

SVM can also be used to separate classes that cannot be separated with a linear

classifier (Figure 2-2, left). In such cases, the coordinates of the objects are mapped into a

feature space using nonlinear functions called feature functions ϕ. The feature space is a

high-dimensional space in which the two classes can be separated with a linear classifier

(Figure 2-2, right).

Figure 2-3: Support vector machines map the input space into a high-dimensional feature

space.

As presented in Figure 2-2 and 2-3, the nonlinear feature function ϕ combines the

input space (the original coordinates of the objects) into the feature space, which can

even have an infinite dimension. Because the feature space is high dimensional, it is not

practical to directly use feature functions ϕ when computing the classification hyperplane.

Instead, the nonlinear mapping induced by the feature functions is computed with special

nonlinear functions called kernels. Kernels have the advantage of operating in the input

15

space, where the solution of the classification problem is a weighted sum of kernel

functions evaluated at the support vectors.

To illustrate the SVM capability of training nonlinear classifiers, consider the

patterns from Table 2.1. This is a synthetic dataset of two-dimensional patterns, designed

to investigate the properties of the SVM classification algorithm. All figures from this

chapter presenting SVM models for various datasets were prepared with a slightly

modified version of Gunn’s MATLAB toolbox. In all figures, class +1 patterns are

represented by +, whereas class -1 patterns are represented by black dots. The SVM

hyperplane is drawn with a continuous line, whereas the margins of the SVM hyperplane

are represented by dotted lines. Support vectors from the class +1 are represented as +

inside a circle, whereas support vectors from the class -1 are represented as a black dot

inside a circle.

Partitioning of the dataset from Table 2.1 with a linear kernel is shown in Figure

2-4a. It is obvious that a linear function is not adequate for this dataset because the

classifier is not able to discriminate the two types of patterns; all patterns are support

vectors. A perfect separation of the two classes can be achieved with a degree 2

polynomial kernel (Figure 2-4b).

16

Table 2.1:

Linearly Non-separable Patterns Used for the SVM Classification Models in Figure 2-4
and 2-5.

Pattern x1 x2 Class

1 2 4.5 1

2 2.5 2.9 1

3 3 1.5 1

4 3.6 0.5 1

5 4.2 2 1

6 3.9 4 1

7 5 1 1

8 0.6 1 -1

9 1 4.2 -1

10 1.5 2.5 -1

11 1.75 0.6 -1

12 3 5.6 -1

13 4.5 5 -1

14 5 4 -1

15 5.5 2 -1

This SVM model has six support vectors, namely, three from class +1 and three

from class -1. These six patterns define the SVM model and can be used to predict the

class membership for new patterns. The four patterns from class +1 situated in the space

region bordered by the +1 margin and the five patterns from class -1 situated in the space

region delimited by the -1 margin are not important in defining the SVM model, and they

can be eliminated from the training set without changing the SVM solution.

17

Figure 2-4: SVM classification models for the dataset from Table 2.1.

In this example, the use of nonlinear kernels provides the SVM with the ability to

model complicated separation hyperplanes. However, because there is no theoretical tool

to predict which kernel will give the best results for a given dataset, experimenting with

different kernels is the only way to identify the best function. An alternative solution to

discriminate the patterns from Table 2.1 is offered by a degree 3 polynomial kernel

(Figure 2-5a) that has seven support vectors, namely, three from class +1 and four from

class -1. The separation hyperplane becomes even more convoluted when a degree 10

polynomial kernel is used (Figure 2-5b). It is clear that this SVM model, with 10 support

vectors (4 from class +1 and 6 from class -1), is not an optimal model for the dataset from

Table 2.1.

18

Figure 2-5: SVM classification models obtained with the polynomial kernel for the
dataset from Table 2.1: (a) polynomial of degree 3; (b) polynomial of degree 10.

2.3 Modern Field Programmable Gate Array Devices

The Field Programmable Gate Array (FPGA) is a semiconductor device that can

be programmed after manufacturing. Instead of being restricted to any predetermined

hardware function, an FPGA allows you to program product features and functions, adapt

to new standards, and reconfigure hardware for specific applications even after the

product has been installed in the field, hence the name "field-programmable". FPGA can

be used to implement any logical function that an application-specific integrated circuit

(ASIC) could perform, but the ability to update the functionality after shipping offers

advantages for many applications [34].

Unlike previous generation FPGAs using I/Os with programmable logic and

interconnects, today's FPGAs consist of various mixes of configurable embedded SRAM,

19

high-speed transceivers, high-speed I/Os, logic blocks, and routing. Specifically, an

FPGA contains programmable logic components called Logic Elements (LEs) and a

hierarchy of reconfigurable interconnects that allow the LEs to be physically connected.

You can configure LEs to perform either complex combinational functions or merely

simple logic gates, like AND and XOR. In most FPGAs, the logic blocks also include

memory elements, which may be simple flipflops or more complete blocks of memory

[35].

As FPGAs continue to evolve, the devices have become more integrated. Hard

intellectual property blocks built into the FPGA fabric provide rich functions, while also

lowering power and cost and freeing up logic resources for product differentiation.

Newer FPGA families are being developed with hard embedded processors, transforming

the devices into systems on a chip (SoC) [36].

Compared to ASICs or ASSPs, FPGAs offer many design advantages, including:

1) 1.Performance—Taking advantage of hardware parallelism, FPGAs exceed

the computing power of Digital Signal Processors (DSPs) by breaking the

paradigm of sequential execution and accomplishing more per clock cycle.

BDTI, a noted analyst and benchmarking firm, released benchmarks showing

how FPGAs can deliver many times the processing power per dollar of a DSP

20

solution in some applications. Controlling inputs and outputs (I/O) at the

hardware level also provides faster response times and specialized

functionality in order to closely match application requirements.

2) Time to market—FPGA technology offers both flexibility and rapid

prototyping capabilities in the face of increased time-to-market concerns. You

can test an idea or concept and verify it in hardware without going through the

long fabrication process of custom ASIC design. You can then implement

incremental changes and iterate on an FPGA design within hours, instead of

weeks. Commercial off-the-shelf (COTS) hardware is also available with

different types of I/O already connected to a user-programmable FPGA chip.

The growing availability of high-level software tools decreases the learning

curve with layers of abstraction and often offers valuable IP cores (prebuilt

functions) for advanced control and signal processing.

3) Cost—The Nonrecurring Engineering (NRE) expense of custom ASIC design

far exceeds that of FPGA-based hardware solutions. The large initial

investment in ASICs is easy to justify for OEMs shipping thousands of chips

per year, but many end–users need custom hardware functionality for the tens

to hundreds of systems in development. The very nature of programmable

21

silicon means you have no fabrication costs or long lead times for assembly.

Because system requirements often change over time, the cost of making

incremental changes to FPGA designs is negligible when compared to the

large expense of respinning an ASIC [37].

4) Reliability—While software tools are the programming environment, FPGA

circuitry is truly a “hard” implementation of program execution.

Processor-based systems often involve several layers of abstraction to help

schedule tasks and share resources among multiple processes. The driver layer

controls hardware resources and the OS manages memory and processor

bandwidth. For any given processor core, only one instruction can be executed

at a time, and processor-based systems are continually at risk of time-critical

tasks preempting one another. FPGAs, which do not use OSs, minimize

reliability concerns with truely parallel execution and deterministic hardware

dedicated to every task.

5) Long-term maintenance—As mentioned earlier, FPGA chips are

field-upgradable and do not require the time and expense involved with ASIC

redesign. For example, digital communication protocols, have specifications

that can change over time, and ASIC-based interfaces may cause maintenance

22

and forward-compatibility challenges. Furthermore, FPGA chips are

reconfigurable and can keep up with future modifications that might be

necessary. As a product or system matures, you can make functional

enhancements without spending time redesigning hardware or modifying the

board layout.

23

Chapter 3

Support Vector Machine

3.1 Outline

 At first, an introduction about support vector machine algorithm and its

applications are given. Then in the third subsection, details of linear SVM algorithm are

presented including mathematical expression and geometric interpretation. And

non-linear SVM algorithm with the Kernel Function is introduced. The whole chapter is a

mathematical understanding of the SVM algorithm, prepared for the FPGA

implementation in next chapter.

3.2 Algorithm Introduction

Support Vector Machines (SVM) [1] are considered one of the most powerful

classification tools due to their state-of-the-art Machine Learning algorithm based on the

Vapnik-Chervonenkis learning theory [38]. SVMs can be defined as supervised learning

24

models which construct a hyperplane or a set of hyperplanes in a high dimensional

feature space, and used for classification and regression analysis. The algorithm is trained

with a Machine Learning theory to maximize predictive accuracy using optimization

theory that implements a learning bias derived from statistical learning theory [39]. With

the strong regularization properties–which refer to the generalization of the model to new

data–SVM can be an efficient tool with which to solve classification problems [40]. A

classification task usually involves training and testing data which consist of some data

instances [41]. Each instance in the training set contains one target values and several

attributes. The goal of SVM is to produce a model which predicts target value of data

instances in the testing set, which are given only the attributes [42]. In SVMs, a dataset

consisting of pairs of input vectors and desired outputs is called the training dataset,

which is used to design and construct the decision function of the system and, hence, this

procedure is usually considered as an instance of supervised learning. Known labels help

indicate whether the system is performing in a right way or not. This information points

to a desired response, validating the accuracy of the system, or be used to help the system

to learn to act correctly [43]. During the training phase, the system identifies the Support

Vectors (SVs) [44], which are those data points that can best build a separation model for

the classes. Those vectors are then used to predict the class of any future data point

25

during the classification phase. The classification phase is a step which gives prediction

of unknown samples. According to the prediction model from the training phase, new

data can be classified based on different key features. During the classification phase,

training datasets can be updated with newly obtained data and work as an “online” model

to provide most accurate prediction.

3.3 Linear Support Vector Machine

Multi-class classifications can be break up into two-class classification units and

non-linear classification problem can be solved by replacing inner product calculation

with Kernel Functions.

Given 2 classes 1C and 2C , () () (){ }1 2 2 N, y , y , yN= 1T X X X is a

training dataset consisting of samples taken from 1C and 2C , where M
n RX ∈ ,

{ }1- ,1∈ny . If nX belongs to class 1C , then 1=ny ; If nX belongs to class 2C , then

1−=ny . Finding a real function ()Xg in MR , for any new sample with unknown class,

have

()
()

1

2

0,
0,

g C
g C

> ∈
 < ∈

X X
X X or

(){ }
(){ }

1

2

sgn 1,
sgn 1,

g C
g C

 = ∈
 = − ∈

X X
X X

 (1)

()Xg is the decision (classification) function. When ()Xg is linear function, it’s called

linear SVM, and when ()Xg is non-linear function, it’s called non-linear SVM.

26

As showed in Figure 3-1, the goal of linear SVM is to find a classification line

()Xg between 1C and 2C . It is known that under high-dimensional circumstance,

()Xg is a hyperplane. For linear separable classes 1C and 2C , more than one

hyperplanes can be applied to separate them accurately. Assuming that two classes can be

separated by hyperplane l , lying on each of l are two parallax hyperplanes 1l and 2l

with no learning sample points between them. The region bounded by them is called the

“margin”. Thus the objective of SVMs is to maximize the distance between the classes’

hyperplanes or, in other words, to maximize the “margin”. After some paragraphs, you

may have another heading, in which case you will use a subsection heading as below.

Figure 3-1: SVM separating hyperplane.

27

The expression of the separating hyperplane is:

() 0g b= ⋅ + =X W X (2)

Where ⋅ denotes an inner product. and W the normal vector to the hyperplane. The

parameter
b
W determines the offset of the hyperplane from the origin along the

normal vector W .

And the hyperplanes 1l and 2l can be described by the expression：

1

2

: 1
: 1

l b
l b

⋅ + =
⋅ + = −

W X
W X (3)

The distance between these two hyperplanes is 2 / W , then the problem to maximize the

“margin” become the problem to minimize W . In order to simplify the calculation,

substitute W with 21
2 W , then the problem can be expressed as a constrained

optimization problem:

()

2

,

1min 2
. . 1, 1, 2, ,

b

n ns t y b n N⋅ ⋅ + ≥ =
W

W

W X

 (4)

Using Lagrange multipliers solve the constrained optimization problem, we can get the

classification function:

() k

N

n
knnn

N

n
nnn yyyg +−= ∑∑

== 11
,, XXXXX αα (5)

Apply Wolfe’s dual form to solve (4) and transform the constrained optimization problem

to a concise form:

28

pi

yts

yy

i

p

i
ii

p

i
i

p

i

p

j
jijiji

i

 , ,2 ,1 ,0

0..

2
1max

1

11 1

=≥

=

+⋅−

∑

∑∑∑

=

== =

α

α

ααα
α

XX

 (6)

3.4 Non-linear Support Vector Machine

In many real-world classification problems, it is often not feasible to linearly

separate the data in the original space. SVMs can overcome this problem by mapping the

input space to a higher dimensional one where a linear separation may be feasible. Then

the non-linear SVM can be expressed as:

() ()

pi

yts

yy

i

p

i
ii

p

i
i

p

i

p

j
jijiji

i

 , ,2 ,1 ,0

0..

2
1max

1

11 1

=≥

=

+Φ⋅Φ−

∑

∑∑∑

=

== =

α

α

ααα
α

XX

 (7)

Where ()•Φ is a mapping function that transform non-linear problem to linear separable

problem. Actually, there is no necessity to find ()•Φ if we can calculate () ()ji XX Φ⋅Φ .

Introducing Kernel Function:

() () ()jijiK XXXX Φ⋅Φ=, (8)

By replacing dot product with kernel function. This allows the algorithm to fit the

maximum-margin hyperplane in a transformed feature space. It is a feasible way to

achieve non-linear SVM classification.

http://en.wikipedia.org/wiki/Dot_product�
http://en.wikipedia.org/wiki/Kernel_(integral_operator)�
http://en.wikipedia.org/wiki/Feature_space�

29

Common Kernel Functions:

Polynomial: () ()pK 1−⋅=⋅ YXYX (9)

Gaussian radial basis function: () σ

2YX

YX
−

−
=⋅ eK (10)

Hyperbolic tangent: () ()δλ −⋅=⋅ YXYX tanhK (11)

Out of many possible Kernel Functions, of special interest are those which satisfy

Mercer’s condition [45] and can be expressed as an inner product in the high-dimensional

space. By applying the kernel, there is no need to explicitly map the data to the

higher-dimensional space [46].

30

Chapter 4

FPGA Architecture Mapping

4.1 Outline

In this chapter, the detailed algorithm flow for the FPGA implementation is given

to build the classification system. Then computing modules used to construct the

classifiers are designed and tested. After that, the system FPGA architecture mapping is

presented and the data processing flow are introduced.

4.2 Linear SVM

The SVM classification algorithm can be expressed with several concepts and

equations, but to implement the algorithm, a feasible expression needs to be introduced in

the implementation.

For the training phase of the algorithm, the classification function needs to be

constructed. Using
[)

()
0, , 1, ,
max , ,

n n
L b

α ∗∈ ∞ = ∞
W A

, solve for Lagrange multiplier
nα in (7). Let:

31

 ()
1

, , 1 0

1, 2, ,

N

n k k n k
n k

L b y y

n N

αα =

∂ = − ⋅ + =
∂

=

∑W A X X

 (12)

Then we can get all the Lagrange multipliers Nααα , , , 21 , as a result, the normal

vector of the classification function ()g b= ⋅ +X W X is:

1

N

n n n
n

yα
=

=∑W X (13)

According to the geometrical significance of linear constrained convex

optimization problem, only constrains with 0>kα is effective. Within the SVM

classification problem, the training samples with 0>kα are support vectors, and they

are just on the two sides of the “margin”. All the support vectors have to meet constrain:

()1 0k ky b− ⋅ ⋅ + =W X (14)

Considering 1=ky , we can easily construct the classification function:

() k

N

n
knnn

N

n
nnn yyyg +−= ∑∑

== 11
,, XXXXX αα (15)

To solve SVM classification problem with PFGA, we need to design a compatible

expression of the algorithm rather than apply the equations and functions mentioned

above.

32

Table 4.1:

Linear SVM classification algorithm.

Algorithm 1: Linear SVM classifier
set matrix x=[Test sample];

matrix X=[Training samples];
matrix Y=[Class identity];
matrix B=Y';

for i=1 to n,
for j=1 to n,
multiply matrix X(i,:) by matrix X(j,:)'
set matrix A(i,j)=X(i,:)*X(j,:)';
end
end
for k=1 to n,
 for l=1 to n,
 do multiply matrix A(k,l) by matrix Y(l)

set matrix A(k,l)=A(k,l)*Y(l);
 end
 end
divide matrix A by matrix B
set matrix C=A\B;
for m=1 to n,
 multiply matrix C(m) by matrix Y(m) and matrix X(m,:)

set matrix Z(m,:)=C(m)*Y(m)*X(m,:);
 end
set matrix W=[sum of the first column of matrix Z, sum of the second column of matrix
Z];
calculate parameter b=Y(1)-W*X(1,:)';
build the classification function G=W*x'+b
classification result G = Ans

{ }
{ }

1

2

sgn 1,
sgn 1,

G C
G C

= ∈
 = − ∈

X
X

33

The rationale behind the design of the SVM classifier is the exploitation of the

parallel computational power offered by the FPGA resources, as well as the high memory

bandwidth offered by the FPGA internal memories in the most efficient way. As we can

see in Algorithm 1, the computation of g(X) involves matrix–vector operations, which

can be very complicated using FPGAs during actual calculating procedure. The problem

can be divided into smaller segments and parallel units can be used to implement the

segments. Therefore, the matrix calculating is performed by processing units, such as

adders and multipliers. These processing units perform parallel computations architecture

in the design in order to significantly speed up the decision function.

To construct the classifier, the computing modules are needed first. For the linear

SVM classifier, as we can see from Table 4.1, matrix calculation is the key issue.

Performing matrix calculating will cost a huge amount of computational resource and

significantly increase the computation time. Due to this issue, matrix calculations are

broken into computing units which can work in parallel in our design, modules like

adders and multipliers are designed and assembled to construct the classification system.

34

4.2.1 Computing Modules for Linear SVM

The computing modules designed for the system are 18 bit signed fixed-point

adders and multipliers with 1 sign bit 7 bit before decimal point 10 bit after. A fixed point

package is used to build the computing units. The fixed-point math packages are based on

the VHDL 1076.3 numeric_std package and use the signed and unsigned arithmetic from

within that package. This makes them highly efficient as the numeric_std package is well

supported by simulation and synthesis tools. The package defines two new types “ufixed”

which is unsigned fixed point, and “sfixed” which is signed fixed point [47].

Figure 4-1: Computing modules for linear SVM classifier.

By applying fixed-point package to designed computing units, the computational

accuracy is slightly dropped because of the restriction of the fixed bits. Any data with

accuracy higher than 1/210 can’t be process and expressed precisely. A single computing

VCC
a INPUT

VCC
b INPUT

resultOUTPUTa[7..-10]

b[7..-10]

result[8..-10]

adder01

inst

VCC
a[18..0] INPUT

VCC
b[18..0] INPUT

res[18..0]OUTPUTa[7..-10]

b[7..-10]

res[7..-10]

multiplier01

inst

35

error for the adder and multiplier can reach to 1/29 and D/29 separately (where D is one of

the input data). Training data sampled in a small area can cause an error which has

significant influence on the results. Although the chance of the error mentioned above

occurred is very low, by avoiding specific sampling area, this error can be controlled

blow 1.5%, integrated with all possibilities, this error can be ignored. Overall, the total

computational accuracy is satisfied while the computation resource consumption is

limited within an acceptable range.

Test Data

SV1

SV4

SV3

SV2

SV5

SV7

SV8

SVn

SV6

Alpha

×

×

×

×

×

×

×

×

×
+

+

+

+

+

+

+

+

+

+

+

×

b

+ >

Yαn

Yα8

Yα7

Yα6

Yα5

Yα4

Yα3

Yα1

Yα2

ADDER TREE

‘0’

class

 Figure 4-2: Linear SVM classifier architecture.

36

After appropriate mapping, the assembled computing units will run synergistically

to achieve the classification system. Every computing unit on the same hierarchy works

in parallel to boost the performance of the system.

The proposed FPGA architecture for the linear SVM classifier is shown in Figure

4-2. The SVs (training datasets) are loaded into the internal FPGA memories, while the

classification data points are streamed into the FPGA through the Test data units. The

multiply units construct the polynomials of the classification function with training

dataset and Lagrange multipliers, and all the multiply units works in parallel. The adder

tree in the architecture builds the classification function g(X) with the parameter b and

polynomials, which multiply units constructed. After unclassified data is streamed into

the FPGA board, classification function g(X) runs a classifying procedure with it based

on the training dataset. Results are then sent to the comparing unit and the class of the

unknown points can be recognized according to the comparison result. The top level

mapping code is showed in Table 4.2 This design uses integer and 18 bit signed fixed

point binary data to fulfill the calculation, with 1 sign bit 7 bit before decimal point, and

10 bit after.

Table 4.2:

Top-level Architecture Mapping of Linear SVM classification.

37

Architecture 1: Linear SVM classifier
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.fixed_pkg.all;
entity fixed_top is
port(sv11,sv12,sv21,sv22,sv31,sv32,
 sv41,sv42,sv51,sv52,sv61,sv62,
 sv71,sv72,sv81,sv82,sv91,sv92,
 sv101,sv102,ya1,ya2,ya3,ya4,ya5,
 ya6,ya7,ya8,ya9,ya10,test1,
 test2,b: in sfixed(7 downto -10);
 res: out sfixed(7 downto -10));
end fixed_top;
architecture structure of fixed_top is
component adder01 is
port(a, b: in sfixed(7 downto -10);
 res: out sfixed(7 downto -10));
end component;
component multiplier01 is
port(a, b: in sfixed(7 downto -10);
 res: out sfixed(7 downto -10));
end component;
signal a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,
 b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,
 c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,
 d1,d2,d3,d4,e1,e2,f1,f2,g1,g2,
 h1:sfixed(7 downto -10);
begin
u1:multiplier01 port map(sv11,ya1,a1);
u2:multiplier01 port map (sv21,ya2,a2);
u3:multiplier01 port map (sv31,ya3,a3);
u4:multiplier01 port map (sv41,ya4,a4);
u5:multiplier01 port map (sv51,ya5,a5);
u6:multiplier01 port map (sv61,ya6,a6);

38

u7:multiplier01 port map (sv71,ya7,a7);
u8:multiplier01 port map (sv81,ya8,a8);
u9:multiplier01 port map (sv91,ya9,a9);
u10:multiplier01 port map (sv101,ya10,a10);
u11:multiplier01 port map (ya1,sv12,b1);
u12:multiplier01 port map (ya2,sv22,b2);
u13:multiplier01 port map (ya3,sv32,b3);
u14:multiplier01 port map (ya4,sv42,b4);
u15:multiplier01 port map (ya5,sv52,b5);
u16:multiplier01 port map (ya6,sv62,b6);
u17:multiplier01 port map (ya7,sv72,b7);
u18:multiplier01 port map (ya8,sv82,b8);
u19:multiplier01 port map (ya9,sv92,b9);
u20:multiplier01 port map (ya10,sv102,b10);
u21:adder01 port map (a1,a2,c1);
u22:adder01 port map (b1,b2,c3);
u23:adder01 port map (a3,a4,c2);
u24:adder01 port map (b3,b4,c4);
u25:adder01 port map (a5,a6,c5);
u26:adder01 port map (b5,b6,c7);
u27:adder01 port map (a7,a8,c6);
u28:adder01 port map (b7,b8,c8);
u29:adder01 port map (a9,a10,c9);
u30:adder01 port map (b9,b10,c10);
u31:adder01 port map (c1,c2,d1);
u32:adder01 port map (c3,c4,d3);
u33:adder01 port map (c5,c6,d2);
u34:adder01 port map (c7,c8,d4);
u35:adder01 port map (d1,d2,e1);
u36:adder01 port map (d3,d4,e2);
u37:adder01 port map (e1,c9,f1);
u38:adder01 port map (e2,c10,f2);
u39:multiplier01 port map (f1,test1,g1);
u40:multiplier01 port map (f2,test2,g2);
u41:adder01 port map (g1,g2,h1);

39

u42:adder01 port map (h1,b,res);
end architecture structure ;

4.3 Non-linear SVM

Based on the comparison results of accuracy and performance of different Kernel

Functions, we applied Gaussian radial basis function: () σ

2YX

YX
−

−
=⋅ eK in our

non-linear SVM algorithm. The classification function constructed for non-linear SVM

is:

() () () k

N

n
knnn

N

n
nnn yKyKyg +−= ∑∑

== 11
,, XXXXX αα (16)

4.3.1 Computing Modules for Non-linear SVM

The computing modules designed for the non-linear system are adders, multiplier,

square calculators and exp calculators:

1) Adder01 is an 18bit integer adder to add up the results from square calculation

modules which shows the square of the difference between support vector and test point.

2) Adder02 is an 18bit 3 ports fixed-point adder; it adds up b and total of the

multipliers, and accuracy is 1/214.

40

3) Adder03 is an 18bit 11 ports fixed-point adder; it sums up the results of the

multipliers, and accuracy is 1/214.

4) Multiplier is an 18bit 3 ports fixed-point multiplier; it multiplies the results of

the exp calculator by the parameter yα.

4) Square is a square calculation module which shows the square of the difference

between support vector and test point.

5) Exp_cal is a table-driven calculation module which shows the calculation result

of exp(-x/0.72).

Table 4.3:

Exp calculator design code.

Architecture 2: Exp calculator
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.fixed_pkg.all;
entity exp_cal is
port (a: in integer range 0 to 262140;
 b: out sfixed(3 downto -14));
end exp_cal;
architecture behavior of exp_cal is
begin
 with a select
 b<= "000000000000000000" when 0 ,

41

 "000000111111110101" when 1 ,
 "000000001111111010" when 2 ,
 "000000000011111110" when 3 ,
 "000000000000111101" when 4 ,
 "000000000000001111" when 5 ,
 "000000000000000011" when 6 ,
 …
 "000000000000000000" when others;

end behavior;

The fixed point package is also used to build the computing units. By applying

fixed-point package to designed computing units, the computational accuracy can be

satisfied while the computation resource consumption is limited within an acceptable

range. After appropriate mapping, the assembled computing units will run synergistically

to achieve the classification system. Every computing unit on the same hierarchy works

in parallel to boost the performance efficiency of the system.

Table 4.4

Non-linear SVM classification algorithm.

Algorithm. 2: Non-linear SVM classifier
set matrix x=[Test sample];

matrix X=[Training samples];
matrix Y=[Class identity];
matrix B=Y';

for i=1 to n,
for j=1 to n,
calculate classification function parameters using matrix X and Gaussian radial basis
function and give the result to matrix

42

A(i,j)=exp(-((X(i,1)-X(j,1))^2+(X(i,2)-X(j,2))^2)/(2*(0.6)^2));
end
end
for k=1 to10,
 for l=1 to 10,
 multiply matrix A(k,l) by matrix Y(l) and give the result to matrix A(k,l);
 end
 end
dived matrix A by matrix B and give the result to matrix C;
for q=1 to 10,
calculate C(q)*Y(q)*exp(-((X(q,1)-X(1,1))^2+(X(q,2)-X(1,2))^2)/(2*(0.6)^2)) and
give the result to h(q);
end
calculate the sum of all the elements in matrix h and give the result to matrix H;
calculate parameter b=Y(1)-H;
for p=1 to 10,
calculate matrix
g(p)=C(p)*Y(p)*exp(-((X(p,1)-x(1))^2+(X(p,2)-x(2))^2)/(2*(0.6)^2));
end
calculate the sum of matrix g and give the result to matrix W;
build the classification function G=W+b

{ }
{ }

1

2

sgn 1,
sgn 1,

G C
G C

= ∈
 = − ∈

X
X

By replacing the dot product with the Kernel Function, we construct a non-linear

SVM classification algorithm. As we can see in Table 4.4–besides the matrix

calculation–the exponential function calculation is introduced. Neither fixed point

calculation nor floating point calculation for exponential function can be efficiently

implemented on FPGA. The advantage of parallel computing cannot be fully played out

for massive exp computing. In the proposed algorithm, we designed a table-driven

43

exponential function calculation module to fulfill the actual exp calculation. The

application of the table-driven exponential module saved a large amount of PFGA

computing resources, and the accuracy is reliable according to the simulation test. The

matrix calculating is also performed in parallel by processing units similar to linear

algorithm. The parameter σ in the Gaussian radial basis function is set to 0.6 in our

design.

SV1

SV4

SV3

SV2

SV5

SV7

SV8

SVn

SV6

Test Data

Alpha

square
difference

square
difference

square
difference

square
difference

square
difference

square
difference

square
difference

square
difference

square
difference

exp

exp

exp

exp

exp

exp

exp

exp

exp

×

+

×

×

×

×

×

×

×

×

Yαn

Yα8

Yα7

Yα6

Yα5

Yα4

Yα3

Yα1

Yα2

+ +

+

+

+

+

+

+

+

+

+

>

b

‘0’
ADDER TREE

class

Figure 4-3: Non-linear SVM classifier architecture.

The non-linear SVM classifier FPGA architecture is shown in Figure 4-3. Like

the linear design, training datasets are loaded in the internal FPGA memories through SV

44

units, and then together with test data, they are streamed into square difference units.

These units calculate the square difference of test points and training points. Next, results

are sent to exp units which perform exponential function calculation in order to achieve

the Kernel Function. These exp units work as table-driven modules. Not only they fulfill

the exponential function calculation but also the rest of the Gaussian radial basis function

including parameters. The top level mapping code is showed in Table 4.5

Table 4.5:

Top-level Architecture Mapping of Non-linear SVM classification.

Architecture 3: Non-linear SVM Classifier
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.fixed_pkg.all;
entity nonlinear_top is
port(sv11,sv12,sv21,sv22,sv31,sv32,
 sv41,sv42,sv51,sv52,sv61,sv62,
 sv71,sv72,sv81,sv82,sv91,sv92,
 sv101,sv102,x1,x2: in integer range 0 to 262140;
 ya1,ya2,ya3,ya4,ya5,ya6,ya7,
 ya8,ya9,ya10,b: in sfixed(3 downto -14);
 res: out sfixed(3 downto -14));
end nonlinear_top;
architecture structure of nonlinear_top is
component adder01 is
port(a, b: in integer range 0 to 262140;
 res: out integer range 0 to 262140);
end component;

45

component multiplier01 is
port(a, b: in sfixed(3 downto -14);
 res: out sfixed(3 downto -14));
end component;
component square is
port (a, b: in integer range 0 to 262140;
 res: out integer range 0 to 262140);
end component;
component exp_cal is
port (a: in integer range 0 to 262140;
 b: out sfixed(3 downto -14));
end component;
component adder02 is
port(a, b: in sfixed(3 downto -14);
 res: out sfixed(3 downto -14));
end component;
component adder03 is
port(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10: in sfixed(3 downto -14);
 res: out sfixed(3 downto -14));
end component;

signal a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,
 a11,a12,a13,a14,a15,a16,a17,a18,
 a19,a20,b1,b2,b3,b4,b5,b6,b7,b8,
 b9,b10: integer range 0 to 262140;
signal c1,c2,c3,c4,c5,c6,c7,c8,
 c9,c10,d1,d2,d3,d4,d5,d6,d7,d8,
 d9,d10,e1:sfixed(3 downto -14);
begin
u1:square port map(sv11,x1,a1);
u2:square port map(sv12,x2,a2);
u3:square port map(sv21,x1,a3);
u4:square port map(sv22,x2,a4);
u5:square port map(sv31,x1,a5);
u6:square port map(sv32,x2,a6);

46

u7:square port map(sv41,x1,a7);
u8:square port map(sv42,x2,a8);
u9:square port map(sv51,x1,a9);
u10:square port map(sv52,x2,a10);
u11:square port map(sv61,x1,a11);
u12:square port map(sv62,x2,a12);
u13:square port map(sv71,x1,a13);
u14:square port map(sv72,x2,a14);
u15:square port map(sv81,x1,a15);
u16:square port map(sv82,x2,a16);
u17:square port map(sv91,x1,a17);
u18:square port map(sv92,x2,a18);
u19:square port map(sv101,x1,a19);
u20:square port map(sv102,x2,a20);
u21:adder01 port map(a1,a2,b1);
u22:adder01 port map(a3,a4,b2);
u23:adder01 port map(a5,a6,b3);
u24:adder01 port map(a7,a8,b4);
u25:adder01 port map(a9,a10,b5);
u26:adder01 port map(a11,a12,b6);
u27:adder01 port map(a13,a14,b7);
u28:adder01 port map(a15,a16,b8);
u29:adder01 port map(a17,a18,b9);
u30:adder01 port map(a19,a20,b10);
u31:exp_cal port map(b1,c1);
u32:exp_cal port map(b2,c2);
u33:exp_cal port map(b3,c3);
u34:exp_cal port map(b4,c4);
u35:exp_cal port map(b5,c5);
u36:exp_cal port map(b6,c6);
u37:exp_cal port map(b7,c7);
u38:exp_cal port map(b8,c8);
u39:exp_cal port map(b9,c9);
u40:exp_cal port map(b10,c10);
u41:multiplier01 port map (c1,ya1,d1);

47

u42:multiplier01 port map (c2,ya2,d2);
u43:multiplier01 port map (c3,ya3,d3);
u44:multiplier01 port map (c4,ya4,d4);
u45:multiplier01 port map (c5,ya5,d5);
u46:multiplier01 port map (c6,ya6,d6);
u47:multiplier01 port map (c7,ya7,d7);
u48:multiplier01 port map (c8,ya8,d8);
u49:multiplier01 port map (c9,ya9,d9);
u50:multiplier01 port map (c10,ya10,d10);
u51:adder03 port map (d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,e1);
u52:adder02 port map (e1,b,res);
end architecture structure ;

The table-driven module saved a large amount of computing resources by

transferring massive floating calculations into a fast table look up mechanism. Due to the

mathematical properties of Gaussian radial basis function, the table can be restricted to an

acceptable size. The adder tree and multipliers construct the classification functions with

parameter b. Class identities of test data will be shown after the comparing unit. The

calculating units in the architecture use integer and 18 bit signed fixed point binary data

to fulfill the calculation, with 1 sign bit, 2 bit before the decimal point and 14 bit after the

decimal point.

48

Chapter 5

Implementation Results

5.1 Testing Environment Devices

The targeted device for the proposed architecture was the Altera’s Cylone II

EP2C70F896. The results can be easily expanded to other targeted devices by changing

the resource constraints of the design flow. The architecture is captured in VHDL and the

fixed-point modules are generated by the Altera tools and packages [48]. The targeted

operating frequency is between 200–250 MHz For the testing data, we create 4 random

sampling datasets for linear and non-linear SVM classifier separately.

5.2 Result Analysis of Linear Classifier

For linear SVM design, we build 4 different two-class linear datasets (dataset A,

B, C, D) to test the classifier. The size of each dataset is 400, 20 of which will be used for

SVM training, with a testing size of 50. According to the cumulative results of each

49

datasets, the test results given by the classification system is satisfying and the consumed

time meets our requirements for the design. The results accuracy, however, may be

slightly different based on the amount of training data and the density of the support

vectors.

Table 5.1：

Testing results of linear models.
 Accuracy Recognition rate
Model A 99.58% 100%
Model B 99.63% 98%
Model C 99.62% 100%
Model D 99.61% 100%

As we can see from Table 5.1, based on 4 different linear test models, the

calculation error is around 0.39% (e1), and the recognition rate is satisfactory. The

recognition rate is related to the training and test datasets we choose, the classification

results can vary with the selection of the testing points. Based on the algorithm proposed

above and the calculation error obtained from the amount of testing calculation, an

expected recognition error (E1) is inevitable. With the algorithm accuracy ∆1 (1/210), the

expected recognition error can be calculated as E1=2(e1+∆1) =0.975%. If applied on a

certain amount of test data, the actual recognition error will regress towards E1. Although

the time required for different classification models is unpredictable, it is far easier and

more reliable than a PC with a 2.27-GHz Intel i5 duo processer with 3 GB of RAM, for

50

the computing time is reduced by approximately 30%-50%. Figure 5-1 depicts the

detailed comparison in terms of time usage.

Figure 5-1：Linear SVM time consumption comparison.

5.3 Result Analysis of Non-linear Classifier

For the non-linear SVM classification design, 4 different 400-size nonlinear

datasets are built to test the non-linear classifier. The training size for each dataset is 20

and the testing size is 40. The cumulative results are also satisfactory. The calculation

error is around 0.041%, which is better than the linear design.

Table 5.2：

Testing results of non-linear models.
 Accuracy Recognition rate

Model A1 99.95% 97.5%
Model B1 99.96% 100%
Model C1 99.94% 100%
Model D1 99.99% 95%

0%

20%

40%

60%

80%

100%

120%

A B C D

PC

FPGA

51

From Table 5.2, high recognition rates are obtained for the test models and

datasets we chose. Like the linear classification, we obtain a 0.041% calculation error (e2),

which we get from the amount of testing calculations and the non-linear algorithm

accuracy (∆2). The expected recognition rate error for non-linear system (E2) can be

calculated as E2=2(e2+∆2) =0.832%. Due to the table-driven exp units we introduced into

our design, the time consumption for the non-linear SVM classification system

significantly dropped; compared to the 2.27-GHz Intel i5 duo processer with 3 GB of

RAM PC, the computing time is reduced by approximately 60%. Figure 5-2 is the

detailed time consumption.

Figure 5-2: Non-linear SVM time consumption comparison.

For the time consumption result showed in Figure 5-1 and Figure 5-2, compare to

a PC with a 2.27-GHz Intel i5 duo processer, we can see a marked time consumption

reduction with PFGA implementation. As a matter of fact, the operating frequency of

0%

20%

40%

60%

80%

100%

120%

A1 A2 A3 A4

PC

FPGA

52

targeted FPGA in this work is between 200–250 MHz, it’s about 20 times less than the

2.27-GHz Intel i5 duo processer. The actual time consumption reduction ratio is

significantly higher than what we can see from Figure 5-1 and Figure 5-2. Further test

can be accomplished by implement SVM on a FPGA board with a higher operating

frequency then a PC processor. As one of the latest version of advanced FPGAs, Altera’s

Stratix 10 devices are manufactured with the revolutionary Intel 14 nm 3D Tri-Gate

transistor technology, the targeted operating frequency can reach to over one gigahertz. If

we implement our SVM classification system on Altera’s Stratix 10 sevice for the future

research, with the strong computing power of industry’s first gigahertz FPGAs, the real

parallel computation advantage of PFGA will be revealed. Using expanded FPGA boards

to solve complicated real-world problem with massive computational work is also a

feasible way to test the time consumption preference of FPGA based SVM.

53

Chapter 6

Conclusion and Future work

6.1 Summary and Conclusions

This paper presents a FPGA-based SVM classification system which can be used

for fast data classification. The implementation results show that the designed FPGA

implementation of SVM classification system works adequately as a fast two-class

classification system with a high-accuracy and satisfying computing time. The

performance of the SVM classifier as a fast recognition classification system fulfills the

proposed requirements. For the further work, it is very promising that smart meters

embedded with SVM classifiers can provide fast intrusion detection in order to protect

the whole secure communication system, like a firewall.

6.2 Future Work

54

The SVM classification system is usually applied to cyber-security area. Most of

these applications are used as a fast intrusion detector by running a classification

procedure with the unknown data. Compare to the traditional SVM implementation, our

FPGA-based SVM classification system has broad application space, especially in cyber

infrastructure security field such as Smart Grid security. The adaptability and excellent

performance offered by FPGA-based SVM classifier provides a feasible solution for

Smart Grid security issues.

The core of the Smart Grid is the use of intelligent communication networks as

the platform that enables grid instrumentation, analysis, and control of utility operations,

from power generation to transmission and distribution. One of the most important

foundations of a Smart Grid is the interoperability that enables all of the required devices,

technologies, applications, and agents (energy producers, consumers, and operators) to

interact in the Smart Grid network. Although Smart Grid communications can assist in

transforming the energy industry–such as by playing a critical role in maintaining high

levels of reliability, performance, and manageability–they also introduce the need for

integrated security infrastructures [49]. It is inevitable that adding digital intelligence and

two-way functionality to the power grid will increase the risk of cyber attacks and

vulnerabilities like confidentiality, integrity, and availability (CIA) [50]. More endpoints

55

and interconnected networks mean more ways for security problems to get in and

proliferate [51]. Many of the technologies being deployed to support Smart Grid projects

such as smart meters, sensors, and advanced communications networks can increase the

vulnerability of the grid to attack. [52] In addition, a Smart Grid equipped with intelligent

electronic devices cannot survive if the communications infrastructure is insecure and

vulnerable to cyber attacks. Devising effective strategies for securing the computing and

communication networks that will be central to the performance and availability of the

envisioned electric power infrastructure and for protecting the privacy of Smart

Grid-related data is our top priority [51]. Due to this issue, a reliable two-way

communication solution with security mechanisms regarding to the cyber-physical

security of the Smart Grid [53] is extremely important.

For future work, a multilayer, two-way communication network using the

FPGA-based SVM classification system will be built in order to secure the privacy and

integrity of communications between parties in Smart Grid. The real-time communication

ability of the Smart Grid will enable utilities to optimize and modernize the power grid in

order to realize its full potential [54]. From Figure 6-1, we can see the whole network

combined with electricity suppliers, local maintenance facilities, smart buildings and

smart meters. At the top layer of the network, the electrical supplier will gather real-time

56

power usage report from smart meters, making the most efficiency power plan according

to all the data received. Smart meters [55] on the lowest layer play a key role in securing

the whole communication network. For consumers, smart meters protect users’ privacy

by hiding unnecessary personal information from the electricity supplier. In terms of

electricity suppliers, all irrelevant information except for the consumption report will be

blocked by smart meters just like a firewall to prevent malicious intrusions. This new

communication network will be constructed using various communication paths,

including fiber optic cable, twisted pair, broadband over power line, and wireless

technologies [43]. Smart meters are extremely attractive targets for malicious intrusions,

for their vulnerabilities can easily be monetized [52]. There are enormous amounts of

communications going through smart meters all the time, and checking the safety of

every communication will tremendously delay the whole communication system. In fact,

it is also impractical to apply complicated devices and mechanisms on smart meters in

order to run a security check with all the communications.

57

Figure 6-1: Diagram illustration for a multilayer two-way communication network.

To secure smart meters [56] on the lowest level, we then introduce a Support

Vector Machine classification system based on FPGA as the security mechanism running

on smart meters. The SVM classification system will be integrated into smart meters and

work as a firewall for the whole communication system, and after being trained with the

datasets that contain known attack types, SVM classification system will look through all

the communications with a quick inspection. Based on the data features, SVM classifier

will then detect attacks from normal communication. Regular communications are

allowed in the network without significant delay, while malicious intrusions and

58

unknown datasets are sent to the upper levels, such as local maintenance facilities and

electricity suppliers to be processed. The time consumption is acceptable. FPGA chips

running SVM classifier integrated into Smart Grid is also a feasible choice.

59

References

[1] V. Vapnik, The Nature of Statistical Learning Theory, Berlin, Germany:
Springer-Verlag, 1995.

[2] Andrew Moore, Tutorial of SVM, Available: http://www.cs.cmu.edu/~awm

[3] Burges C., “A tutorial on support vector machines for pattern recognition,” In Data
Mining and Knowledge Discovery, Kluwer Academic Publishers, Boston, 1998, (Volume
2).

[4] V. Vapnik, S. Golowich, and A. Smola. “Support vector method for function
approximation, regression estimation, and signal processing,” In M. Mozer, M. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing Systems 9, 281– 287,
Cambridge, MA, 1997. MIT Press.

[5] Markos Papadonikolakis, Christos-Savvas Bouganis, “Novel Cascade FPGA
Accelerator for Support Vector Machines Classification,” IEEE Transactions on Neural
Networks and Learning Systems, Vol. 23, No. 7, July 2012.

[6] S. Dey, M. Kedia, N. Agarwal, and A. Basu, “Embedded Support Vector Machine:
Architectural Enhancements and Evaluation,” Proc. 20th Int’l Conf. Very Large-Scale
Integration (VLSI) Design, pp. 685-690, 2007.

[7] R. Pedersen and M. Schoeberl, “An Embedded Support Vector Machine,” Proc.
Fourth Workshop Intelligent Solutions in Embedded Systems, pp. 1-11, 2006.

60

[8] A. Boni, F. Pianegiani, and D. Petri, “Low-Power and Low-Cost Implementation of
SVMs for Smart Sensors,” IEEE Trans. Instrumentation and Measurement, vol. 56, no. 1,
pp. 39-44, Feb. 2007.

[9] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast Support Vector Machine
Training and Classification on Graphics Processors,” Proc. 25th Int’l Conf. Machine
Learning, pp. 104-111, 2008.

[10] M. Papadonikolakis and C.-S. Bouganis, “A scalable FPGA architecture for
non-linear SVM training,” in Proc. Int. Conf. FPT Technol., Dec. 2008, pp. 337–340.

[11] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto, S.
Chakradhar, and H. Graf, “A massively parallel FPGA-based coprocessor for support
vector machines,” in Proc. 17th IEEE Symp. Field Programm. Custom Comput. Mach.,
Apr. 2009, pp. 115–122.

[12] D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector
machines: Theory, algorithm, and FPGA implementation,” IEEE Trans. Neural Network.,
vol. 14, no. 5, pp. 993–1009, Sep. 2003

[13] F. Khan, M. Arnold, and W. Pottenger, “Hardware-based support vector machine
classification in logarithmic number systems,” in Proc. IEEE Int. Symp. Circuits System.,
vol. 5. May 2005, pp. 5154–5157.

[14] K. Irick, M. DeBole, V. Narayanan, and A. Gayasen, “A hardware efficient
support vector machine architecture for FPGA,” in Proc. Annu. IEEE Symp.
Field-Programm. Custom Comput. Mach., Apr. 2008, pp. 304–305.

[15] M. Ruiz-Llata and M. Yèbenes-Calvino, “FPGA implementation of support vector
machines for 3D object identification,” in Proc. 19th Int. Conf. Artif. Neural Netw. I,
2009, pp. 467–474.

[16] C. Hsu, M.-K. Ku, and L.-Y. Liu, “Support vector machine FPGA implementation
for video shot boundary detection application,” in Proc. IEEE Int. SOC Conf., Sep. 2009,
pp. 239–242.

61

[17] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector machine
training and classification on graphics processors,” in Proc. 25th Int. Conf. Mach. Learn.,
2008, pp. 104–111.

[18] A. Carpenter. (2009). CUSVM: A Cuda Implementation of Support Vector
Classification and Regression [Online]. Available:
http://patternsonascreen.net/cuSVM.html

[19] NVidia. (2008). NVIDIA CUDA Compute Unified Device Architecture,
Programming Guide, Santa Clara, CA [Online]. Available: http://www.nvidia.co.uk/cuda.

[20] M. Papadonikolakis, C.-S. Bouganis, and G. Constantinides, “Performance
comparison of GPU and FPGA architectures for the SVM training problem,” in Proc. Int.
Conf. Field-Programm. Technol., 2009, pp. 388–391.

[21] S. Martin, “Training support vector machines using Gilbert’s algorithm,” in Proc.
5th IEEE Int. Conf. Data Mining, Washington, DC, Nov. 2005, pp. 306–313.

[22] E. G. Gilbert, “An iterative procedure for computing the minimum of a quadratic
form on a convex set,” SIAM J. Control, vol. 4, no. 1, pp. 61–80, 1966.

[23] V. Vapnik and A. Lerner, “Pattern Recognition Using Generalized Portrait Method
Automat,” Remote Contr., 24, 774–780 (1963)..

[24] V. Vapnik and A. Chervonenkis, Theory of Pattern Recognition, Nauka, Moscow,
Russia, 1974.

[25] V.Vapnik, Estimation of Dependencies Based on Empirical Data, Nauka, Moscow,
Russia, 1979.

[26] V. Vapnik, Statistical Learning Theory, Wiley-Interscience, New York, 1998.

[27] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn, 20, 273–297
(1995).

62

[28] B. Scho¨ lkopf, K. K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio, and
V. Vapnik, “Comparing Support Vector Machines with Gaussian Kernels to Radial Basis
Function Classifiers,” IEEE Trans. Signal Process., 45, 2758–2765 (1997).

[29] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support Vector Machines for
Histogram-based Image Classification.,” IEEE Trans. Neural Netw., 10, 1055–1064
(1999).

[30] H. Drucker, D. H. Wu, and V. N. Vapnik, “Support Vector Machines for Spam
Categorization ,” IEEE Trans. Neural Netw., 10, 1048–1054 (1999)..

[31] V. N. Vapnik, “An Overview of Statistical Learning Theory,” IEEE Trans. Neural
Netw., 10, 988–999 (1999).

[32] V. Vapnik and O. Chapelle, “Bounds on Error Expectation for Support Vector
Machines,” Neural Comput., 12, 2013–2036 (2000)..

[33] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for Cancer
Classification Using Support Vector Machines,” Mach. Learn., 46, 389–422 (2002).

[34] Wikipedia, Field-programmable gate array, [Online] Available:
https://en.wikipedia.org/wiki/Field-programmable_gate_array.

[35] Introduction to FPGA and Verilog Programming, [Online] Available:
http://coep.vlab.co.in/?sub=29&brch=88&sim=228&cnt=1

[36] Ian Kuon, Russell Tessier and Jonathan Rose “FPGA Architecture: Survey and
Challenges,” Foundations and Trends in Electronic Design Automation Vol. 2, No. 2
(2007) 135–253.

[37] Altera, FPGAs, [Online] Available: http://www.altera.com/products/fpga.html

[38] Christos Kyrkou, Theocharis Theocharides, “A parallel hardware architecture for
real-time object detection with support vector machines,” IEEE Transactions on
Computers, vol. 61, no.6, June 2012.

[39] G. Garg, Vijander Singh, Mudita Grover, Nidhi ,J.R.P Gupta. “Optimal Kernel

63

Learning for EEG based Sleep Scoring System,” International Journal of Biological &
Medical Research 2011; 2(4): 1220 – 1225.

[40] Vikramaditya Jakkula,Tutorial on Support Vector Machine (SVM) [Online]
Available : www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf.

[41] Duda R. and Hart P., Pattern Classification and Scene Analysis, Wiley, New
York 1973.

[42] Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge University Press,
Boston, 2000.

[43] Daintree Networks. (2007). what’s so good about mesh networks? [Online].
Available: http://www.daintree.net/downloads/whitepapers/mesh-networking.pdf.

[44] C.J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,”
Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[45] J. Mercer, “Functions of positive and negative type and their connection with the
theory of integral equations,” Phil. Trans. Royal Soc. London, vol. 209, nos. 441–458, pp.
415–446, 1909.

[46] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2001.

[47] David Bishop, “Fixed- and floating-point packages for VHDL 2005,” Eastman
Kodak Company, Rochester, NY.

[48] M. Langhammer. “Floating point datapath synthesis for fpgas,” In FPL’08, 2008.

[49] P. McDaniel and S. McLaughlin. “Security and Privacy Challenges in the Smart
Grid,” IEEE Security and Privacy, 2009, May. 7(3).

[50] C. Bennett, and D. Highfill, “Networking AMI Smart Meters,” Energy 2030
Conference, 2008. ENERGY 2008. IEEE, 17-18 Nov. 2008.

64

[51] NIST, NIST Framework and Roadmap for Smart Grid Interoperability Standards,
Release 2.0. [Online] Available: http://www.nist.gov/smartgrid/framework-022812.cfm.

[52] P. McDaniel, S. W. Smith, “Security and Privacy Challenges in the Smart Grid.”
[Online]. Available: http://www.patrickmcdaniel.org/pubs/sp-smartgrid09.pdf.

[53] DOE, The Smart Grid: An Introduction [Online]. Available:
http://energy.gov/oe/downloads/smart-grid-introduction-0.

[54] S. Keemink, B.Roos. (2008) Security analysis of Dutch smart metering systems,
[Online]. Available: http://staff.science.uva.nl/~delaat/sne-2007-2008/p33/report.pdf.

[55] F. Cleveland, “Cyber security issues for advanced metering infrastructure (AMI),”
2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of
Electrical Energy in the 21st Century, pp. 1–5, July 2008.

[56] WirelessMess, An Introduction to Smart Meters, [Online]. Available:
http://wirelessmess.org/introduction-to-smart-meters/

	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1
	Introduction
	1.1 Background and Motivation
	1.2 Related Work
	1.3 Project Objectives
	1.4 Synopsis of Thesis
	1.5 Outline of Thesis

	Chapter 2
	Literature Review
	2.1 Outline
	2.2 Support Vector Machine Concepts and Applications
	2.3 Modern Field Programmable Gate Array Devices

	Chapter 3
	Support Vector Machine
	3.1 Outline
	3.2 Algorithm Introduction
	3.3 Linear Support Vector Machine
	3.4 Non-linear Support Vector Machine

	Chapter 4
	FPGA Architecture Mapping
	4.1 Outline
	4.2 Linear SVM
	4.2.1 Computing Modules for Linear SVM
	4.3 Non-linear SVM
	4.3.1 Computing Modules for Non-linear SVM

	Chapter 5
	Implementation Results
	5.1 Testing Environment Devices
	5.2 Result Analysis of Linear Classifier

	Chapter 6
	Conclusion and Future work
	6.1 Summary and Conclusions
	6.2 Future Work

	References

