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Abstract— The capability to use a moving sensor to detect
moving objects and predict their future path enables bih
collision warning systems and autonomous navigation. This
paper describes a system that combines linear feature
extraction, tracking and a motion evaluator to accurately
estimate motion of vehicles and pedestrians with a lovate of
false motion reports. The tracker was used in a protgpe
collision warning system that was tested on two transibuses
during 7000 km of regular passenger service.
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I. INTRODUCTION
It is vital that any vehicle avoid collisions witbther

objects. To operate in real-world environments, Computer

autonomous vehicles must successfully avoid collisiotis wi _ N _ _ _

other moving objects (people, vehicles.) Conventignall Fig. 1: Collision Warning System Configuration

driven vehicles also collide far too often, and cwhs self-motion coordinate transform. Scanning laser
could be reduced by warning of imminent collisions. rangefinders such as the SICK LMS 200 (used in our

Collision avoidance and warning both reclUir%ystem) reliably detect objects, have good resolutimhaae
prediction of the future positions of moving objects.veéBi  gffordable.
the current position and motion, we can extrapolate that ynfortunately, the object shape appears to change as
motion into the future. To do this we must accuratelyjferent aspects of the object come into view, anid th
measure object position and motion, even when theosen@hange can easily be misinterpreted as motion.
itself is moving. The fundamental problem is that it is necessary to
We have built a tracker system that has been used in @bose some fixed reference point on the object inrdode
extensive on-road collision warning experiment [1][2][3ljetect change in position. If the reference poinbistruly
and that has also been tested on an off-road unmannggdq, then there is false apparent motion.
vehicle. The tracker detects moving objects, estimgati The severity of the shape change problem depends
their position and motion, while largely compensating foprimarily on the object size, the desired speed measateme
self-motion-induced changes in the scan. The trackgtcyracy and the time available for detection. If the
processes 75 scans per second when running on a 600 Miggarent center of the object is used as the referémeae,
embedded processor, and can fuse data from multigige to angular resolution limits, the reference cart siyif

scanners for 360° surround sensing. more than 1/2 the object size in a short time. sThi
happens when the long side of an object suddenly becomes
Il. CHALLENGES visible. The geometry of a severe case is illustrateBig.

Tracking of moving objects from a moving vehicle is & _If the max object size is 10m, and the detection tsne
challenging problem, demanding high sensor performanc®5 S€c, then we might infer a spurious velocity of up to 10
Ranging sensors are well suited to this problem bechese fm/sec. This far_ exceeds our desired threshold of 0.7 m/fsec
relative motion can be calculated by the derivativahef (& person walking.) We must do much better than this,

position and the absolute velocities are derived bynple ~ Since spurious velocities on fixed objects can easijsea
false collision warnings.
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objects in the presence of occlusion, but gives little There is a large literature on tracking techniques
implementation detail. Odometry is used to estimate setleveloped for long-range radar which can be applied to
motion, removing the kinematic effects of sensor orotiA  robotic applications [9]. However, the low resolutiand
Kalman filter is used for velocity estimation. Trackse long range means that all objects can be treated as poi
classified as car, pedestrian, etc., using apparent shape bke. Reference [10] adapts the idea of a Joint Prdbktbil
behaviour over time. Data Association Filter (JPDAF) to use a particléefil
Reference [6] shares some of the authors of [4], aragbproach. In comparison to a Kalman filter, at tb&t of

describes a similar system with additional details. e Thmore computation, a particle filter can accurately mdael
Kalman filter estimates motion based on the positionon-elliptical probability distributions that arise whe
change of an estimated track center-point. The objembjects move long distances in the presence of heading
classification is used to fit a class-specific pricctaagular uncertainty. The warning component of our collision
model to the points. Although not explained, this appeavgarning system does use a particle filter, since it must
to be an approach to reducing shape-change motipredict object positions seconds into the future using only
artifacts. The success of this would depend on thlee current motion estimate. However, at 75 scarwise
correctness of the classification and the prior modghch objects typically move by much less than their s&ethe
object class also has distinct fixed Kalman filter paeters. effects of shape change is much larger the accumulated
A multi-hypothesis approach is used to mitigate the effect motion uncertainty from the dynamic model.
classification error.

Reference [5] generalizes Simultaneous Localizatiah an IV. LINEAR FEATURE TRACKING
Mapping (SLAM) to allow detection of moving objects,
relying primarily on the scanner itself to measure- sel
motion. An extended Kalman filter with a single consta
velocity model is used in a multi-hypothesis tracker.e Th
emphasis appears to be on mapping in the presence
moving objects, rather than the real-time detectidn o
moving objects when no map is needed.

Building a map (or occupancy grid) appears to offer an
accurate way to detect moving objects: if a locatosden
to be newly occupied something must have moved into that
location. One problem is that maintaining an occupanc
grid is expensive; reference [7]addresses this problem with ) i -
a sparse representation of open space. Yet the grichdbes T_hom:gh this approach is named “Linear fegture
solve the shape-change problem because we cannot ruletfﬁl‘fkmg , the exact nature of the stable features & no

the possibility that the object was there all alongwe did cruqial. The true ur_1ifyi_ng them_e is rejection of false
not see it due to occlusion or range limits. The eftéc motion, and success lies in attention to many detailse

range limits is particularly intractable because it dégesn (Tam steps in tracIK<|n|g aref:_lsegmentztlon, fkeatllj_[je exdract
the unknown target reflectivity. ata association, Kalman filtering and track validation.

Several papers describe indoor people tracking systems V. SEGMENTATION
that use laser scanners. Shape-change effects ade mil _ divid h d . .
when tracking people because people are compact compar_ed_segmgntat'onD_ vides the zczlal;ner ata F’°'r§' Into
to typical sensing ranges and lack the flat surfaces thq:lft'nCt r? Je?tfl' _r|1§tancef_t (rjes:j_o segn;entﬁtl?dnt ﬂi.
cause abrupt apparent motion when viewed from differeRP!NtS that fall within a fixed distance threshold. ~ghi
directions. Although a moving scanner will see shap%mple top-dov_vn segmentation scheme _works quite well,
change in large objects such as desks, large objects ga was used in the experlmen_tal evall_Jatlon_beIow. .
simply be discarded because they are clearly not people. Segmentation also determmes which object bom_mdarles

In [8] motion is measured by registering old and nefre appare_ntly due to occlusion by a_foreground o_bject, and
scans using chamfer fitting. A constant velocity, stant thus SPUrIous. Alter se_gmentatlo_n, the pomts_ are
angular velocity Kalman filter is used. Because thersea transformed into a non-moving coordinate system using a
is placed above the leg level, a rigid body model #BOS€ estimate derived from odometry and inertial yae: rat

satisfactory. Although this paper does not use moving
scanners, it is noteworthy because of its attempt to
guantitatively evaluate performance without ground truth by . _ . S
measuring the position noise of stationary tracks, th Stable feature extraction is crucial to minimizing

measurement residue of moving tracks, and the occurremn pe-che:jnge arr']ufacts. Weffltha rectanglular randdhr;) t
of false positive and false negative errors in movibga PCINtS: and use the corners of the rectangle as featll
detection. scanner can see at most two sides of the rectarghees

To handle the shape change problem, we have
developed a system that tracks linear features (linds an
corners) in the scan data. The main advantages ®f thi
fecz)afture tracking are:

» Corners are stable features not affected by shape
change,

« It is efficient because the amount of data is greatly
reduced by condensing it to a few features, and

* A good rectangle corner fit is evidence that an obgect
a vehicle, not a bush or ground return.

VI. FEATURE EXTRACTION
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Fig. 2: Effect of 1° angular resolution with shallincidence angle (scale in meters.)

trial fit both a line and a right-angle corner, onhoosing overlap may not create a unique association. In tse,c
the corner fit when it is significantly better thée line fit.  we choose among the overlapping options according to the

To increase robustness of the fit against violatiohs closeness of potentially corresponding features. The
the rectangle model (such as rounded corners ankbseness between a track and a segment is the sum of
indentations) we use a robust fitting algorithm (Fig. Bhe 1/distance for the closest potential correspondencaalf e
basic algorithm is a standard least-squares fit withesorfeature. Unlike a direct distance measure, this empégsiz
points discarded and point variable point weighting. the best matching features.

After a trial fit, the worst fitting 20% of the pointse One important case of ambiguous overlap is when
discarded. We also de-weight points in areas that atracks split or merge. Though actual splitting and merging
densely sampled (due to being closer to the scannelig TtHoes happen, apparent split/merge is more often due to
reduces the tendency of deviations in the shape of meairgconsistent segmentation. Whatever the causeugeful
parts of the object to overwhelm sparser points onemoto know if track creation or destruction is due to
distant parts of the object which would otherwise haeee split/merge, so we annotate tracks accordingly.
leverage on the line orientation.

All objects are given a linear fit, no matter how poo B. Track Creation and Death

) . ) If we fail to associate a measurement segment wigh an
Generally, we require a reasonably good linear fitrefae existing track, and the segment has at least three points

will consider an object to be moving, but we make all on we create a new track

exception for small objects (such as people.) Requiring a If we fail to associate an existing track with any

ggjc;itlsmsiiL ];ts T)ilsr?ego reject apparent motion on OilJttemeasurement segment, then we may delete the traclksTrac

are deleted if they have not been associated for Odhdec
VII. DATA ASSOCIATION (or 4 seconds if the track is totally occluded by a faregd

In order for the tracker to measure the change in Dbje%b]eCt')

position over time, we must determine which new segme@t Multiple Scanners

corresponds to which existing track. This is done piiignar The tracker can process input from multiple scanners,
by detecting spatial overlap between the predicted traelowing 360° coverage of the vehicle surroundings. This is
rectangle model and the segment rectangle. done by segmenting and associating each individual scan
. separately. If the same object appears in more timan

A. Ambiguous Overlap scanner, it is the responsibility of data association

When objects split, merge or are just close togethea{Ssociate the same track with both measurements.

+ Scan dcac;;nzgifrl:ts + VIII. DYNAMIC MODEL AND KALMAN FILTER

Once we know the correspondence between an existing
track and a new measurement segment, we use a Kalman
filter to estimate the position, velocity, acceleratand turn
rate of the object.

The dynamic model used is constant linear acceleration,
constant turn rate. Fixed process noise is chosen éatiyév
best trade-off between smoothing and response to
manuvering. The turn rate is estimated as the derivafive
the heading. Normally the linear feature orientation
used as the heading. If a segment has a poor linesaridit
rounded enough that it is not clear whether to fit txseaor
corner, then we use the direction of the linear vgloc

Fig. 3: Robust corner matching with outliers angina corner



A. Measurement Noise the position approximately correct, but allow fusion to
We have found that detailed modeling of the featureontinue largely ignoring the feature.
osition uncertainty is crucial for minimizing the ve .
pos : y S 9 ty D. Data Fusion
estimation error caused by motion-induced shape change.
) I Because we have up to three features for each track, we
The two dominant sources of feature position . . . )
: ] O ) .. are faced with the question of how to combine the onoti
uncertainty are: angular resolution limits and instibih . .
. . estimates from the separate features into one tratiormo
segmentation or feature extraction. We address these tw . : )
. L : . estimate. The Kalman filter provides a natural fraoréw
classes of uncertainty by combining two noise estmat

gatic andadaptive. for data fusion. Each feature is an independent

We decompose the feature position uncertainty intrgeasurement of the position. Because each featurdshas

longitudinal (along the line) anthteral (normal to the ling) own error model, the Kalman filter weights the cdmition

uncertainties. When measured with the SICK laser :mannOf each feature approprlately: . .
Each feature has an independent position, but its

(at the ranges of interest), angular resolution cantieéo incremental motion is treated as an independent

more position ungerta_linty than range resolution or taNg easurement of the track’s fused incremental motione T
noise, so the longitudinal uncertainty normally excebéds tKaIman gain for each feature measurement is computed

lateral uncertainty (Fig. 2). using the feature's position noise and the track state
B. Satic Measurement Noise covariance. The position part of the track state ghan

The static noise is computed from the data in a singépplied to both the feature position and the track
scan, and accounts for geometric effects due to resolutimcremental motion.
limits, incidence angle, and also for target dependent The effect of fusing the feature incremental motion is
properties such as line fit quality and missing returns. that we do not use any single fixed reference point en th

The RMS line fit error is used as the feature lateralbject. Due to the changing perspective of the scamuoer,
position noise and the longitudinal noise is a condiards stable single reference point exists because no point is
the max inter-point spacing along the line of the 7 pointways visible.  Attempting to use the object ceraera
nearest the feature. reference point proves particularly futile because timtece

At long ranges and shallow incidence angles, the intetan rarely be directly measured.
point spacing can exceed the segmentation threshold, .
causing the line to end at that point even though thexbbj 'l:d Information Increment Test
extends on; the longitudinal uncertainty is then effetfiv
infinite. In this case, the line end should not kerpreted
as a stable corner feature.

Based on the measurement noise, each measurement
contributes a certain amount of information to theedus
track estimate. If the information increment is Jalen
the influence on the state is small — in this cabe, t
Such features are annotated vague, and processed : : . . .

. o ! tracker is not actually tracking anything, just speculating
with a modified Kalman filter update that zeros th%

Lo . : .based on past data.
longitudinal component of the position innovation. This T

o . A common problem situation is that a track may change
same mechanism is used to suppress the apparent motlopoof

. : a line with both endgague (i.e. due to resolution limits
endpoints caused by the moving sensor shadows Oof : . .

. . or occlusion, both ends effectively extend to the foorig
occluding foreground objects.

In this case, the track is localized in one directaty, and
C. Adaptive Measurement Noise the longitudinal velocity is unmeasured, which can lead to
Measurement noise is adaptive, de-weighting featuresacceptable erroneous velocities.
that have unstable positions. After a feature has bee The information increment is computed from the ratio
associated 15 times, the filtered covariance of theiposi of the covariance eigenvalues before and after the uptfate
measurement residue (the difference between predictibn agither eigenvalue fails to decrease significantly, tverfail
measurement) is used as the measurement error. Tice sthe association. Tracks that are consistently nebciated
noise covariance times 0.3 is added to the adaptive twisere eventually deleted; see “Track Creation and Death”.
insure a lower bound. E. Dvnamic Limits
If the mean of the residue is not nearly zero, veenat - DY L .
. . Tracker performance is improved in the presence of
tracking properly. When the residue mean exceeds 10 cm,,. : : . )
. outlier measurements by either discarding physically
we reset the feature position from the current measmem. : N . _
. impossible measurements or by limiting the innovatma
and clear the residue mean to zero. The need for th|ﬁ. : ;
. : . . physically plausible value.
resetting comes from a sort of instability that thase- . .
. . If the change in track state due to a measurement is too
adaptive tracker exhibits. If a feature does not track

. . _.incredible, then we discard the measurement. Tlderig
accurately (perhaps due to data fusion correctly rejectin N
) . ; en the Mahalanobis distance of the state changedxce
spurious motion), then the measurement covariancédor t

feature becomes inflated, and this further degrades tﬁ'e Before discarding the measurement, we see if wgesn

tracking performance for that feature. By resetting th reasonable association by resetting a subset ahges.

position when the residue mean becomes too large we keep



We reset any features that contribute a state chaithe w Because the history-based validation is fairly
Mahalanobis > 4. computationally expensive (about 250 microseconds per
The time rate of changel/(lt) of velocity, acceleration track), we only do validation on tracks that have a
and angular velocity are limited to physically plausiblesignificant estimated velocity.
valugs. T_hls preyer_lts unreasonable jumps in position fro X EXPERIMENTAL RESULTS
causing big velocity jumps.
One of the barriers to progress in tracking is the
difficulty of quantitative performance evaluation. Thare
While robust feature extraction, data fusion, noisewo main problems:

modeling and dynamic limits are all important for -« It is very hard to get ground truth for complex real-

IX. TRACK VALIDATION

minimizing velocity errors, there remains an unacdgpta world environments (especially moving objects), and
high level of false velocities (see Fig. 5.) We apply a « Tracking algorithms and tuning parameters embody
separatérack validation procedure that determines: assumptions about the world; a tracker that works well
* Whether recent observations are consistent witldrigi  for one use may work badly for another.
body motion under the dynamic model, and We have used three different evaluation approaches:

* Whether there is sufficient evidence to conclude th,E Velocity Estimation Error
object is definitely moving. ' Y

- . . To evaluate velocity estimation error without requiring
We have found that rejecting tracks with inconsistent o ;
. : . . __instrumented moving targets, we have evaluated the tracker
ambiguous motion greatly reduces false motion detection in

. I]%erformance on real urban scanner data where only the
the presence of ground returns (scan plane strikes thé . . .
scanner was in motion.  Since the sensor actoedhsures

ground_), missing  returns  (poor reflectivity) and featur%osmon of objects relative to the scanner, thaultes
extraction errors. . . L .
- equivalent to the objects being in motion.
The validation procedure can be understood as a batc¢ . '
. To characterize the performance of the Kalman filter
smoother. Given the last 35 segments (measurements)

associated with each track, we check how well thektrac y(W't.hOUt track validation), F|g. 5 _shows the d'smt'.bn
f velocity error normal to the direction of scanmeotion

path matches up with the measurements if we project t Fe most critical component for collision predictipn We

current position backward in time (Fig. 4). If our dynami ap see that though there is a strong central tenditic

model adequately describes the motion and the estima% :
arameters are close, then the paths should agree well. aussian characteo (0.13 meters/second), there are also
P ' fat tails and extreme outliers. We developed the track

the match is poor, then there is either un-modeled . . . .
disturbance (rapid change in acceleration or turn rate), validation test to reject these velocity outliers.
there is a tracking failure due to problems in feature
extraction, etc. B. Track Validation Performance

We compare this matching error to the matching error TO evaluate the performance of track validation and the
of the hypothesis that we are not moving at all. rgck is mOVing/non-mOVing track classification, we tested it at
classified as moving if the matching error of the mgvi Several sensitivity levels. This both evaluatesséesitivity
hypothesis is at least 4 times less than that offiteei Of the parameter settings and also provides a way to
hypothesis. If the track is determined to be movingnth evaluate classification errors without manually exanani

we apply a correction to the linear velocity whicmimizes ~€very track. First we ran the classifier at a highstivity
the history matching error. on 60 seconds of busy urban data (moving vehicles and

We insure that the history contains sufficienfedestrians as well as lots of clutter.) This idesdifa large
information to determine motion by requiring bothbut still manageable number of possibly moving objects.
eigenvalues of the sum of the position informationalbof We then manually classified the objects by visual

the features in the history to exceed a thresho'd_ examination Of Video I’ecords and the raw |aser da'[hls T
same data was then run at successively lower sehsitivi
55 . . . . . levels.
' In Fig. 6 we see that only at the lowest sensitilgtsel
2r do we misidentify as fixed tracks that were previously
15t identified as moving. Setting 1 corresponds to complete
disabling of track validation, with a simple velocity
Ly threshold as the moving test. The large decreasdsilyfa
05 | Track —— 1 moving tracks from setting 1 compared to 2 shows that even
. .  Measurement - at the highest sensitivity a large number of falseciges
0 1 5 3 4 5 6 7 are being rejected.

Fig. 4: Back-prediction of track history
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C. Collision Warning System Performance
Compelling indirect evidence for tracking performance
comes from the performance of the collision warnin
system based on it. The warning system is very then$d
errors in velocity estimation because these errives cause
a collision to be predicted. |If large velocity erraee
common, an unacceptable system false alarm rategesult
The warning system was tested on two transit buses
operating in two different cities over 6989 km of normaf!
passenger service, with 263 hours of system operatidre T
tracker identified 334,460 tracks, 4,527 of which were
classified as moving. (2]
To evaluate the accuracy of warnings, we selected a
sample of 5 hours of data with warning rates similah&
whole dataset and classified the 302 warnings as conrectl3d
incorrect based on visual examination of video and srann
data. [4]
Depending on likelihood of collision, the system gives
two kinds of warnings: yellow and red. There were 3(Efa|§5]
red warnings (less than 5 per hour.) The causes &dlde
red warnings were: tracker velocity error (70%), ground
returns (15%), other (5%). Velocity error caused ongefal 5
red warning for every 11,000 total tracks, and one per evérgl
150 moving tracks.

Collision warning is a very demanding applicatior’]
because true dangerous situations are rare. Ther&tvere
correct red warnings, corresponding to a false alarmafat
60%. The warning system performance would benefit froffl
further reductions in tracker velocity error. If thelocity-
related false alarms could be reduced below one in 510Qp
tracks, then ground returns would become the dominant
error source.

X|. CONCLUSION

Reliable tracking of moving objects from a moving
vehicle is challenging, primarily because apparent shape
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Fig. 6: Track validation performance

motion. By extracting stable linear features, charéing
feature position uncertainty and validating the conststen
of recent observations with the estimated motion,haee
%eveloped a tracker that has acceptable performance for
collision warning, and that is efficient enough to opeilia
real time on embedded processors.
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change due to changing perspective can be interpreted as



