
 
 

 

  

Abstract— The capability to use a moving sensor to detect 
moving objects and predict their future path enables both 
collision warning systems and autonomous navigation.  This 
paper describes a system that combines linear feature 
extraction, tracking and a motion evaluator to accurately 
estimate motion of vehicles and pedestrians with a low rate of 
false motion reports.  The tracker was used in a prototype 
collision warning system that was tested on two transit buses 
during 7000 km of regular passenger service. 

I. INTRODUCTION 

 It is vital that any vehicle avoid collisions with other 
objects.  To operate in real-world environments, 
autonomous vehicles must successfully avoid collisions with 
other moving objects (people, vehicles.) Conventionally 
driven vehicles also collide far too often, and collisions 
could be reduced by warning of imminent collisions. 

Collision avoidance and warning both require 
prediction of the future positions of moving objects.  Given 
the current position and motion, we can extrapolate that 
motion into the future.  To do this we must accurately 
measure object position and motion, even when the sensor 
itself is moving. 

We have built a tracker system that has been used in an 
extensive on-road collision warning experiment [1][2][3] 
and that has also been tested on an off-road unmanned 
vehicle.  The tracker detects moving objects, estimating 
their position and motion, while largely compensating for 
self-motion-induced changes in the scan.  The tracker 
processes 75 scans per second when running on a 600 MHz 
embedded processor, and can fuse data from multiple 
scanners for 360° surround sensing. 

 
II.  CHALLENGES 

Tracking of moving objects from a moving vehicle is a 
challenging problem, demanding high sensor performance.   
Ranging sensors are well suited to this problem because the 
relative motion can be calculated by the derivative of the 
position and the absolute velocities are derived by a simple 
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self-motion coordinate transform.  Scanning laser 
rangefinders such as the SICK LMS 200 (used in our 
system) reliably detect objects, have good resolution and are 
affordable. 

Unfortunately, the object shape appears to change as 
different aspects of the object come into view, and this 
change can easily be misinterpreted as motion. 

The fundamental problem is that it is necessary to 
choose some fixed reference point on the object in order to 
detect change in position.  If the reference point is not truly 
fixed, then there is false apparent motion. 

The severity of the shape change problem depends 
primarily on the object size, the desired speed measurement 
accuracy and the time available for detection. If the 
apparent center of the object is used as the reference, then 
due to angular resolution limits, the reference can shift by 
more than 1/2 the object size   in a short time.  This 
happens when the long side of an object suddenly becomes 
visible. The geometry of a severe case is illustrated in Fig. 
2.  If the max object size is 10m, and the detection time is 
0.5 sec, then we might infer a spurious velocity of up to 10 
m/sec.  This far exceeds our desired threshold of 0.7 m/sec 
(a person walking.)  We must do much better than this, 
since spurious velocities on fixed objects can easily cause 
false collision warnings. 

 
III.  RELATED WORK 

 Some work has been done on vehicular applications of 
laser scanners.  The IBEO company has developed both 
scanner hardware and proprietary software for a prototype 
vehicular safety system.  Reference [4] describes capabilities 
for pedestrian classification and correctly segmenting 
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Fig. 1: Collision Warning System Configuration 



 
 

 

objects in the presence of occlusion, but gives little 
implementation detail.  Odometry is used to estimate self-
motion, removing the kinematic effects of sensor motion.  A 
Kalman filter is used for velocity estimation.  Tracks are 
classified as car, pedestrian, etc., using apparent shape and 
behaviour over time.  

Reference [6] shares some of the authors of [4], and 
describes a similar system with additional details.  The 
Kalman filter estimates motion based on the position 
change of an estimated track center-point.  The object 
classification is used to fit a class-specific prior rectangular 
model to the points.  Although not explained, this appears 
to be an approach to reducing shape-change motion 
artifacts.   The success of this would depend on the 
correctness of the classification and the prior model.  Each 
object class also has distinct fixed Kalman filter parameters.  
A multi-hypothesis approach is used to mitigate the effect of 
classification error.    
 Reference [5] generalizes Simultaneous Localization and 
Mapping (SLAM) to allow detection of moving objects, 
relying primarily on the scanner itself to measure self-
motion.  An extended Kalman filter with a single constant 
velocity model is used in a multi-hypothesis tracker.  The 
emphasis appears to be on mapping in the presence of 
moving objects, rather than the real-time detection of 
moving objects when no map is needed. 
 Building a map (or occupancy grid) appears to offer an 
accurate way to detect moving objects: if a location is seen 
to be newly occupied something must have moved into that 
location.   One problem is that maintaining an occupancy 
grid is expensive; reference [7]addresses this problem with 
a sparse representation of open space.  Yet the grid does not 
solve the shape-change problem because we cannot rule out 
the possibility that the object was there all along but we did 
not see it due to occlusion or range limits.  The effect of 
range limits is particularly intractable because it depends on 
the unknown target reflectivity. 
 Several papers describe indoor people tracking systems 
that use laser scanners.  Shape-change effects are mild 
when tracking people because people are compact compared 
to typical sensing ranges and lack the flat surfaces that 
cause abrupt apparent motion when viewed from different 
directions.  Although a moving scanner will see shape 
change in large objects such as desks, large objects can 
simply be discarded because they are clearly not people.  
  In [8] motion is measured by registering old and new 
scans using chamfer fitting.  A constant velocity, constant 
angular velocity Kalman filter is used.  Because the scanner 
is placed above the leg level, a rigid body model is 
satisfactory.  Although this paper does not use moving 
scanners, it is noteworthy because of its attempt to 
quantitatively evaluate performance without ground truth by 
measuring the position noise of stationary tracks, the 
measurement residue of moving tracks, and the occurrence 
of false positive and false negative errors in moving object 
detection. 

 There is a large literature on tracking techniques 
developed for long-range radar which can be applied to 
robotic applications [9].  However, the low resolution and 
long range means that all objects can be treated as point-
like.  Reference [10] adapts the idea of a Joint Probabilistic 
Data Association Filter (JPDAF) to use a particle filter 
approach.   In comparison to a Kalman filter, at the cost of 
more computation, a particle filter can accurately model the 
non-elliptical probability distributions that arise when 
objects move long distances in the presence of heading 
uncertainty.  The warning component of our collision 
warning system does use a particle filter, since it must 
predict object positions seconds into the future using only 
the current motion estimate.   However, at 75 scans/second, 
objects typically move by much less than their size, so the 
effects of shape change is much larger the accumulated 
motion uncertainty from the dynamic model. 
 

IV.  LINEAR FEATURE TRACKING 

To handle the shape change problem, we have 
developed a system that tracks linear features (lines and 
corners) in the scan data.  The main advantages of this 
feature tracking are: 

• Corners are stable features not affected by shape 
change, 

• It is efficient because the amount of data is greatly 
reduced by condensing it to a few features, and 

• A good rectangle corner fit is evidence that an object is 
a vehicle, not a bush or ground return. 

 
Though this approach is named “Linear feature 

tracking”, the exact nature of the stable features is not 
crucial.  The true unifying theme is rejection of false 
motion, and success lies in attention to many details.  The 
main steps in tracking are: segmentation, feature extraction, 
data association, Kalman filtering and track validation.  

V. SEGMENTATION  

Segmentation divides the scanner data points into 
distinct objects.  Distance threshold segmentation clusters 
points that fall within a fixed distance threshold.  This 
simple top-down segmentation scheme works quite well, 
and was used in the experimental evaluation below. 

Segmentation also determines which object boundaries 
are apparently due to occlusion by a foreground object, and 
thus spurious.  After segmentation, the points are 
transformed into a non-moving coordinate system using a 
pose estimate derived from odometry and inertial yaw rate. 

 
VI.  FEATURE EXTRACTION 

 
Stable feature extraction is crucial to minimizing 

shape-change artifacts.  We fit a rectangular model to the 
points, and use the corners of the rectangle as features.  The 
scanner can see at most two sides of the rectangle, so we 



 
 

 

trial fit both a line and a right-angle corner, only choosing 
the corner fit when it is significantly better than the line fit.  

To increase robustness of the fit against violations of 
the rectangle model (such as rounded corners and 
indentations) we use a robust fitting algorithm (Fig. 3).  The 
basic algorithm is a standard least-squares fit with some 
points discarded and point variable point weighting.   

After a trial fit, the worst fitting 20% of the points are 
discarded. We also de-weight points in areas that are 
densely sampled (due to being closer to the scanner.)  This 
reduces the tendency of deviations in the shape of nearer 
parts of the object to overwhelm sparser points on more 
distant parts of the object which would otherwise have more 
leverage on the line orientation. 

All objects are given a linear fit, no matter how poor.  
Generally, we require a reasonably good linear fit before we 
will consider an object to be moving, but we make an 
exception for small objects (such as people.)   Requiring a 
good linear fit helps to reject apparent motion on clutter 
objects such as bushes.  

VII.  DATA ASSOCIATION 

In order for the tracker to measure the change in object 
position over time, we must determine which new segment 
corresponds to which existing track.   This is done primarily 
by detecting spatial overlap between the predicted track 
rectangle model and the segment rectangle. 

A. Ambiguous Overlap 
When objects split, merge or are just close together, 

overlap may not create a unique association.  In this case, 
we choose among the overlapping options according to the 
closeness of potentially corresponding features.  The 
closeness between a track and a segment is the sum of 
1/distance for the closest potential correspondence of each 
feature.  Unlike a direct distance measure, this emphasizes 
the best matching features. 

One important case of ambiguous overlap is when 
tracks split or merge.  Though actual splitting and merging 
does happen, apparent split/merge is more often due to 
inconsistent segmentation.  Whatever the cause, it is useful 
to know if track creation or destruction is due to 
split/merge, so we annotate tracks accordingly. 

B. Track Creation and Death 
If we fail to associate a measurement segment with any 

existing track, and the segment has at least three points, 
then we create a new track. 

 If we fail to associate an existing track with any 
measurement segment, then we may delete the track. Tracks 
are deleted if they have not been associated for 0.2 seconds 
(or 4 seconds if the track is totally occluded by a foreground 
object.) 

C. Multiple Scanners 
The tracker can process input from multiple scanners, 

allowing 360° coverage of the vehicle surroundings.  This is 
done by segmenting and associating each individual scan 
separately.   If the same object appears in more than one 
scanner, it is the responsibility of data association to 
associate the same track with both measurements. 

VIII.  DYNAMIC MODEL AND KALMAN FILTER 

Once we know the correspondence between an existing 
track and a new measurement segment, we use a Kalman 
filter to estimate the position, velocity, acceleration and turn 
rate of the object.  

The dynamic model used is constant linear acceleration, 
constant turn rate. Fixed process noise is chosen to give the 
best trade-off between smoothing and response to 
manuvering. The turn rate is estimated as the derivative of 
the heading.   Normally the linear feature orientation is 
used as the heading.  If a segment has a poor linear fit or is 
rounded enough that it is not clear whether to fit as a line or 
corner, then we use the direction of the linear velocity. 

Fig. 2: Effect of 1° angular resolution with shallow incidence angle (scale in meters.) 
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A. Measurement Noise 
We have found that detailed modeling of the feature 

position uncertainty is crucial for minimizing the velocity 
estimation error caused by motion-induced shape change.   

The two dominant sources of feature position 
uncertainty are: angular resolution limits and instability in 
segmentation or feature extraction.  We address these two 
classes of uncertainty by combining two noise estimates: 
static and adaptive. 

We decompose the feature position uncertainty into 
longitudinal (along the line) and lateral (normal to the line) 
uncertainties. When measured with the SICK laser scanner 
(at the ranges of interest), angular resolution contributes 
more position uncertainty than range resolution or range 
noise, so the longitudinal uncertainty normally exceeds the 
lateral uncertainty (Fig. 2). 

B. Static Measurement Noise 
The static noise is computed from the data in a single 

scan, and accounts for geometric effects due to resolution 
limits, incidence angle, and also for target dependent 
properties such as line fit quality and missing returns.  

The RMS line fit error is used as the feature lateral 
position noise and the longitudinal noise is a constant times 
the max inter-point spacing along the line of the 7 points 
nearest the feature.   

At long ranges and shallow incidence angles, the inter-
point spacing can exceed the segmentation threshold, 
causing the line to end at that point even though the object 
extends on; the longitudinal uncertainty is then effectively 
infinite.  In this case, the line end should not be interpreted 
as a stable corner feature. 

Such features are annotated as vague, and processed 
with a modified Kalman filter update that zeros the 
longitudinal component of the position innovation.  This 
same mechanism is used to suppress the apparent motion of 
endpoints caused by the moving sensor shadows of 
occluding foreground objects. 

C. Adaptive Measurement Noise 
Measurement noise is adaptive, de-weighting features 

that have unstable positions.  After a feature has been 
associated 15 times, the filtered covariance of the position 
measurement residue (the difference between prediction and 
measurement) is used as the measurement error.  The static 
noise covariance times 0.3 is added to the adaptive noise to 
insure a lower bound. 

 If the mean of the residue is not nearly zero, we are not 
tracking properly.  When the residue mean exceeds 10 cm, 
we reset the feature position from the current measurement 
and clear the residue mean to zero.  The need for this 
resetting comes from a sort of instability that the noise-
adaptive tracker exhibits.  If a feature does not track 
accurately (perhaps due to data fusion correctly rejecting 
spurious motion), then the measurement covariance for that 
feature becomes inflated, and this further degrades the 
tracking performance for that feature.  By resetting the 
position when the residue mean becomes too large we keep 

the position approximately correct, but allow fusion to 
continue largely ignoring the feature.  

D. Data Fusion 
Because we have up to three features for each track, we 

are faced with the question of how to combine the motion 
estimates from the separate features into one track motion 
estimate.  The Kalman filter provides a natural framework 
for data fusion.  Each feature is an independent 
measurement of the position.  Because each feature has its 
own error model, the Kalman filter weights the contribution 
of each feature appropriately. 

Each feature has an independent position, but its 
incremental motion is treated as an independent 
measurement of the track’s fused incremental motion.  The 
Kalman gain for each feature measurement is computed 
using the feature's position noise and the track state 
covariance.  The position part of the track state change is 
applied to both the feature position and the track 
incremental motion. 

The effect of fusing the feature incremental motion is 
that we do not use any single fixed reference point on the 
object.  Due to the changing perspective of the scanner, no 
stable single reference point exists because no point is 
always visible.   Attempting to use the object center as a 
reference point proves particularly futile because the center 
can rarely be directly measured. 

E. Information Increment Test 
Based on the measurement noise, each measurement 

contributes a certain amount of information to the fused 
track estimate.  If the information increment is low, then 
the influence on the state is small — in this case, the 
tracker is not actually tracking anything, just speculating 
based on past data. 

A common problem situation is that a track may change 
to a line with both ends vague (i.e. due to resolution limits 
or occlusion, both ends effectively extend to the horizon.)  
In this case, the track is localized in one direction only, and 
the longitudinal velocity is unmeasured, which can lead to 
unacceptable erroneous velocities.  

The information increment is computed from the ratio 
of the covariance eigenvalues before and after the update.  If 
either eigenvalue fails to decrease significantly, then we fail 
the association. Tracks that are consistently not associated 
are eventually deleted; see “Track Creation and Death”.  

F. Dynamic Limits 
Tracker performance is improved in the presence of 

outlier measurements by either discarding physically 
impossible measurements or by limiting the innovation to a 
physically plausible value. 

If the change in track state due to a measurement is too 
incredible, then we discard the measurement.   This is done 
when the Mahalanobis distance of the state change exceeds 
6.  Before discarding the measurement, we see if we can get 
a reasonable association by resetting a subset of the features. 



 
 

 

We reset any features that contribute a state change with 
Mahalanobis > 4. 

The time rate of change (d/dt) of velocity, acceleration 
and angular velocity are limited to physically plausible 
values.  This prevents unreasonable jumps in position from 
causing big velocity jumps.  

IX.  TRACK VALIDATION  

While robust feature extraction, data fusion, noise 
modeling and dynamic limits are all important for 
minimizing velocity errors, there remains an unacceptably 
high level of false velocities (see Fig. 5.)  We apply a 
separate track validation procedure that determines: 

• Whether recent observations are consistent with rigid 
body motion under the dynamic model,  and 

• Whether there is sufficient evidence to conclude the 
object is definitely moving. 

We have found that rejecting tracks with inconsistent or 
ambiguous motion greatly reduces false motion detection in 
the presence of ground returns (scan plane strikes the 
ground), missing returns (poor reflectivity) and feature 
extraction errors.  

The validation procedure can be understood as a batch 
smoother.  Given the last 35 segments (measurements) 
associated with each track, we check how well the track 
path matches up with the measurements if we project the 
current position backward in time (Fig. 4).  If our dynamic 
model adequately describes the motion and the estimated 
parameters are close, then the paths should agree well.   If 
the match is poor, then there is either un-modeled 
disturbance (rapid change in acceleration or turn rate), or 
there is a tracking failure due to problems in feature 
extraction, etc. 

We compare this matching error to the matching error 
of the hypothesis that we are not moving at all.  A track is 
classified as moving if the matching error of the moving 
hypothesis is at least 4 times less than that of the fixed 
hypothesis.  If the track is determined to be moving, then 
we apply a correction to the linear velocity which minimizes 
the history matching error. 

We insure that the history contains sufficient 
information to determine motion by requiring both 
eigenvalues of the sum of the position information for all of 
the features in the history to exceed a threshold. 

Because the history-based validation is fairly 
computationally expensive (about 250 microseconds per 
track), we only do validation on tracks that have a 
significant estimated velocity.  

X. EXPERIMENTAL RESULTS 

One of the barriers to progress in tracking is the 
difficulty of quantitative performance evaluation.  There are 
two main problems:  

• It is very hard to get ground truth for complex real-
world environments (especially moving objects), and 

• Tracking algorithms and tuning parameters embody 
assumptions about the world; a tracker that works well 
for one use may work badly for another. 

We have used three different evaluation approaches:  

A. Velocity Estimation Error 
To evaluate velocity estimation error without requiring 

instrumented moving targets, we have evaluated the tracker 
performance on real urban scanner data where only the 
scanner was in motion.    Since the sensor actually measures 
position of objects relative to the scanner, the result is 
equivalent to the objects being in motion.  

To characterize the performance of the Kalman filter 
only (without track validation), Fig. 5 shows the distribution 
of velocity error normal to the direction of scanner motion 
(the most critical component for collision prediction.)   We 
can see that though there is a strong central tendency with a 
Gaussian character (σ 0.13 meters/second), there are also 
fat tails and extreme outliers.  We developed the track 
validation test to reject these velocity outliers.  

 

B. Track Validation Performance 
To evaluate the performance of track validation and the 

moving/non-moving track classification, we tested it at 
several sensitivity levels. This both evaluates the sensitivity 
of the parameter settings and also provides a way to 
evaluate classification errors without manually examining 
every track.  First we ran the classifier at a high sensitivity 
on 60 seconds of busy urban data (moving vehicles and 
pedestrians as well as lots of clutter.)  This identified a large 
but still manageable number of possibly moving objects.  
We then manually classified the objects by visual 
examination of video records and the raw laser data.   This 
same data was then run at successively lower sensitivity 
levels. 

In Fig. 6 we see that only at the lowest sensitivity level 
do we misidentify as fixed tracks that were previously 
identified as moving.   Setting 1 corresponds to complete 
disabling of track validation, with a simple velocity 
threshold as the moving test.  The large decrease in falsely 
moving tracks from setting 1 compared to 2 shows that even 
at the highest sensitivity a large number of false velocities 
are being rejected. 

Fig. 4: Back-prediction of track history 
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C. Collision Warning System Performance 
Compelling indirect evidence for tracking performance 

comes from the performance of the collision warning 
system based on it.  The warning system is very sensitive to 
errors in velocity estimation because these errors often cause 
a collision to be predicted.  If large velocity errors are 
common, an unacceptable system false alarm rate results.   

The warning system was tested on two transit buses 
operating in two different cities over 6989 km of normal 
passenger service, with 263 hours of system operation.   The 
tracker identified 334,460 tracks, 4,527 of which were 
classified as moving. 

To evaluate the accuracy of warnings, we selected a 
sample of 5 hours of data with warning rates similar to the 
whole dataset and classified the 302 warnings as correct or 
incorrect based on visual examination of video and scanner 
data.   

Depending on likelihood of collision, the system gives 
two kinds of warnings: yellow and red.  There were 30 false 
red warnings (less than 5 per hour.)   The causes of the false 
red warnings were: tracker velocity error (70%), ground 
returns (15%), other (5%).  Velocity error caused one false 
red warning for every 11,000 total tracks, and one per every 
150 moving tracks. 
 Collision warning is a very demanding application 
because true dangerous situations are rare.   There were 21 
correct red warnings, corresponding to a false alarm rate of 
60%.  The warning system performance would benefit from 
further reductions in tracker velocity error.  If the velocity-
related false alarms could be reduced below one in 51000 
tracks, then ground returns would become the dominant 
error source.  

XI.  CONCLUSION 

Reliable tracking of moving objects from a moving 
vehicle is challenging, primarily because apparent shape 
change due to changing perspective can be interpreted as 

motion.  By extracting stable linear features, characterizing 
feature position uncertainty and validating the consistency 
of recent observations with the estimated motion, we have 
developed a tracker that has acceptable performance for 
collision warning, and that is efficient enough to operate in 
real time on embedded processors.    
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Fig. 5: Velocity error distribution 
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Fig. 6: Track validation performance 
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