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Abstract— In this paper, we propose an original approach to
obstacles detection based on stereovision with mono-dimensional
correlation windows. The result of the algorithm is a dense
disparity map associated with a confidence map. For each pixel,
correlation indices are computed for several widths of windows
and several positions of the window centre. Three criteria,
extracted from each correlation curve, are combined by a fuzzy
filter to define a confidence measure. Our 1D method is compared
to a classical 2D method and shows better results in term of errors
and density rate. In the context of obstacle detection, we show
that a basic segmentation of our disparity map yields a better
detection and marking of the obstacles. The method is validated
on synthetic image sequences and our results are compared with
those obtained using a classical 2D method.

I. INTRODUCTION

Obstacle detection is an essential problem in intelligent
transportation and a lot of research projects have been
focused on this topic for several decades. Although obstacle
detection seems to be easy with a RADAR based-system, it is
not obvious to distinguish between vehicles and bridges or
other elements of the road infrastructure. In many studies,
researchers have proposed to combine different types of
sensors, such as RADAR, lidar, and video-based sensors, to
yield complementary and redundant information [1].

For vision-based obstacle detection on a road, the system
can use either a single camera [2] [3] or several cameras
for stereovision [1] [4]. A stereovision-based system can
theoretically yield an accurate and detailed 3D representation
of the environment around a vehicle, with a passive sensor
at relatively low cost. Previous applications for intelligent
vehicles have mostly used sparse, feature-based approaches
to stereovision. In Nedevschi et al. [5], only a subset of image
pixels (e.g. objects edges) are matched, in order to comply
with real time processing requirements. However, sparse
disparity maps often lack information which would allow
object segmentation, classification or other robust high-level
treatments. Dense stereovision can improve the processing
chain significantly, but is computationaly expensive.

In this paper, we propose an original dense stereo matching
algorithm. We focus on developing a low-level algorithm
mainly based on a fuzzy combination of the correlation
measures to provide confidence measures. The density of the
disparity map depends on a threshold applied to confidence

measures. Our goal is to provide a dense or semi-dense
disparity map with high confidence, thus very few errors.

In the following section, we describe some window-based
stereovision techniques ; so, we present specific scene prop-
erties related to the transportation environment. Section three
describes our algorithm defining (1) the matching method
used to determine the correlation indices, (2) the fuzzy logic
filters and (3) the decision-making process. In the fourth
section, the method is validated in obstacle detection context.
This section is devoted to the obstacle extraction from the
road and presents results on synthetic stereo image pairs.
Then, we conclude this paper and present some future works.

II. STEREOVISION
A. Window-based stereo matching

Stereovision is a typical problem in computer vision and in
3D reconstruction. Given two images — called left and right
images — capturing a scene at the same time from two points
of view, stereo techniques aim at defining conjugate pairs
of pixels, one in each image, that correspond to the same
spatial point in the scene. The difference between positions
of conjugate pixels, called the disparity, yields the depth of
the point in the 3D scene.

Sparse or dense disparity maps can be computed. Sparse
disparity maps are produced by stereovision algorithms
matching features like edges or corners. Dense disparity
maps are computed by algorithms based on the analysis
of the grey levels or colours of pixels in a neighbourhood
centred on each pixel of the images. In both cases, because
of the epipolar geometry, the conjugate of a pixel in the first
image lies on the corresponding epipolar line in the second
image. This allows one to restrict the matching process to
epipolar lines.

In the following sections, we focus our attention on dense
stereo approaches based on the analysis of a pixel neigh-
bourhood. In these methods, the pairs of conjugate pixels are
computed by maximising (or minimising) a similarity (dis-
similarity) function. The properties of this function depend
on the grey level distributions in the two windows centred
on pixels of epipolar lines. On the one hand, the selection of
window shape and size is crucial for the success of matching.
The dense stereo algorithms assume that all pixels within the
windows have the same disparity. Therefore, the windows



must not be too large. On the other hand, if the window
is too small, the data available to estimate the similarity
function are not sufficient. In literature, several window-
based approaches have been presented to deal with this trade-
off.

Kanade and Okutomi have proposed an adaptive neigh-
bourhood method [6], in which they iteratively modify the
neighbourhood size and shape according to the local varia-
tion of the intensity and current depth estimates. Pérez et al.
also use a neighbourhood with variable shape determined by
analysing the similarity between pixels [7]. Some authors use
shiftable windows methods: Fusiello et al. have presented
a Symmetric Multi-Window (SMW) algorithm [8]. They
compute the SSD (Sum of Squared Differences) on nine
rectangular windows in which the current pixel is positioned
at different places, and keep the window with the smaller
SSD. Hirschmüller combines the correlation computed on the
window centred on the considered pixel with the correlations
computed on several support windows [9].

In these algorithms, the modification of window con-
figuration is based on one or several parameters defining
the confidence granted to the matching. This notion is
essential in some applications, especially for multisensor
fusion algorithm and several confidence measures have been
described in literature [10]. In [9], the author analyses the
relative difference between the two lowest minima of the
correlation function. If this value is higher than a fixed
threshold, the window configuration is validated and the
confidence is high. In [11], the matching is marked as good
if the global minimum of the correlation function is sharp.
If the confidence is low, several authors prefer to mark the
pixels as unmatched and provide semi-dense disparity maps.

B. 1D vs 2D correlation window

All the previously cited authors describe methods as-
suming that the images have been rectified [12]. In this
case, the conjugate pairs of pixels are located on a single
and same line in the left and right image. Usually, authors
compute correlation indices with two-dimensional windows
shifted along the raster lines to deal with textureless area
and increase the density of the disparity map. Unfortunatly,
when neighbour pixels within the window don’t have the
same disparity, errors appear.

Usual road scenes are characterised by a strong perspective
with a vanishing point. Thus, two consecutive raster lines
correspond to road sections located at slightly different
distances from the camera. Therefore, a correlation window
including several raster lines does not satisfy the constraint
of constant disparity along the vertical direction.

In our work, we assume that the information located on the
epipolar line, e.g. the single raster line, is sufficient to provide
a good matching. In the following section, we present an
original stereo algorithm using 1D correlation windows and
a fuzzy logic filter. Each pixel is labeled with a disparity and
the associated confidence value.

III. ALGORITHM

In the following, the overall algorithm can be decomposed
into three steps :

1) two rectified images are processed using several 1D
windows to yield similarity measures for each pixel ;

2) the similarity measures are processed by fuzzy logic
filters which associate a confidence value to each of
them ;

3) a decision-making process analyses the whole data and
selects the most confident disparity for each pixel.

A. Matching method

In correlation-based stereo matching, many techniques use
2D neighbourhoods to increase the available information,
but one can discuss the legitimacy of this strategy. With
our algorithm, we will show that in many situations, a 1D
window is sufficient to find a correct matching — assuming
that the raster lines coincide with epipolar lines.

The aim of an area-based dense stereo matching algorithm
is to determine correspondences between all the pixels in the
two images and to compute the associated disparities. A 1D
window of width 2w + 1 is positioned at the pixel (x, y) in
the first image. The correlation index is computed for several
values of the shift s ∈ [1, smax] , for widths w ∈ [1, wmax]
and for three positions p of the current pixel (left, center and
right) in the window.

The correlation index C(p, w, x, y, s) is based on the SAD
dissimilarity index (Sum of Absolute Differences):

C(p, w, x, y, s) =

i=w+p
∑

i=−w+p

|Il(x+ i, y) (1)

−Ir(x+ i+ s, y)|

with











p = w if left position
p = 0 if center position
p = -w if right position

,

where Il and Ir denote respectively the grey levels of the left
and right images. For a given value of p and w, a correlation
curve is the list of values C(p, w, s) with s ∈ [1, smax]:

{C(p, w, s)}s∈[1,smax] . (2)

In the following, to simplify the notations, the parameters x
and y have been removed from the equations.

We have selected the SAD dissimilarity index, despite
its well known drawbacks, for simplicity and as a basis of
comparison.

In area-based stereo matching, the main problem resides
in the determination of the optimal correlation window. The
window may be too small, containing not enough infor-
mation, or too large, including several areas with different
disparities. Our algorithm computes correlation curves for
wmax window sizes and three positions of the current pixel
in each window. In the next section, we show how these
3× wmax curves are combined using a set of fuzzy filters.



B. Fuzzy logic filter

For each pixel, the 3 × wmax curves are processed by
3 × wmax identical fuzzy filters which yield the fuzzy
confidences ConfFL(p, w, s) for every position p of the
current pixel in the window of size w and for every shift
s. In one correlation curve, every shift value is associated
with a confidence value which evaluates the likelihood that
this shift is the disparity for the current pixel.

We extract three characteristics from the correlation
curves:

• The curvature metric Cur(p, w, s) [10], which measures
the curvature on the correlation curve C(p, w, s) at
shift s (excluding border effects) ; a sharp correlation
valley and a high value of Cur(p, w, s) characterise
an accurate matching and mark the disparity with low
ambiguity. Cur(p, w, s) is defined as:

Cur(p, w, s) = −2 · C(p, w, s)

+C(p, w, s+ 1) + C(p, w, s− 1) .

• The rank R(p, w, s): Correlation values C(p, w, s) are
sorted in increasing order, and R(p, w, s) denotes the
rank of C(p, w, s) in this list. Since the SAD minimises
the similarity function, there is a strong likelihood of
having mimima of the curve in the first ranks.

• The number N(p, w) of inflexion points characterizing
minimum peaks (convex curves) which are defined by:

∂2C(p, w, s)

∂s2
= 0 .

These three characteristics are described by fuzzy sets with
3 states (bad, medium, good), defined by classical member-
ship functions (triangular and trapezoidal). For example:

• when Cur(p, w, s) is high the state of the membership
function is good

• when N(p, w) and R(p, w, s) are high the state of their
membership functions is bad

In the same way, the output ConfFL(p, w, s) of the fuzzy
filter is described by a variable with five states: null, bad,
medium, good, excellent. We use a regular IF-THEN-ELSE
structure as the inference mechanism. The 27 inference rules
have been defined by analysing .the behaviour of the three
characteristics, Cur, R, and N on typical neighborhoods.
Some rules, like the following one, are obvious:

IF Cur(p,w,s) is ’good’,
AND R(p,w,s) is ’good’,
AND N(p,w) is ’good’

THEN ConfFL(p,w,s) is ’excellent’.

However, for many rules, it is difficult to define precisely
the relationship between the fuzzy variables. For example,
for two values s1 and s2, if the corresponding curve shows
that (Cur(p, w, s1) = good AND R(p, w, s1) = bad) and
(Cur(p, w, s2) = medium AND R(p, w, s2) = good), it
is not obvious to define which one will result in the higher
confidence (excellent). In the present case, the associated

confidences are characterised by the medium state : the
decision step will be determining.

Each rule computes an elementary confidence for a
given value of p, w and s. In the deffuzification step,
the 27 confidence values are combined using the center
of gravity method, to yield the global confidence value
ConfFL(p, w, s).

A confidence value ConfLF (p, w, s) is associated with
every shift of every correlation window, then a decision-
making process determines the disparity corresponding to
the best matching for each pixel (x, y).

C. Decision-making process

Firstly, we select the shift s∗(p, w) corresponding to the
maximum confidence value for each configuration of the
window (width and position):

s∗(p, w) = arg[max
s
{ConfLF (p, w, s)}] . (3)

Then, we compute the number Nocc(s) of occurrences of
these maximum values as:

Nocc(s) = Countp,w[s = s∗(p, w)] . (4)

Then, we determine the disparity d as the shift value
which has the maximum number of occurrences in all the
configurations:

d = arg[max
s
(Nocc(s))] . (5)

Let {ConfFL(p, w, s
∗(p, w))}s∗(p,w)=d be the set of val-

ues ConfFL(p, w, s
∗(p, w)) for which s∗(p, w) = d. To the

disparity d, we associate a confidence which is the minimum
value of this set for all values of p and w:

Conf∗FL = min
p,w

{ConfFL(p, w, d)}s∗(p,w)=d . (6)

For some neighbourhoods, this confidence value is not
very high, but all window configurations yield the same
disparity. In this case, we consider that the confidence as-
sociated to d must be increased. Indeed, to take into account
the number Nocc(d) of occurrences of the disparity d among
all window configurations, we define a second confidence
value Confocc as following:

Confocc =
Nocc(d)

3× wmax

. (7)

The final degree of confidence Conf associated with the
selected disparity d is computed as:

Conf =
α · Conf∗FL + β · Confocc

α+ β
, (8)

where α and β are a priori defined weighting coefficients.
The decision-making process yields a disparity and an

associated confidence value for every pixel of the reference
image. Finally, a semi-dense disparity map can be composed
of the pixels whose confidence is higher than a threshold. The
lower the threshold, the denser the disparity map.

Although our method reduces the overall rate of incorrect
matchings, disparities with low confidences remain in some



areas. In [10], the authors apply the left-right consistency
(LRC) constraint to further remove incorrect matchings.
Initially, the proposed method provides, for each pixel of
the left image, the best match into the right image. By
reversing the role of both images, for each pixel of the right
image we find the best match in the left image. Finally, we
keep only the matches that turn out to be coherent when
matching left-to-right (direct matching phase) and right-to-
left (reverse matching phase). Formally, if the pixel with
coordinate xR in the right image matches the pixel with
coordinate x′L = xR + dR

xR
in the left image (dR

xR
is said to

be the right-based horizontal disparity), then LRC is defined
as:

Error = xR − (x
′

L + dL
x′

L

),

where dL
x′

L

is the left-based horizontal disparity. When the
error is greater than zero, left and right-based matches
disagree and the computed disparity is removed and set to
zero on the disparity and confidence maps.

IV. RESULTS

In the following section, different results are presented and
compared : the results based on our 1D method and those
based on the classical 2D Hirschmüller method [9]. Firstly,
we will compare the computed disparity maps. Then, we
apply a basic algorithm for road and obstacle detection on
both 2D and 1D disparity map and we compare the quality
of the detections.

A. Comparison of disparity maps

We have evaluated our stereovision technique on a syn-
thetic image sequence of a road scene generated with POV-
RayTM rendering software. We will present the obtained
results on the pair of images 10 of the sequence.

Our 1D method yields a disparity map associated with
a confidence map. The disparity map is computed using
1D windows with sizes ranging from 3 × 1 to 11 × 1 (i.e.
w ∈ {1..5} and wmax = 5). Small windows are retained in
order to test theirs capabilities to make good matching. For
equation (8), several values of α and β have been tested
and the better results have been obtained with α and β

equal to one. The figures 1(a), 1(b), 1(c) and 1(d) present
respectively the same piece extracted from the left image,
from the ground truth, from the disparity map and from the
associated confidence map. In the disparity map, a white
pixel represents a large disparity (objects close to the camera)
and a black one is either a small disparity (objects far from
the camera) or a cancelled disparity. In the confidence map,
a white pixel marks a disparity with high confidence, a black
pixel a disparity with low confidence. As the figure 1(c)
shows, our algorithm yields good results with few errors and
having high density.

We compare our method with the Hirschmüller 2D
window-based method [9]. Hirschmüller combines the cor-
relation computed on the window centered on the considered
pixel with the correlations computed on several support win-
dows [9]. In this paper, we select the configuration with one

(a) (b) (c) (d)

Fig. 1. (a) Left image, (b) Ground truth, (c) Disparity map, (d) Confidence
map

window in the middle surrounded by four partly overlapping
windows. Firstly, the correlation values are computed with
this configuration. Afterward, the left-right consistency check
invalidates places of uncertainty. Disparity maps have been
computed for windows sizes ranging from 3× 3 to 21× 21.

The quantitative comparison is based on the density and
the error rate computed for both disparity maps. Firstly, error
rate is computed by the absolute pixel to pixel difference
|∆ε| between the resulting dense disparity map (obtained
with our 1D method and the Hirschmüller method) and the
ground truth. By counting the number of validated pixels,
we compute the error rates ε1 and ε0 for respectively ∆ε
greater than one and zero. Density is obtained by counting
the number of validated disparities for both disparity maps
for all marked disparities of the ground truth.

Results are presented in table I. In the 2D window case, we
keep the better results obtained for a 2D correlation window
with size 9×9. One can notice that with a higher density, our
1D method yields better results whatever the error threshold
choosen (1 or 0).

TABLE I
COMPARISON OF ERROR RATES

Method ε0 ε1 Density
|∆ε| > 0 |∆ε| > 1

Hirschmüller (window 9× 9) 18.48 % 7.30 % 59.55 %

1D Method 9.88 % 2.53 % 70.47 %

In the same manner, a piece of the left image characteris-
ing exclusively the road is computed with the two algorithms.
The figures 2(c) and 2(d) present respectively the disparity
maps computed with our 1D method and the Hirschmüller
method. In comparison with the ground truth (Fig. 2(b)), one
can notice that the generated disparity ramp, obtained with
our method, seems closer to the ground truth. Also, the error
percentages ε1 and ε0 have been computed and are presented
in table II.

One can notice that for the same density, our 1D method
yields better results whatever the error threshold choosen.
The error rates associated with the 2D method are very
bad. The method can not yield precise disparity values in
this situation. This is due to the fact that two consecutive



(a) (b) (c) (d)

Fig. 2. (a) Left image, (b) Ground truth, (c) Disparity map computed with
the 1D method, (d) Disparity map computed with the Hirschmüller method

TABLE II
COMPARISON OF ERROR RATES ON THE ROAD SECTION

Method ε0 ε1 Density
|∆ε| > 0 |∆ε| > 1

Hirschmüller (window 9× 9) 48.83 % 32.85 % 82.32 %

1D Method 12.41 % 1.25 % 82.84 %

lines correspond to road sections located at slightly different
distances from the camera. Therefore, the correlation window
including several lines does not satisfy the constraint of
constant disparity along the vertical direction and provides a
lot of matching errors.

B. Road and obstacle detection

In this section, we present a ground plane estimation and
the obstacle detection in a typical application of stereovision
in intelligent transportation system. Road and obstacle de-
tection by analysing a disparity map is a two steps method.
The first step defines which pixels correspond to the vehicles
and which ones correspond to the road. The second has to
group the pixels in order to detect and separate each obstacle
in front of the stereo sensor.

Different methods dealing with estimation of the ground
plane are described in the literature. Some of them, as the
approach of Labayrade et al. [4], are based on the analysis
of the histogram of disparity values. This is a robust method
for detecting the obstacles which is based on the assumption
that, for each scanline where the road is visible, the dominant
disparity value is that of road surface pixels. A ”V-disparity”
image is computed for each scanline. A ”V-disparity” is the
histogram of disparity values of the associated scanline in the
original disparity image. The ground plane is estimated by
extracting from this ”V-disparity” image the dominant line
features with the Hough transform.

Other methods [13] consider that a road and an obstacle
can be approximated respectively by an horizontal and a
vertical plane in the real scene. As it is described in [13],
road disparity droad(x, y) is a linear function in terms of
disparity map pixels coordinates:

droad(x, y) = ax+ by + c , (9)

where (a, b, c) are the parameters of the ground plane and
(x, y) are pixel coordinates.

Under this assumption, a pixel corresponds to an obstacle
if its disparity value satisfies the following equation:

d(x, y) > ax+ by + c . (10)

In the literature, authors generally describe a two steps
method. Firstly, they compute the ground plane parameters
by fitting a plane in the (x, y, d) space using a least squares
method. Secondly, they verify that each pixel of the disparity
map satisfies inequality (10).

Under the same assumption, we modify this classical
method by analysing separately the profile of every column
in the disparity map. For each column x of the disparity
map, the disparity profile of road pixels is a straight line
segment with a large slope. On the contrary, for the pixels
corresponding to an obstacle, the slope of the straight line
is small. Thus, boundaries of an obstacle are marked at
the intersections of two line segments in the profile, one
with a small slope and one with a large slope. Bounding
boxes are generated using the edges detected on neighbour
columns with the constraint of constant disparity to define
each bounding box.

One can apply this obstacle detection method on the
disparity maps computed with our 1D method and with
the Hirschmüller one : the associated results are shown on
the figures 3(d) and 3(f) for which one can visualise the
bounding boxes superimposed on the left image. Fig. 3(b)
represents the bounding boxes generated on the ground truth
for basis of comparison. Our algorithm yields very good
results : the obstacles are clearly detected even when they
are far from the stereo sensor. In fig. 3(f), one can notice that
the Hirschmüller method does not provide efficient bounding
boxes. In this way, they appear around pixels characterising
a road section and bring false detections.

Also, with the classical 2D method, many errors are
located at discontinuities in the disparity map, i.e. at ob-
stacle boundaries. Therefore, the bounding boxes are not
precise. With our method, errors do not appear specifically
near discontinuities, and the bounding boxes are closer to
obstacles boundaries. Thus, the models used in a subsequent
classification or tracking stage are more accurate. Finally,
we can note that obstacles are well separated thanks to the
constraint of constant disparity used to define each bounding
box.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduces an original approach to correlation-
based stereo matching. For every pixel, similarity measures
are evaluated with several 1D correlation windows of differ-
ent widths, in which the current pixel is not necessary placed
at the center. The correlation indices are further processed
by a set of fuzzy filters to assign a confidence to every shift
value. A decision-making process analyses the confidence
values for all window widths and positions to determine a
disparity for each pixel and an associated confidence value.
The method has shown the ability to provide good matching
in most cases particularly for the pixels characterising the
road. The algorithm takes the advantage of the 1D property



and yields much better results than the classical 2D method.
In a road and obstacle detection context, our method yields
good results because the disparity map is quite dense with
very few errors. The Hirschmüller method brings a lot of
false detection due to the average effect of the 2D correlation
windows.

The proposed method includes only low level algorithms,
i.e. that can be applied independently and with the same
parameters on every image neighbourhood. Its advantages
are that (1) it is fundamentally parallel due to the correlation
window shape and to the structure of the fuzzy logic filters
and that (2) no parameter tuning is required. Of course,
with a standard sequential implementation, computation time
is high and incompatible with the real-time constraint.
However, the method can be implemented in real time on
dedicated hardware.

At the moment, experiments are carried out on real world
scenes, for which the rectification stage is crucial since the
method only uses single raster lines for pixel matching. In
future works, for real-time applications, we will implement
the algorithm on dedicated architecture hardware based on a
FPGA from Altera, called the STREAM processor, that has
been developed by LAGIS and LEOST. We will improve
obstacle detection and tracking by using a lane-markings
extraction process.
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