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Abstract— In this paper a comprehensive approach to the
recognition of traffic signs from video input is proposed. A
trained attentive classifier cascade is used to scan the scene
in order to quickly establish regions of interest (ROI). Sign
candidates within ROIs are captured by detecting the instances
of equiangular polygons using a Hough Transform-style shape
detector. To ensure a stable tracking of the likely traffic
signs, especially in cluttered background, we propose a Pixel
Relevance Model, where the pixel relevance is defined as a
confidence measure for a pixel being part of a sign’s contour.
The relevance of the hypothesized contour pixels is updated dy-
namically within a small search region maintained by a Kalman
Filter, which ensures faster computation. Gradient magnitude
is used as an observable evidence for this update process. In the
classification stage, a temporally integrated template matching
technique based on the class-specific discriminative local region
representation of an image is adopted. We have evaluated the
proposed approach on a large database of 135 traffic signs and
numerous real traffic video sequences. A recognition accuracy
of over 93% in near real-time has been achieved.

I. INTRODUCTION

Detection and recognition of traffic signs from video input
has long been in the center of interest for having great impact
on the safety of the driver. However, it remains a challenging
problem. First, it is difficult to track an object in an image se-
quence captured from a vehicle undergoing a generally non-
uniform motion. Second, we have to disambiguate between
the true signs and a potentially large number of other natural
or man-made objects of similar shape and appearance. Third,
there are many road signs and some of them are very similar
to one another. Finally, in a realistic scenario a traffic sign
recognition system must operate in real time.

Most commonly, a two-stage approach to the detection
and recognition of road signs has been adopted in the state-
of-the-art literature. A prior knowledge about the signs is
incorporated in the detection part in some sort of constraints
used to 1) define how to pre-segment the scene in order to
find the interest regions, and 2) define the acceptable ap-
pearance of signs and the geometrical relationships between
their parts with respect to color and shape [3], [4], [6], [9],
[10]. The major drawback of this approach is the sequential
nature of the processing which makes it impossible to
recover from the errors made early in the processing pipeline.
Furthermore, many of these studies present heuristics and
therefore lack the solid theoretical foundations. Bahlmann
et al. [1] have taken a different strategy in which color-
parametrized Haar-wavelet shape descriptors are combined

within a trainable attentive cascade of classifiers in order
to locate road sign candidates in the scene. This method
seems to work reasonably accurately for a relatively limited
number of signs to recognize and easy traffic scenes. Several
studies address the problem of sign tracking over time [4],
[7], [10]. However, these attempts are mainly focused on the
geometrical tracking, used to reduce the uncertainty on the
candidate’s position and scale in the image, and are based on
the strong motion assumptions, e.g. constant velocity. In the
classification stage a pixel-based approach is often adopted
and the class of a detected sign is determined by the cross-
correlation template matching [10] or neural networks [3].
Feature-based approach is used for instance in [9], where
the classification problem is decomposed in a decision tree
reflecting the natural grouping of the known road signs. For
each subgroup a Laplace kernel classifier is used to classify
an unknown sign represented by its various numerical char-
acteristics e.g. moments. In [8], [12] a different strategy was
developed based on the idea of representing a candidate sign
as a set of similarities to the stored prototype images, each
assessed with respect to a class-specific set of local regions
refined in the training process.

In this paper we present an innovative algorithm for fast
detection, tracking and classification of traffic signs from a
moving vehicle. An attentive classifier cascade is adopted to
minimize the search region at a very early stage and hence
reduce computation. Further, we introduce a confidence
measure of an individual pixel being part of a sign’s contour.
Based on this notion we build a contour tracking framework
using a spatio-temporal voting scheme. The proposed method
is efficiently integrated with a Kalman Filter which is used,
apart from to reduce the search region, also as a regularizer
of the relevance model. As a result, the true sign’s contours
become easier to detect as the undesirable edges that are not
a part of this contour are suppressed. To facilitate this, we
extend the equiangular polygon detection algorithm of Loy
and Barnes [6] by making it operate on the abovementioned
pixel relevance. Therefore, the detector attempts to capture
the contour of a sign being tracked in a feature image that
incorporates both the current-frame gradient information and
the past observations. In the classification stage we propose
to represent each road sign by a compact, trainable subset of
its most discriminative local regions i.e. these in which this
sign looks possibly the most different from all other signs.
Temporally integrated template matching based on this class-
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specific representation is introduced and evaluated through
the experiments on the traffic video.

The rest of this paper is organized as follows: In section II
the concept of pixel relevance and its realization in detecting
signs are discussed. Section III describes a discriminative
local region representation of road signs and a dynamic
classifier used for recognition of the observed candidates.
Section IV presents experimental results of detection and
recognition on the real traffic video sequences. Finally,
conclusions are drawn in section V.

II. SIGN DETECTION AND TRACKING

A. Pixel Relevance Model

We start with a definition of pixel relevance. We call a
pixel xij relevant if it belongs to the contour of a road sign
and irrelevant otherwise. Formally, relevance rij of pixel xij

is defined as a real number between 0 and 1, i.e. xij is
completely irrelevant when rij = 0 and completely relevant
when rij = 1. As the signs move through the scene and grow
in size while being approached by the vehicle, relevance must
change over time as well. We model the dynamics of this
process using a spatio-temporal voting graph, fragment of
which is shown in Fig. 1. The graph encapsulates the rele-
vance distribution over an entire image region at time t, r(t),
in a set of state nodes. Evolution of a single pixel’s relevance
is assumed to be a first order stationary Markov process and
the supposingly weak correlations between the same-slice
pixels are ignored. Relevance of each pixel xij at time t,
rij(t), is dependent on the relevance of its neighborhood in
the previous frame, rN(i,j)(t−1) = 1

n

∑
xkl∈N(i,j) rkl(t−1)

(where n is the size of the neighborhood), and the observable
feature at time t, f(xij(t)).

Fig. 1. Fragment of the spatio-temporal voting structure used to model the
dynamics of pixel relevance. Consecutive time slices are shown.

Our state transition model is defined by the following
function supported on a [0, 1] interval:

φij(t) ∼
(
1− e−kT rN(i,j)(t−1)

)
(1)

for some constant kT . We are postponing the more precise
definition of the transition function to section II C. Relevance
projected from time slice t to t+1 is further conditioned on
the observed feature at time t+1, and we define this update
process by the same class of functions:

ψij(t) = 1− e−kOf(xij(t)) (2)

for another parameter kO. Using the above definitions, evo-
lution of the pixel relevance can be expressed as:

r−ij(t + 1) = rN(i,j)(t)φij(t + 1)
r+
ij(t + 1) = r−ij(t + 1)ψij(t + 1)

. (3)

In sections II B-C we will discuss how the Pixel Relevance
Model is integrated with sign detection and tracking.

B. Detection

Our road sign detector is triggered every fixed number
of frames to capture new candidates emerging in the scene.
It makes use of the a priori knowledge about the model
signs, uniquely identified by their general shape, color and
contained ideogram. Based on the first two properties four
European sign categories coinciding with the well-known
semantic families are identified: instruction (blue circular),
prohibitive (red circular), cautionary (yellow triangular), and
informative (blue square) signs. The proposed detector op-
erates on the edge and gradient maps of the original video
frames extracted in different color channels. Furthermore, it
uses a generalization of the Hough Transform introduced by
Loy and Barnes [6]. This is motivated by the fact that the
targeted objects are all instances of equiangular polygons,
including circles which can be thought of as equiangular
polygons with infinite number of sides.

Original regular polygon transform is augmented with
an appropriate image preprocessing intended to locate the
regions of interest rapidly and further enhance the edges
of specific color within each. The former goal is achieved
using an attentive cascade of classifiers introduced in [14].
Each weak classifier is a 1D perceptron associated with one
of the Haar wavelet features shown in Fig. 2. Similarly to
[1], we additionally parametrize these features with color.
Three possible assignments are: red, blue and yellow which
correspond to the most characteristic colors of the road signs.
To be able to evaluate such features, we filter an input image
by enhancing the sign-specific colors. This enhancement for
each RGB pixel x = [xR, xG, xB ] and s = xR + xG + xB

is achieved using the following set of transformations:

fR(x) = max(0, min(xR − xG, xR − xB)/s)
fB(x) = max(0,min(xB − xR, xB − xG)/s)
fY (x) = max(0,min(xR − xB , xG − xB)/s)

. (4)

For each color-enhanced image the corresponding integral
image required by the Haar features is then calculated [14].

Fig. 2. Haar wavelet features used for sign detection.

Cascade is trained separately for different scales on the
dataset comprised of several hundred pre-labeled positive
images and several thousand randomly generated negative
images, both taken from the traffic video sequences. The
cascade parameters are chosen in such a way that practically
all true signs are captured while the false positive rate is
below 1%. In system runtime, the redundant hypotheses
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generated by our attentive detector around the true signs are
clustered and a single accurate bounding box per candidate
is estimated in a similar way as is proposed in [13].

In each region containing the sign candidate, color-specific
edge maps are extracted by a simple filter which for a
given pixel picks the highest difference among the pairs
of neighboring pixels that could be used to form a straight
line through the middle pixel being tested. Obtained values
are further thresholded and only in the resulting edge pixels
values of directional and magnitude gradient are recorded.
This method is adequate to our problem as it enables a quick
extraction of edges and avoids expensive computation of the
whole gradient magnitude map which, with the exception of
the sparse edge pixels, is of no use to the shape detector.
Extracted color gradient maps provide the sufficient data for
initialization of the Pixel Relevance Model. Specifically, we
consider the measured gradient magnitude at pixel xij to
be an observable symptom of the unknown pixel relevance
and use it to initialize the first estimate of the state, i.e.
rij(0) = gij .

For a given pair of edge and gradient images associated
with a given interest region and the feature color c, the
appropriate instance of the Loy and Barnes’s shape detector
[6] is run to yield a sign candidate of the known scale.
For instance, for a “yellow pair” a triangular shape detector
is triggered to search for the yellow cautionary sign. As
each found candidate has known shape and border color
c, detector serves as a pre-classifier reducing the number
of possible templates to analyze in the later stage to the
ones contained in either category. The major modification
of the original equiangular polygon detector we allow is
the following. Although it still uses the directional gradient
information to converge the votes coming from different
sides of a polygon in its alleged centroid [6], strength of
these votes is determined by the pixel relevance, instead of
magnitude of the gradient.

C. Tracking

Once a candidate sign is detected, it is unnecessary to
search for it in the consecutive frames in every possi-
ble location. Our road sign tracker is composed of three
complementary parts: 1) Kalman Filter [5] responsible for
maintaining a localized search region around the expected
position of the candidate, 2) the Pixel Relevance Model,
discussed in section II A, used to update a belief on the
relevance of the pixels contained in this region, and 3) a
regular shape detector [6]. The latter is run on the current
color-specific edge, directional gradient, and posterior pixel
relevance maps extracted within the interest region to yield
the best-matching contour of a sign being tracked.

The Kalman Filter tracks the signs in a geometric fashion.
The state of the tracker is given by two vectors: Sc =
[x, y, vx, vy]T , and Ss = [w, h]T . Sc encodes the coordinates
of the sign’s centroid and its momentary velocity, v =
[vx, vy], in the 2D image plane. The size of a sign expressed
in terms of width and height of its minimum bounding
rectangle is given by Ss. Position and size of the current-

frame search region is determined from the prior estimate
of the filter parameters and their variances. Velocity v, used
in the prediction equation of the filter, is estimated from the
point correspondences established in the consecutive frames
in the interior of the sign as last detected. Correction step is
performed upon capturing the candidate shape at time t + 1
by the Loy and Barnes’ detector [6].

Our Kalman tracker has another interesting feature. The
prior search region estimate can be used to modulate the
relevance of the contained pixels by highlighting these that
lie on the hypothesized motion-compensated contour of a
sign or in its vicinity, and diminishing the importance of the
remaining ones. As a result, the unwanted edges inside and
around the sign being tracked become suppressed and the
shape detector can produce more accurate fits. Knowledge
of the previous Kalman Filter state estimate and the current-
frame velocity measurement provides the necessary data for
the abovementioned motion compensation. The influence of
the filter on the actual pixel relevance map maintained in the
spatio-temporal graph introduced in section II A is incor-
porated in the prediction process (1). More specifically, we
make the transition function φij(t) dependent on the current
variance of the state parameters. A hypothetical contour of
a sign together with the search region are translated from its
centroid’s estimate at time t to the new, prior estimate at time
t+1. Then, a local Distance Transform (DT) [2] is computed
in such a motion-compensated region. Finally, the transition
function of the Pixel Relevance Model is computed as:

φij(t + 1) = e−kDdDT (i,j)
(
1− e−kT rN(i,j)(t)

)
, (5)

where dDT (i, j) denotes the appropriate distance value
picked from the DT image, kD ∼ 1

E2 and E is the average
of the prior variances of the Kalman Filter state parameters
at time t + 1. The effect of Distance Transform on the pixel
relevance map is visualized in Fig. 3.

Fig. 3. Different stages of pixel relevance processing in a single video
frame around a tracked candidate road sign: a) relevance map at time t,
b) prior relevance map at time t + 1 (after KF-regularized projection), c)
gradient magnitude map at time t + 1 (observable evidence), d) posterior
relevance map (after incorporating observation). In all images intensity is
scaled to the range [0, 1] for better visualization.

The circle/regular polygon detector is integrated with the
above tracking framework as a third component to produce
the final shape which is then directly processed by the
classifier discussed in the next section. The detector is run
on the edge maps and the directional gradient maps of the
current frame but uses an a posteriori map of pixel relevance
to determine the strength of the votes.

To summarize, the main role of the Kalman Filter in the
above framework is to maintain a reasonably small region
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of interest for the pixel relevance evolution model. However,
an additional task of the filter is to adjust the parameters
of this model on-the-fly. As a result, for very accurately
estimated search region the pixel relevance is peaked at the
expected contour of a sign, as in Fig. 3d, and the unwanted
edges that with high probability are part of the sign’s interior
or cluttered background, become suppressed. This in turn
directs the focus of the shape detector to the sign’s centroid.
However, when the uncertainty on the Kalman Filter state is
high, our confidence of having captured the sign area well
is lower accordingly. In this case the modulation factor is
relaxed and the relevance model is to a larger extent allowed
to “evolve on its own”. Consequently, the relevance image
is much more blurry and better reflects the full map of the
currently observed gradients, giving the shape detector an
opportunity to recover from a likely poor fit.

III. SIGN RECOGNITION

Once a candidate sign has been detected, it has to be
identified. As stated in section II B, a general category of a
sign is determined by its shape and the color of its rim at the
time when it is for the first time detected. Nevertheless, there
are still up to 55 signs per category, some being very similar
to one another. This makes the recognition a challenging
task. The sign discrimination method adopted in this work
is based on an idea of building a compact, class-specific
representation of each sign by picking these fragments of the
pictogram in which it differs the most from all other signs
in the same category. Furthermore, as the model signs are
well-defined, we think such representation can be inferred
without recourse to the real-life images. Below, an outline
of our discriminative sign representation and the classifier
design is given. Details can be found in [12].

A. Discriminative Local Region Representation

To represent the pictograms of signs, we consider a space
of all local, non-overlapping square regions of the template
sign images. The goal is to select the most discriminative
regions out of this space so that the unseen signs are the most
easily distinguishable for the classifier. Formally, assuming
a pre-determined category of signs C = {Ti : i = 1, . . . , N}
and a candidate image xj , our goal is to determine the class
of xj by maximizing posterior:

p(Ti|xj , θi) =
p(xj |Ti, θi)p(Ti)∑N

k=1 p(xj |Tk, θk)p(Tk)
. (6)

Varying indices of the model parameter vector θ are used to
emphasize the fact of allowing different model parameters
θi = (Ii,Wi) for each template Ti. The first parameter
defines a binary vector determining which local regions of
the image to incorporate in the target region set Si. The
second parameter defines a vector of corresponding region
weights. The optimal parameters of each model, θ∗i , are
learned through maximization of the objective function:

O(θi) =
∑

j 6=i

d̂Si(Tj , Ti) , (7)

where the dissimilarity d̂Si
(Tj , Ti) is defined as a mean of

the dissimilarities between the images I and J measured
within the individual regions rk contained in the set Si:

d̂Si
(I, J) =

1
|Si|

|Si|∑

k=1

drk
(I, J) . (8)

Dissimilarity between two images within a single region
rk is based on the notion of Distance Transform (DT) [2].
Specifically, for each distinct color in the template sign image
a separate DT is calculated as though that image was a binary
map with the pixels of that color being the feature pixels,
and all other pixels being the non-feature pixels. We refer
to such collection of color-specific DT images as a Color
Distance Transform (CDT). The CDT images computed for
a sample road sign template are shown in Fig. 4.

Fig. 4. Color Distance Transform (CDT) images: a) original discretized
color image, b) black DT, c) white DT, d) red DT. Darker regions denote
shorter distance. This figure is best viewed in color.

With CDT available, drk
(I, J) can be expressed as:

drk
(I, J) =

1
m2

∑
x,y

d̃CDT (I(x, y), J(x, y)) , (9)

where for each pixel with coordinates (x, y) contained in
the m×m pixel region, distance d̃CDT (I(x, y), J(x, y)) is
picked from the appropriate CDT image of J , depending on
the discrete color of this pixel in I .

Maximization of the objective function in (7) is imple-
mented as a greedy forward selection algorithm [11] which
operates solely on the template sign images. Details of this
procedure can be found in [12]. On output it yields for each
template a variable-size set of its most unique regions, i.e.
those in which this template differs the most from all other
same-category templates. Additionally, the weight associated
with each region reflects its individual discriminative power.
The key feature of our training algorithm is that it cap-
tures the same amount of dissimilarity in each class-specific
model, regardless of the actual number of regions extracted.
This amount can be controlled with a global parameter,
td, called dissimilarity threshold. This feature makes the
signs directly comparable and hence facilitates classification.
Visualization of the most discriminative regions for several
cautionary signs is given in Fig. 5.

Fig. 5. A sample of triangular cautionary signs (above) and the discrimina-
tive local regions obtained for parameter td = 0.7 (below). Brighter regions
correspond to higher dissimilarity.
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B. Dynamic Recognition from Video Input

A detected sign candidate is subject to preprocessing
before it can be classified. First, its orientation is corrected
based on the information provided by the detector [6]. In the
next step the region corresponding to the minimum bounding
rectangle of the sign is cut out of the image and scaled
to a common size, typically 60 × 60 pixels. The possible,
shape-dependent background fragments are masked out. In
the resulting image the color space is collapsed to a few basic
colors using a Gaussian Mixture color classifier trained on
the real-life road sign images [12].

The normalized image of a sign is classified in each frame
of the input video according to the Maximum Likelihood
approach by template matching. However, matching to each
template is done with respect to the class-specific represen-
tation determined in the training process. Assumptions of 1)
Gaussian distribution of the local region dissimilarities and
2) equal class priors p(Ti) make it possible to convert the
maximization of likelihood to the minimization of distance.
Therefore, according to (6), a winning class L(xt) of the
unknown observed candidate xt at time t is determined by:

L(xt) = arg maxi p(xt|Ti, θi) =
arg mini d̂Si,Wi(xt, Ti)

, (10)

where the regions in Si and the corresponding weights in Wi

denote the ones learned in the training stage for the template
Ti. Distance d̂Si,Wi(xt, Ti) is defined as:

d̂Si,Wi(I, J) =
∑|Si|

k=1 wkdrk
(I, J)

∑|Si|
k=1 wk

. (11)

The above metric is a weighted version of the mean dis-
similarity defined in (8). It requires an on-line discretization
of the observed sign image (possible to be implemented
efficiently using color lookup table) and offline-computed
Color Distance Transforms of the templates.

Classification results for the individual frames are inte-
grated through the whole sequence over time. Hence, at a
given time point t all the observations made since the sign
was for the first time detected until t are incorporated in
the current classifier’s decision. Assuming independence of
the observations from the consecutive frames, this decision
is determined by picking the smallest cumulative distance
from the template:

L(Xt) = arg min
i

t∑

k=1

q(t)d̂Si,Wi(xk, Ti) , (12)

where q(t) = btlast−t, b ∈ (0, 1], is a relevance of the
observation xt. As tlast means the time point when the sign
is for the last time seen, the observation’s relevance is made
dependent on the candidate’s age (and thus size) to reflect
an empirical fact that an object becomes clearer while being
approached by the camera.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed road sign recognition approach,
96 video sequences containing 164 signs in total (out of

which 48 unique) were recorded during daytime with a stan-
dard DV camcorder mounted in front of the car’s windscreen.
This data were collected in a variety of urban, countryside
and freeway scenes. Overall recognition results are shown
in Tab. 1. It is assumed that for a given test sequence the
ultimate classifier’s decision is the one made at the time when
the track of the sign is permanently lost as a result of it
getting out of the camera’s field of view.

td RC (55) BC (25) YT (42) BS (13) All (135)
detected – 85.2% 100.0% 96.8% 87.8% 93.3%

0.97 95.7% 91.2% 83.3% 88.9% 88.2%
0.9 95.7% 94.1% 86.7% 97.2% 92.2%

recognized 0.7 95.7% 100.0% 85.0% 86.1% 90.2%
0.5 95.7% 100.0% 81.7% 83.3% 88.2%
best 95.7% 100.0% 86.7% 97.2% 93.5%

TABLE I
RECOGNITION PERFORMANCE FOR DIFFERENT VALUES OF

DISSIMILARITY THRESHOLD td AND TEMPORAL WEIGHT BASE b = 0.8.
THE NUMBER OF CLASSES IN EACH CATEGORY: RED CIRCLES (RC),

BLUE CIRCLES (BC), YELLOW TRIANGLES (YT), AND BLUE SQUARES

(BS) IS GIVEN IN PARENTHESES.

The obtained detection results, as seen in Tab. 1, depend
on the sign category. However, the figures may be biased by
the fact that different categories were not equally represented
in the test data. An overall detection rate of over 93% is good
for the data we collected and the large size of our template
database. The average processing speed of 20-25 fps was
achieved and only a few false alarms across all test sequences
were reported. All true positives were detected and tracked
at a physical distance from the camera of approximately 10-
30 meters. The majority of detection failures were caused by
the insufficient contrast between a sign’s boundary and the
background, especially for the signs appearing in shade or
seen against sunlight. In a few cases this low contrast was
caused by the faded dye on the sign’s plate.

Figure 6 shows examples of the two sequences where a
sign is being tracked over time. Each upper row of images
illustrates the actual gradient magnitude map whereas the
images in each lower row depict the corresponding posterior
pixel relevance maps. It can be noticed that in the pixel rel-
evance images the sign contours are clearly emphasized but
the other high-gradient image regions tend to be suppressed.
Thanks to the accurate motion compensation of the pixel
relevance map provided by the Kalman Filter we found this
technique very useful in combination with the shape detector
of Loy and Barnes [6]. As the latter relies on the contour
of the shape being searched for, possibility of the inaccurate
detection in each frame is greatly reduced.

For the best set of dissimilarity thresholds we have man-
aged to reach over 93% correct classification rate, i.e. the
percentage of the correctly classified signs among these that
were detected. This figure makes our method comparable to
the recently published ones [1], [8]. However, it should be
noted that our template database contains 135 model signs –
significantly more than in any of the previous studies. Direct
comparison with the respective algorithms is not possible
as neither the test data nor the details of data acquisition
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are disclosed. The optimal dissimilarity threshold values
were determined experimentally. We observed that for each
sign category this threshold must strike a balance between
maximizing template signs’ separability and the reliability
of the obtained dissimilarity information in the real-data
context. Very high threshold values lead to the separation of
very few good regions for a particular model sign. However,
for a noisy video frame image this sparse information is
usually insufficient as the relevant fragments of the pictogram
may look distorted, blurred, or their color may vary. We
found a sensible limit for the dissimilarity threshold to be
0.98–0.99 as for higher values of td representations of certain
signs become empty. Very low threshold values on the other
hand introduce information redundancy by allowing image
regions that contribute little to the uniqueness of a given sign.
In a resulting feature space these signs look more similar to
one another and are hence more difficult to tell apart.

Fig. 6. Sample sequences of a road sign being tracked from the perspective
of gradient magnitude (upper rows) and pixel relevance (lower rows). While
the gradient maps contain all high-magnitude regions, in the relevance
images the non-contour peaks of the gradient tend to be suppressed. Each
image corresponds to the local search region at a given time point and for
illustration purpose these images are scaled to equal size.

The main cause of the observed classification errors is the
sensitivity of our template matching method to the accuracy
of the detector. This effect is even strengthened by the fact
that a large gamut of signs is focused on. Many of these
errors were a result of confusion between the nearly identical
classes, especially in the category of triangular cautionary
signs. In these cases the correct template frequently received
the second best score. In only several sequences classification
failed due to the inaccurate color segmentation. This proves
usefulness of the Gaussian Mixture color modeling. It should
be noted that a significant gain in the classification accuracy
was achieved owing to the temporal integration scheme
we used to combine the individual frame observations. A
tendency of the most recent observations being the most
useful was clearly confirmed by the experiments.

V. CONCLUSIONS
In this paper we have presented a comprehensive approach

to traffic sign recognition from video input. Our detection
module consists of four components: (1) an attentive classi-
fier cascade used to quickly discard the irrelevant fragments
of the scene, (2) an equiangular polygon detector used in
the remaining fragments to capture the regular contour of

a sign, be it a circle, triangle or square, (3) a Kalman
Filter to reduce the search region around the candidate signs
already being tracked, and (4) the Pixel Relevance Model
to provide a confidence measure for a pixel on the sign’s
contour. The pixel relevance is computed initially from the
previous detection, and updated dynamically from the current
observation of gradient magnitudes. It helps emphasize the
contour of a sign and suppress the irrelevant information
from the background and inside the sign, which in turn
improves the accuracy of the circle/polygon detector. At the
recognition stage, a discriminative local region representation
of signs is proposed. It is constructed directly from the
template sign images so as to capture possibly the most
significant differences between them. It has been shown that
the obtained discriminative local image regions can be used
in conjunction with a conventional classifier operating by
class-specific, temporally integrated template matching. Ad-
ditionally, the smooth distance metric provided by the Color
Distance Transform (CDT) makes this matching resistant to
minor misalignments introduced by the shape detector.

We have evaluated the proposed approach on real traffic
videos. Overall, a recognition rate of over 93% has been
achieved with a processing speed of 20-25 fps and a decently
low number of false positives. It is also important to note that
the size of the template database used in our experiments is
significantly greater than those reported previously.
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