
Improved Multi-Level Pedestrian Behavior Prediction 
Based on Matching with Classified Motion Patterns

Zhuo Chen   N.H.C. Yung 
Department of Electrical and Electronic Engineering 

The University of Hong Kong 
Pokfulam Road, Hong Kong, H.K.S.A.R. 
zchen@eee.hku.hk   nyung@eee.hku.hk

 
 

Abstract—This paper proposes an improved multi-level 
pedestrian behavior prediction method based on our previous 
research work on learning pedestrian motion patterns and 
predicting pedestrian long-term behaviors as their motion 
instances are being observed. The improvement mainly focuses 
on the similarity matching criteria between the trajectory and the 
clustered MP whose main advantages are that (1) a reasonable 
similarity range of MP is automatically calculated instead of 
manually set; (2) the distance feature and the changing angle 
feature are considered together for similarity matching while 
only the distance feature is considered before. The improved 
method has been implemented and a study of how the new 
prediction method performs in real world scenario is conducted. 
The results show that it works well in real DCE and the 
prediction is consistent with the actual behavior. 

Keywords-motion patterns; similarity matching; multi-level 
behavior prediction; dynamically changing environment 

I.  INTRODUCTION 
Traffic accident has been described as one of the major 

causes of death and injuries around the world in a World 
Health Organization report [1]. Compared with vehicle 
occupants, the vulnerable road users, such as pedestrians, suffer 
higher risk of death in traffic accidents [2]. Obviously, if 
pedestrian behavior can be captured, analyzed and predicted, 
then many potential traffic accidents may be avoided or the 
severity of the impact heavily reduced, which could eventually 
lower pedestrian fatalities as a result. 

In a Dynamically Changing Environment (DCE) such as a 
busy street in a build-up area involving both vehicles and 
pedestrians, Collision Avoidance (CA) is no longer just a 
matter between vehicles, but also between vehicles and 
pedestrians. Assuming that most pedestrians have a certain 
ability of CA and would behave in a rational manner on the 
road, it would then be up to the vehicle or agent to navigate 
with a reasonably fast CA response. In order to do that, reactive 
response has to be replaced by the ability to look ahead into the 
future, i.e., prediction of pedestrian as well as vehicle 
movements or behaviors in the proximity of the agent.  

Conventionally, object behavior prediction is performed in 
a short-term manner which focuses on pedestrian motion in the 
next time-step [3-8]. This has the advantage that short-term 
prediction is certainly more accurate than long-term prediction, 
although with only the next time-step predicted, navigation 

planning can only be short-term as well, without being able to 
consider a longer term path optimization. As such, some 
researchers have recently attempted long-term behavior 
prediction for global and optimal CA [9, 10]. Our previous 
research work also concentrated on long-term behavior 
prediction which first learned Motion Patterns (MP) from a 
series of observed pedestrian motion instances and then 
predicted long-term pedestrian behaviors over a number of 
future time steps [11]. Compared with the other long-term 
behavior prediction methods [9, 10], the main advantages of 
our previous method are that (1) no priori knowledge of 
pedestrian is needed for the construction of MP; (2) it predicts 
the entire path to be travelled by the pedestrian instead of just 
the destination. 

In this paper, we propose an improved multi-level 
pedestrian behavior prediction method which succeeds the 
general idea of our previous research work. The improvement 
mainly focuses on the similarity matching criteria between the 
trajectory and the clustered MP. The new criteria are superior 
in two ways: (1) a reasonable similarity range of MP is 
automatically calculated instead of manually set; (2) the 
distance feature and the changing angle feature are considered 
together for similarity matching while only the distance feature 
is considered before. In the improved method, the observed 
pedestrian trajectories (in terms of spatial location, velocity or 
heading angle) are clustered using the clustering algorithm as 
described in [12]. For each clustered MP, it is either classified 
as a complete MP (MP_C), which represents pattern that is 
more-or-less consistent over time, or as an incomplete MP 
(MP_I), which represents an inconsistent pattern that may be 
updated in the future [11]. Based on these MP, multi-level 
prediction is employed. It consists of three levels of prediction, 
in which the high and middle levels are both long-term 
predictions based on the MP_C and MP_I that predict future 
trajectories over a number of time steps. On the other hand, the 
low level prediction predicts only the next time-step, equivalent 
to a short-term prediction. The improved method has been 
implemented and a study of how the new prediction method 
performs in real world scenario is conducted. The results show 
that it works well in real DCE and the prediction is consistent 
with the actual behavior. 

The rest of this paper is organized as follows. In Section II, 
gives a brief introduction on the generalized multi-level 
prediction framework. In Section III, presents the improved 
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matching-based pedestrian behavior prediction model. Section 
IV depicts the experimental results produced by the improved 
method, and Section V concludes the paper with a brief 
discussion of future research direction. 

II. GENERALIZED MULTI-LEVEL PREDICTION FRAMEWORK 
The generalized multi-level framework consists of four 

main functions: (1) Trajectory Formation; (2) MP Clustering; 
(3) MP Classification and Maintenance; and (4) Pedestrian 
Behavior Prediction; as depicted in Figure 1. When applied in a 
specific scenario, at some time step t, the observed new 
pedestrian instances are first associated with existing 
trajectories that have been assembled through the previous t-1 
time steps. The association aims at optimizing a global shortest 
distance for all instances. Based on the newly formed 
trajectories with spatial location feature, the trajectories with 
velocity and heading angle features can be accordingly derived. 
When trajectories are obtained, MP clustering is performed for 
learning MP by using an instance-based clustering algorithm 
[12]. Each clustered MP represents a sub-group of trajectories 
that have similar characteristics with spatial location, velocity 
or heading angle feature. In MP classification and maintenance 
module, by evaluating the number of observable motion 
instances in each MP cluster, the MP is further classified into 
MP_C or MP_I [11]. 
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Figure 1.  Overview of the generalized multi-level prediction framework. 

Finally, pedestrian behavior prediction is performed which 
will be described in detail in the following Section. Pedestrian 
behavior prediction consists of three levels prediction. High-
level prediction is first performed in MP_C matching module if 
there is some available MP_C. If a qualified match can be 
found between a trajectory and a MP_C, a long-term behavior 
of the trajectory is predicted to be similar to the MP_C. If there 
is no available MP_C or no qualified match, middle-level 
prediction is then performed in MP_I matching module for the 
remaining unmatched trajectories. If there is a qualified match 
when matching a trajectory with a MP_I, a medium-term 
behavior of the trajectory is predicted to be similar to the MP_I. 

If no qualified matching exists, low-level prediction is 
accordingly performed in action forecasting module, in which 
one single time-step action is predicted. 

III. MATCHING-BASED PEDESTRIAN BEHAVIOR PREDICTION 
MODEL 

A. General Algorithmic Flow 
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Figure 2.  Block diagram of matching-based pedestrian behavior prediction 
model. 

The focus of this multi-level prediction method is the 
matching-based pedestrian behavior prediction model, which 
aims to predict pedestrian behavior in the most appropriate 
manner based on the MP_C, MP_I and current trajectories, 
through a multiple prediction hierarchy as depicted in Figure 2. 
If there are available MP_C, the multi-level prediction starts 
from the high level, otherwise it starts from the middle level. In 
high-level prediction, when a current trajectory is matched with 
a MP_C, dimension of the current trajectory and the MP_C are 
equalized first. The matching process in the improved method 
consists of two stages: pre-requisite matching and similarity 
matching. In pre-requisite matching, a criterion based on 
distance between the current trajectory and the MP_C is 
proposed for deciding whether the current trajectory falls into a 
reasonable similarity range of the MP_C. In our previous 
method, this criterion depends on a manually setting parameter 
that defines a similarity range of the MP_C. It is improved that 
the similarity range of the MP_C can be automatically 
generated based on the left boundary and the right boundary of 
the MP_C. On the other hand, our previous method only 
considers the distance between the current trajectory and the 
MP_C when measuring their similarity. However, there are 
cases that the current trajectory may not be very similar to the 
MP_C although they are close to each other. In the improved 
method, we proposed a new similarity matching stage which is 
performed based on a criterion that considers changing angle 
calculation and comparison. Current trajectories are performed 
prerequisite matching first, and those that have matched MP_C 
can be performed similarity matching. If the current trajectory 
can further find a matched MP_C, then it has a long-term 
predicted behavior based on the matched MP_C, otherwise it is 
passed to middle-level prediction for predicting a medium-term 
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behavior. Middle-level prediction follows a similar algorithmic 
flow as high-level prediction, while the difference is that MP_I 
are used for matching in middle-level prediction instead of 
MP_C. If the prediction for a current trajectory fails in both 
high level and middle level, low-level prediction is performed 
in which single-step forecasting will be done by using an Auto-
Regressive (AR) model [13]. 

Let Tk denotes the observable trajectory of the pedestrian 
PDk, and P_Im and P_Cn represent the mth MP_I and the nth 
MP_C respectively. Tk is given by {Tk

s, Tk
v, Tk

φ} in which Tk
s, 

Tk
v and Tk

φ represent the pedestrian trajectory in spatial 
location, velocity and heading angle feature spaces, 
respectively. P_Im and P_Cn are given by {P_Im

s, P_Im
v, P_Im

φ} 
and {P_Cn

s, P_Cn
v, P_Cn

φ} which similarly represent the MP_I 
and MP_C in three feature spaces. Let T*k denotes the 
predicted behavior of PDk in any future motion. T*k is also 
given by {T*k

s, T*k
v, T*k

φ} for representing the predicted 
behavior in three feature spaces. If Tk is defined up to t, then 
T*k is defined from t+1 onward. For illustration convenience, 
we choose the spatial location feature as an example for 
presenting the multi-level prediction process. Thus Tk, P_Im, 
P_Cn and T*k in this case are all simplified into {Tk

s, Ø, Ø}, 
{P_Im

s, Ø, Ø}, {P_Cn
s, Ø, Ø} and {T*k

s, Ø, Ø}, respectively, in 
which Tk

s=tk
s(n1,n2)={rk

s[n]} and T*k
s=t*k

s(n3,n4)={r*k
s[n]}. 
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Figure 3.  Description of MP. 
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Figure 4.  Dimension equalization. 

In our previous method, P_Im
s and P_Cn

s are only 
represented by the mean vector of mth MP_I and nth MP_C 
clusters, respectively. When MP_C and MP_I are used for 
matching with trajectories, a global parameter is manually set 
through extensive experimentation to define a similarity range 

for all MP_C and MP_I [11]. It is more reasonable that the 
similarity range of MP_C/MP_I can be automatically obtained 
based on the group of trajectories that generates the 
MP_C/MP_I. In the improved method, P_Im

s and P_Cn
s are 

described by {LB_Im
s, MV_Im

s, RB_Im
s} and {LB_Cn

s, MV_Cn
s, 

RB_Cn
s}, respectively, as depicted in Figure 3. Let P_Cn

s be an 
example, besides using the mean vector 
MV_Cn

s=mv_cn
s(n1,n2)={r(mv_c)n

s[n]} in our previous method, 
we further consider the deviation between the trajectories in the 
cluster and the mean vector. In terms of the moving direction of 
MV_Cn

s, the left boundary LB_Cn
s=lb_cn

s(n1,n2)={r(lb_c)n
s[n]} 

and the right boundary RB_Cn
s=rb_cn

s(n1,n2)={r(rb_c)n
s[n]} 

represent maximal deviated distance in the left and the right 
sides of MV_Cn

s, respectively. The following sub-sections will 
describe the focus of our improved method in detail. 

B. Dimension Equalization 
Since the current trajectories and MP_C/MP_I consist of 

spatial locations of different number of time steps, before 
matching is performed, their dimensions need to be equalized. 
To do that, we first segment P_Cn

s
 or P_Im

s into portions which 
have the same data dimension with Tk

s. For example, if Tk
s has 

Kk
T time steps, and P_Cn

s has Kn
P time steps (Kn

P>Kk
T). We 

select the portion on P_Cn
s which has the smallest Euclidean 

distance to Tk
s as the representative of the whole P_Cn

s as 
depicted in Figure 4. The representative portion of P_Cn

s is 
denoted by P_Cn(rp)

 s. P_Cn(rp)
 s

 is similarly described by 
{LB_Cn(rp)

 s, MV_Cn(rp)
 s, RB_Cn(rp)

 s}, which is given as: 

       MV_Cn(rp)
s = mv_cn

s(Q+1, Q+Kk
T),  

  LB_Cn(rp)
s = lb_cn

s(Q+1, Q+Kk
T)  1≤Q≤Kn

P-Kk
T.             (1)

  RB_Cn(rp)
s = rb_cn

s(Q+1, Q+Kk
T), 

C. Pre-requisite Matching 
In prerequisite matching, our concern is that whether a 

current trajectory falls into a reasonable similarity range of a 
MP_C/MP_I. So a criterion is proposed based on the distance 
between a current trajectory and a MP_C/MP_I. The distance 
function D(Tk

s, P_Cn(rp)
s) between Tk

s
 and P_Cn(rp)

s is defined as: 

     ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ +×=

T
kK

i

s
ncmv

s
k

s
rpn

s
k iQrird

H
iCPTD

1
)_()( ])[],[()_,( ,     (2) 

where d(rk
s[i], r(mv_c)n

s[Q+i]) refers to the Euclidean distance 
between the corresponding coordinate pair rk

s[i] and 

r(mv_c)n
s[Q+i], and 

H
i

 ( ) is a weight factor for each 

time step, which means an “older” time step has less impact 
when matching. We regard P_C

∑
=

=
T

kK

i

iH
1

n(rp)
s as a Gaussian distribution 

model where the Mean locates at MV_Cn(rp)
s. From MV_Cn(rp)

s 
to LB_Cn(rp)

s
 or RB_Cn(rp)

s, a larger distance of Tk
s
 away from 

MV_Cn(rp)
s means a less likely matching. If Tk

s goes outside of 
LB_Cn(rp)

s
 or RB_Cn(rp)

s, the matching fails as depicted in Figure 
5. So the criterion for a successful matching between Tk

s
 and 

P_Cn(rp)
s is given as: 
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⎝ ⎠
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In (3), DstMax(i) defines the largest acceptable distance at each 
time step by choosing the larger from the distance between 
LB_Cn(rp)

s and MV_Cn(rp)
s, and the distance between RB_Cn(rp)

s 

and MV_Cn(rp)
s, which is given as: 

DstMax(i) = Max{d(r(lb_c)n
s[Q+i], r(mv_c)n

s[Q+i]),             
d(r(rb_c)n

s[Q+i], r(mv_c)n
s[Q+i])}.                                              (4) 

If Tk
s
 satisfies (3), it is passed to similarity matching for 

further matching with P_Cn
s, which is called a candidate 

MP_C after prerequisite matching. Otherwise, it is passed to 
middle-level prediction for predicting a medium-term behavior. 

MV_Cn
s

LB_Cn
s RB_Cn

s

Tk
s

 
Figure 5.  Failed pre-requisite matching. 

D. Similarity Matching 
In similarity matching, we consider the changing angle of 

the current trajectory at the time step which the prediction is 
performed for further measuring the similarity between the 
current trajectory and the candidate MP_C/MP_I. It is believed 
that a smaller changing angle means higher similarity between 
the current trajectory and the candidate MP_C/MP_I since 
there is less change in moving direction. The criterion for a 
qualified similarity matching between Tk

s
 and P_Cn(rp)

s is given 
as: 

                                  dK T
k

δδδ ≤− ,                                     (5) 

where T
kK

δ is the changing angle of Tk
s at the time step Kk

T 

which the prediction is performed, δ is the average of all 
changing angle of Tk

s at historical time steps and dδ is the 
largest deviated angle when comparing all changing angles at 
historical time steps with δ , which is given as: 

                     ( ) 13,arg
max

−≤≤−= T
kid Kiδδδ .               (6) 

For the current trajectory Tk
s, if more than one candidate 

MP_C/MP_I satisfies (5), the candidate MP_C/MP_I which 
has the smallest T

kK
δ is chosen for generating the predicted 

behavior for Tk
s since it has the least change in direction. 

For a current trajectory which could find a matched 
MP_C/MP_I in high-level/middle-level prediction, a long-
term/medium-term predicted behavior is obtained based on the 
corresponding matched MP_C/MP_I. For example, if Tk

s has a 
matched MP_C P_Cn

s, its long-term predicted behavior can be 
represented as follows when only considering spatial location 
feature: 

  T*k
s={T*k

s, Ø, Ø}={r*k
s[n]},    Kk

T+1≤n≤ Kk
T+Kn

P-S,        (7) 

where S represents the time step of P_Cn
s which is closest to 

the time step Kk
T of Tk

s for performing prediction, and r*k
s[n] 

represents the predicted spatial location of T*k
s at each time 

step after Kk
T, which is defined as: 

      r*k
s[n] = r(mv_c)n

s[S+n-Kk
T] + (rk

s[Kk
T] - r(mv_c)n

s[S]).          (8) 

The medium-term predicted behavior of a current trajectory 
could be generated in the similar way based on the matched 
MP_I. 

E. Single-step Forecasting 
In low-level prediction, a single time step action is 

predicted as the motion strategy. The next position at time step 
t+1 can be predicted by the following equation: 

                ,                     (9) 2)()()()1( TtBaTtvtwtw ++=+

where w(t) means the position at time step t, and v(t) and a(t) 
are corresponding velocity value and acceleration value. T is 
the durative time which a single time step represents. B is time-
dependent and is updated by the adaptive algorithm in [13]. 

IV. EXPERIMENT 

Figure 6.  The scenario of the real experiment. 
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In this section, we demonstrate how the improved method 
works in a dynamically changing real-world environment. The 
scenario of the experiment is based on people walking in a 
shopping mall as shown in Figure 6. A fixed-background video 
for this scenario was taken over 10 minutes. From the video 
recording, a total of 326 observable pedestrian trajectories were 
accordingly derived. We also use spatial location feature as an 
illustration in this experiment. In this case, a continuous 
pedestrian trajectory is generally represented by a series of 
discrete positions which are recorded at the sampling time of 
T=1s, which is a flexible parameter that can be changed 
depending on how trajectories are extracted from the raw video 
data. 

Figure 7.  Observable pedestrian trajectories. 

Figure 8.  Clustered MP. 

Out of all the observable pedestrian trajectories, we 
randomly select 300 trajectories for MP clustering and leave 
the remaining 26 trajectories for behavior prediction. Figure 7 
depicts the selected 300 observable pedestrian trajectories in 
which red-lines and green-lines represent double-directional 
trajectories between each pair of entrances, respectively. There 
are altogether 20 MP which are clustered and the results are 
shown in Figure 8, in which the arrows are used for 
differentiating moving directions. By passing all 20 clustered 
MP to the MP classification, 5 of them are classified as MP_C 
as depicted by red solid-lines, and the other 15 MP are 
classified as MP_I which are represented by blue broken-lines. 

Figure 9 depicts the multi-level prediction results among the 
remaining 26 trajectories. In Figure 9(a) and (b), red solid-lines 
and blue broken-lines are used for representing MP_C and 
MP_I, respectively, and corresponding predicted long-term and 
medium-term behavior are shown by green-lines. Black-lines 
represent the actual behavior of the pedestrian for comparison 
and black-circles label the time step that the prediction was 
performed. Figure 9(c) depicts a single time step action 
predicted at the low level by green-lines, and black-circles also 
label the time step that the prediction was made. 

In order to evaluate the performance of the improved 
method, we compare the predicted behavior of each trajectory 
with the corresponding actual behavior for analyzing the error 
of the improved prediction method. For the predicted behavior 
T*k

s of each pedestrian PDk at the time step t, prediction error 
ek(t) is computed as: 

                                          ( )
( )

e
k t

k t
k

D
e

L
= .                                (10) 

where De
k(t) is the deviated distance between the predicted 

behavior and the actual behavior after time step t, and Lk is the 
actual total traversed distance between the origin-destination 
pair of the pedestrian PDk. In order to work out a more accurate 
prediction error for each pedestrian, we calculate a series of 
ek(t), to generate a global prediction error εk of the pedestrian 
PDk at all possible time steps t when a prediction can be 
performed. The calculation of εk is performed as: 

                                     

1

( )
3

3

n

k t
t

k

e

N
ε

−

==
−

∑
.                                    (11) 

where N is the total number of time steps of the pedestrian’s 
trajectory from the origin to the destination. For all the 26 
trajectories for prediction, we compare the improved multi-
level prediction (IMP) method with our previous multi-level 
prediction (PMP) method and the recursive low-level 
prediction (RLP) method. For long-term or medium-term 
behavior predicted at high level or middle level from the IMP 
method, the RLP method also generates the behavior with the 
same number of future time steps by recursively predicting a 
single action in the next time step. Figure 10 depicts the 
calculated prediction error of all 26 trajectories generated by 
the IMP method, the PMP method and the RLP method, 
respectively. It can be seen that (1) the IMP method improved 
the prediction accuracy compared with PMP method; (2) the 
IMP method has an obviously better performance than the RLP 
method in most testing cases. In a minority of testing cases 
which have very well-defined trajectories, the IMP method is 
slightly worse than the RLP method. This is to be expected as 
RLP method works well with well-defined trajectories, and 
could fail disastrously when the trajectory changes direction 
frequently. Furthermore, we also compared the processing time 
of IMP method and PMP method, and it is concluded based on 
a very minor difference that the improved prediction accuracy 
of IMP method is not at the price of lower computational 
efficiency compared with PMP method. 
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Figure 9.  Multi-level prediction results.

     
                                        (a)                                                                                 (b)                                                                                (c) 

 
Figure 10.  Prediction error comparison between the IMP method, PMP 

method and the RLP method. 

V. CONCLUSION 
In this paper, we presented an improved multi-level 

behavior prediction method based on a new matching 
algorithm with classified motion patterns. Based on our 
previous multi-level behavior prediction framework, the 
improved method proposed in this paper concentrated on 
improving the similarity matching criteria between the 
trajectory and the clustered MP for pedestrian behavior 
prediction. The new criteria are superior in two areas: (1) a 
reasonable similarity range of MP is automatically calculated 
instead of manually set; (2) the distance feature and the 
changing angle feature are considered together for similarity 
matching while only the distance feature is considered 
before. From the real-world experimental result, it can be 
concluded that the improved method generates more accurate 
predicted trajectories than our previous method, and it also 
has a better performance in most testing cases compared with 
the recursive low-level prediction method. From the 
improved multi-level behavior prediction method, our future 
research will focus on three aspects: (1) to integrate the 
prediction on spatial location, velocity and heading angle; (2) 
to investigate online learning of MP and to improve the 
accuracy of behavior prediction based on updated MP; (3) to 
define behavior patterns based on learned MP and to analyze 
pedestrians’ motion intention based on their predicted 
behavior. 
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