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Abstract—The number of vehicles hitting the road each day is
rapidly increasing, and several problems, such as traffic conges-
tion or driver safety, can no longer be solved in the same fashion
as before. Intelligent transportation systems could potentially
solve part of these problems, but prototyping, designing and
testing cooperative smart vehicles is a cumbersome task. This
paper presents a realistic simulator where intelligent vehicles
can be designed and analyzed with a pragmatic approach. A
number of advances in robotics have already been transferred
to vehicular technology, with a potential increase of this trend
into the future. Here, we develop a plugin for a well-established
robotics simulator (Webots), in order to reinforce at the virtual
level this cross-fertilization between the two areas and create a
baseline for realistic studies of future solutions in real intelligent
vehicles.

I. INTRODUCTION

The need to create intelligent vehicles that can adapt to

the current traffic context and possibly to the individual

driver behavior becomes more important every day. Intelligent

transportation systems consisting of hundreds of intelligent

vehicles which sense, decide, and act in a distributed fashion in

the same shared environment can be designed and controlled

in different ways. It is important that models and algorithms

can be assessed in a realistic manner. Unfortunately, deploying

multiple prototype vehicles in reality is very difficult, because

of cost and safety issues, and it is thus necessary to simulate

these complex systems. Simulation can help in the design, op-

timization and performance assessment of intelligent vehicles

before their deployment in reality. This includes systematic

validation of the positions of their different sensors [25] as

well as the underlying actuation procedures. The closer the

simulation is to reality, the easier and faster the transition to

reality becomes.

Several types of vehicular simulations exist, ranging from

macroscopic to microscopic, characterized by more or less re-

alism. Macroscopic traffic simulations, also called continuous

flow simulations, are mainly used in traffic flow analysis and

capture average behaviors. Examples of such simulations are

the British TRANSYT-program and the American FREQ and

FREFLO-programs [1, 2]. This type of simulation is out of

scope for our objectives because it cannot capture individual

behaviors and thus the analysis of a single intelligent vehicle

in standard traffic is not possible.

The general trend of today’s traffic analysis lies in micro-

scopic simulations. Microscopic simulations such as Sumo [3]
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can capture individual behaviors and can be extended to

analyze car-to-car communication [4]. Today’s most widely

used microscopic simulators are VISSIM [6], PARAMICS [7],

CORSIM [8] and AIMSUN [9]. They have been calibrated to

match actual traffic flows and can handle several thousands

of vehicles running in a complex road network that includes

traffic lights and even pedestrians (for VISSIM). Even though

these simulators differ on certain aspects, they all use simple

kinematic models derived from the Newtonian dynamics rather

than dynamic models. Additionally, complex maneuvering

such as lane changing or parking is discretized. Our interest

is to develop simulation tools that can assess not only traffic

flow but also local maneuvering such as swerving to avoid an

obstacle partially blocking a lane. Thanks to the realism of

these tools, the design and evaluation of vehicles endowed

with sophisticated driving assistance modules [26] or the

development of fully autonomous vehicles that use complex

sensory apparatus (such as the vehicles that took part in the

DARPA Urban Challenge 2007 [10]) is also possible. This

paper should therefore be considered as a complementary

effort to the aforementioned simulation tools.

Although simulators which exhibit realistic dynamics for a

single vehicle exist, such as CarSim [5] and SiVIC [11], they

do not offer the possibility to assess a potentially intelligent

vehicle inside an actual traffic scenario with realistic sensing

capabilities. In this work, we propose a realistic simulator

extension, which we incorporate here as a plugin for We-

bots [12], a commercially available robotics simulator that

we will describe in Section II. This plugin does not only

capture the realistic physical dynamics of each vehicle, but

also enables us to control each vehicle individually (i.e. with

different controllers) when necessary. We can potentially ana-

lyze real traffic scenarios exhibiting specific behaviors for each

car. Vehicles can sense the environment with realistic discrete

sensors (reproduced with calibrated noise and nonlinearities

and available through Webots’ sensors library) and sensor

fusion algorithms can be tested before their deployment in

reality. Additionally, vehicles can communicate in a realistic

fashion with an OMNeT++ [13] plugin [14]. With all the above

mentioned elements, algorithm development for multi-vehicle

environments such as the one presented in [15, 16] can be

accelerated.

II. TOWARDS SIMULATING INTELLIGENT VEHICLES IN

REALISTIC TRAFFIC SCENARIOS

In this section, we describe the main parts of our simulation

engine.



A. Webots

Webots is a mobile robotics simulation software that pro-

vides a rapid prototyping environment for modeling, pro-

gramming and simulating mobile robots. Webots 6 uses

the Open Dynamics Engine (ODE) [18] library for realistic

physics simulation. The ODE library is an open source,

high performance library for simulating rigid body dynamics.

Customized physics and vehicle dynamics properties can be

implemented in Webots based on ODE. Therefore a real car-

based vehicle model with realistic vehicle dynamics features

can be developed in Webots with ODE. Webots can also be

extended with a realistic communication model. In particular,

a realistic radio communication between robotic agents was

implemented in [14] by wrapping the OMNeT++ network

simulation engine, as a plug-in for the Webots simulator.

OMNeT++ is a public-source, component-based, modular and

open architecture for discrete event simulation quite suited for

wireless communication networks. Overall, the latest version

of Webots 6 provides a useful platform for developing a

dynamic embodied simulation of multiple, intelligent vehicles.

B. Road Network

The road network and its properties are directly extracted

from the OpenStreetMap (OSM) XML data [17]. The exported

maps are translated into an internal graph data structure that

can be used by the intelligent vehicles if needed. This structure

can potentially be analyzed for shorter, safer or less congested

paths. Figure 1 shows how an actual map of the region

near EPFL, Lausanne, Switzerland has been imported in our

simulation environment.

OSM XML data offers a complete set of different types

of road segments (called ways). Each way is composed of a

set of geographic locations (called nodes) and properties. The

main properties used when converting OSM data into a usable

road network for our traffic simulator are the following: the

segment type (ranging from motorways to residential roads),

the direction of the road (one-way versus both-ways) and the

number of lanes. These properties are analyzed to generate

the internal segment lanes and connect the lanes together

at intersections. Unfortunately, to automate this process, we

need to make some assumptions about the road network. For

example, a motorway link branching off a motorway segment

will automatically be connected to the rightmost lane of the

Fig. 1. Conversion from the OpenStreetMap data to a usable simulation
world.

Fig. 2. Screen Shot of a dynamic embodied vehicle model. This vehicle is
equipped with four SICK LMS 291 laser rangefinders.

motorway (this would be true in most situations). Without

being exhaustive, and as an example, below are a few types

of connections that are handled specially:

• Segments branching off multi-lanes roads,

• Splitting segments,

• Multi-lanes to single lane segment or

• Single-lane to multi-lanes segment.

It is important to note that a variety of OSM editors are

available and can be used to create custom maps. Other GIS

file formats such as Shapefile can easily be converted to OSM

XML data if needed.

C. Car Model

The model used in our simulator and shown in Figure 2 is

composed of the vehicle body and four wheels. The vehicle

body is able to move freely in all six DOF in the 3D space, the

wheels can all spin and move vertically relative to the body,

and the steering wheels can also yaw. So the whole vehicle

model has 16 DOF in total (16 = 6 + 3 × 2 + 2 × 2), i.e.,

six DOF for the vehicle body, three DOF for each of the two

steering wheels, and two DOF for each of the two non-steering

wheels. Built in Webots based on ODE, this model already

incorporates basic rigid dynamics properties including typical

steering dynamics response. In the rest of this section, we

describe the models that play an important role when modeling

a car as well as a traffic system.

1) Joint Model: Wheels are linked to the vehicle body by

the ODE hinge-2 joint, which is defined especially for car

simulations. The hinge-2 joint is equivalent to two hinges

connected in series, with different hinge axes. An example is

the steering wheel of a car, which can both spin and steer along

different axes. Therefore all three motions (wheel steering,

spinning, and vertical movements) of a steering/driving wheel

can be conveniently integrated into just one joint model. For

consistency, four hinge-2 joints can be applied between the

vehicle body and its four wheels, respectively, where the

steering motions of the rear (non-steering) wheels can be

simply turned off. This is a more compact and integrated joint

model especially customized for dynamic vehicle simulations.
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Fig. 3. Variation of the friction coefficient µ on dry asphalt [19].

2) Friction Model: The friction coefficient µ between the

tire and the road is an important parameter limiting the

maximum tractive and braking forces generated from the

tire-road contact, and it varies under different environmental

and dynamical conditions. Figure 3 shows how µ varies for

different speeds on dry asphalt. We can define the longitudinal

slip as:

i =

{ (

1 − v
rω

)

if v ≤ rω, tractive slip
(

1 − rω
v

)

if v ≥ rω, braking slip
(1)

where v is the linear speed of the wheel center, ω its angular

speed and r its radius. The original, oversimplified ODE

friction model leaves µ equal to 1. Although the Pacejka

“magical” model [20] is a better approximation, a simpler

and more general model was desired and we decided to only

slightly improve the ODE friction model with the equation

below.

µ =

{

µ1 if i ≤ 20%
µ2 otherwise

(2)

Setting µ1 to 1.0 and µ2 to 0.8, this equation captures the

main characteristics of the curve in Figure 3 and avoids

complex nonlinear mathematical equations with many model

parameters to be tuned with real experimental data. Of course,

µ1 and µ2 used can potentially be modified to account for

different road conditions.

3) Kotwicki’s Engine and Brake Model: Standard equations

governing the engine are described in [21]. In our simulator,

we are only interested in having a throttle position to engine

torque converter. To that extent the following formula is

proposed:

te = teff(τ) · Tf(we) + (1 − teff(τ)) · Td(we) (3)

where te is the engine torque, τ the throttle position (τ ∈
[0, 1]), teff is the non-linear mapping function between the

throttle position and its actual effect, we is the engine’s angular

velocity, Tf is the burning torque mapping for a particular
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Fig. 4. Example of throttle to torque conversion.

engine regime and Td is the friction torque mapping for a

particular engine regime. Tf and Te are parameterized as

second order equations and can be tuned with real engine

specifications (mean square error fitting). The effective throttle

mapping function teff represents how the gas pedal influences

the combustion and thus the developed torque. Finally the

effective throttle mapping function is estimated by:

teff(τ) = 1 − e−aτb

(4)

with a and b both positive, where a and b would be propor-

tional to the start (when the throttle position is close to 0)

and end (when the throttle position is close to 1) slack of the

pedal respectively. Figure 4 shows an example of throttle and

engine rpm to torque conversion.

In a similar way, the braking action is proportional to the

effective brake applied:

tb = beff(β) · bmax (5)

where tb is the braking torque, beff is the mapping between

the brake pedal and its actual effect and bmax is the maximal

braking torque. The brake effects are simulated by applying a

counter torque on the wheels.

4) Sensor Models: Any of the sensors available in the

Webots sensor library can be used and added to each car

independently. Each of these sensors is reproduced with

calibrated noise and nonlinearities. Specific sensors include

cameras, compasses, GPS, gyroscopes and distance sensors.

Additionally, to make the simulation time lower, our plugin

can provide (if necessary) information that would be difficult

to compute from real sensor data (such as the position of other

vehicles).

D. Driver Model: Modified Helbing Model

A great advantage behind our simulator is that each vehicle

can potentially be controlled by any type of controller. In other

words, the decoupling of the driver model from the driver



assistance (and the underlying intelligence) is possible and

different driver models can be tested with different vehicle

setups. Meanwhile, to generate standard traffic, we provide a

simple yet realistic driver model, namely a modified Helbing

Model. This model is based on Helbing’s intelligent-driver

model (IDM) [22] for car-following. The key point of car-

following behavior is setting vehicle acceleration according

to the current situation and driver preferences, which include

the current gap and desired gap between the host vehicle and

the lead vehicle, current speed and relative speed to the lead

vehicle, driver’s preferred speed and driving style. Helbing

presented the formula:

ax = aacc

[

1 −
(

v

vpref

)α

−
(

R∗(v, RR)

R

)2
]

(6)

to compute the desired acceleration ax, where aacc is the

maximum acceleration limit, v and vpref are the current and

preferred host vehicle speed respectively, α is the acceleration

exponent parameter and R and R∗ are the current and desired

gap between the host vehicle and the lead vehicle respectively.

The desired range R∗ dynamically varies with current host

vehicle speed v and the closing speed relative to the lead

vehicle (range rate RR):

R∗ = R0 + R1

√

v

vpref

+ v · th − v · RR

2
√

aacc · apref

(7)

where R0 and R1 are constant distance parameters, th is the

preferred time headway and apref is the preferred deceleration.

When navigating on a lane, the host vehicle creates a trajectory

described by northing and easting coordinates (gathered from

the map generated when reading the OSM XML data in

Section II-B) as well as velocity and acceleration information.

This trajectory is analyzed and followed with the aid of the

proportional-integral (PI) controller from Linderoth et al. [23],

which actuates the steering as well as the throttle and brake

pedals.

On top of Helbing’s car-following model, a lane change

behavior is added. Closely related to the projected minimum

distance which is a quantitative measure characterizing the

emergency level of rear-end collisions [26], the lane change

decision is calculated using the prevailing range and vehicle

speeds. The assumption is that the lead vehicle will brake at

a constant maximum deceleration level (amax) until it comes

to a stop, while the host vehicle decelerates at its preferred

deceleration apref. If the projected position of the two vehicles

comes within a certain range Rthres, the host vehicle will

change its current lane if possible (i.e. collisions are also not

possible with cars on the future lane). So, when:

(v + RR)2

2 · amax

− v2

2 · apref

+ R < Rthres (8)

the host vehicle will change its lane. Collision checks for the

future lane are done in the same manner. On the other hand,

if the host vehicle cruises for a period of time tf at a fraction

vthres of its preferred speed behind the lead vehicle, it will also

Fig. 5. Screen shot of the debug window of our intelligent vehicle. The
points show the raw data returned by the SICK LMS 291 sensors. The two
boxes are the other vehicles estimated position.

try to change its lane. When changing its lane, the host vehicle

creates a maneuver reaching its desired new lane. The resulting

trajectory is then followed with the aid of the PI controller.

E. Traffic Model

1) Kinematic Model: Our plugin is able to realistically

simulate several tens of vehicles at a speed higher than real-

time on a traditional Intel R© CoreTM2 Duo running at 3 GHz

with 4 GB of RAM (i.e. 20 realistic vehicles run at 3.5 ×
real-time). If appropriate, the simulation speed can be further

increased by using simple kinematic models whilst keeping the

other features unchanged. This avoids the extra computation of

solid dynamics for cars that do not need that level of realism.

2) Rail-Based Model : The plugin can also, similar to

standard microscopic simulators, generate a complete traffic

scenario including up to a few thousand vehicles. These vehi-

cles are driven along virtual rails and only control their desired

lane and longitudinal acceleration using the driver model

presented in Section II-D. Their direction at intersections is

randomized according to predefined ratios (if provided). This

feature creates a potentially hybrid traffic: rail-based vehicles

can be added and run in parallel with other more realistically

driven cars, embedding different sensing and actuation mech-

anisms.

III. SHOW-CASE SCENARIO

In this section, we will present three simple scenarios to

show-case how sensors and communication can be tested by

extracting potentially useful information from our simulator.

The experiments shown here provide an insight on the capa-

bilities of our plugin and do not focus on the details of our

underlying algorithms.

A. Our Intelligent Vehicle

Visible on Figure 2, we have equiped our intelligent ve-

hicle with four simulated SICK LMS 291 sensors so as to

cover a 360◦ field of view. The SICK LMS 291 is a laser

rangefinder, which scans at 75 Hz over 180◦ with a 0.25◦

angular resolution. Its sensing range can go up to 80 m with

an error of about 1 cm at 30 m. We have implemented a
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Fig. 6. Section of Manhattan between longitudes −73.9975
◦ and

−73.9812◦ and latitudes 40.7378◦ and 40.7496◦ .

dynamic object detection and tracking method similar to the

one proposed in [15] where synthetic scans are created and

areas of difference between consecutive scans are tracked by

particle filters. Figure 5 shows our tracker in action on two

vehicles where the estimated vehicle bodies lie close to the

raw points returned by the laser rangefinders.

B. Experiment I

For this first experiment, we propose to test the accuracy

of our tracker in a heavy traffic environment. We load a

small part of the Manhattan (New York) road network into

our simulator (visible on Figure 6) and in which we initialize

1000 vehicles (modeled with the rail-based model presented

in Section II-E2). In this experiment, we use only the laser

rangefinder placed in front of the intelligent vehicle, pointing

forwards. The intelligent vehicle wanders randomly in the city

during the period of an hour and we record how many cars

are visible within the sensor range and how many cars are

detected and successfully tracked.

In this time period, our vehicle drove 25 km, encountered

663 other vehicles and successfully tracked 380 of them. We

also computed the measured distance and azimut to the tracked

vehicles and measured errors of 0.2114±1.535 m and 0.1478±
0.1894 rad respectively.

C. Experiment II

Assuming we are satisfied with the performance of our

vehicle tracker, we decide to use it to perform platooning

on highways. Platooning is a complex task that requires

automobiles to be able to drive in a controlled and coordinated

fashion. In this second set of experiments, we will use four

intelligent vehicles with four active SICK LMS 291 sensors.

For each experimental run, our vehicles are placed in a

highway ring. This three-lane ring consists of 4 segments:

• a 1000-meter-long straight segment followed by

• a curve with a radius of 500 meters followed by

• another 1000-meter-long straight segment and

Fig. 7. Screenshot of our simulation showing four intelligent vehicles
performing platooning on a highway.
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Fig. 8. Average and 95% confidence intervals of the rooted mean square
error of the distances between each car and the desired distances depending
on time for experiments II and III.

• a curve with a radius of 500 meters.

resulting in a 5142-meter-long ring. Our cars have to perform

a rectangular formation (10 × 3.5 meters) at a speed reaching

120 km/h. Figure 7 shows an example of such a formation.

We assume that the cars are able to monitor the lane

markings. Hence, they can use the PI controller mentioned in

Section II-D to track the lane centers. To realize the formation,

vehicles still need to gather the distance and bearing to the

other vehicles and apply a tuned PID controller. The position

of each car is monitored during a run and each run lasts 2

minutes. After 100 runs, the average rooted mean square error

(MSE) between the actual distances between each pair of cars

and the desired distances is computed.

Figure 8 shows the average rooted MSE over all runs. We

can observe that the formation is stable and that the average

error stays around 40 cm.

D. Experiment III

In a third experiment, we allow the cars of the previous

experiment to communicate their current speed (through a

realistic 802.11 Wi-Fi simulated using OMNeT++). This ad-

ditional information is integrated into our tracker by giving

a higher weight to particles whose speed is closer to reality.

Therefore, we obtain a more accurate estimation of both the



range and the bearing to other vehicles. The new errors on the

range and bearing are now equal to 0.0164 ± 0.8077 m and

0.0163± 0.0986 rad respectively.

Figure 8 shows the average rooted MSE over all runs. The

rooted MSE is sensibly lower than the one of the previous

experiment and stabilizes between 25 and 30 cm.

E. Discussion

We showed in this section how the design and implemen-

tation of intelligent steering algorithms can be accelerated

using our framework. The examples shown here represent a

small fraction of the available potential. In a similar fashion,

numerous other aspects of intelligent transportation systems

can be tested in realistic traffic conditions and their effects

analyzed and validated. A non-exhaustive list of these aspects

includes driver assistance, change in the physical vehicle

design, extension of sensing capabilities, increase in the drivers

reaction time, change in the road network topology and

introduction of cooperative behaviors.

IV. CONCLUSION

We presented a realistic traffic simulator plugin for Webots,

a realistic robotics simulator. As this plugin is mainly based on

the Open Dynamic Engine, it is also compatible with the open-

source Player/Gazebo [24] platform. This plugin is well suited

for the evaluation of intelligent vehicles on realistic road net-

works with realistic road partners. Multiple intelligent vehicles

can be tested at the same time with different controllers and

sensors. We illustrated some of the features of this simulator

on three simple scenarios.

Future works include systematic validation against different

vehicle models, as well as comparison with further simulation

platforms and real data.

ADDITIONAL MATERIAL

Source code and videos are available on http://disal.epfl.ch/

research/context aware its/simulator/.
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[9] J. Barceló, J. Casas, Dynamic network simulation with

AIMSUN, Int. Symposium on Transport Simulation,

2003.

[10] DARPA Urban Challenge: http://www.darpa.mil/

GRANDCHALLENGE.

[11] SiVIC, http://www.civitec.net/.

[12] O. Michel, Webots: Professional mobile robot simulation,

Journal of Advanced Robotic Systems, 2004, Vol.1, No.1,

pp. 39-42.

[13] A. Varga, Software Tools for Networking: OMNeT++,

IEEE Network Interactive, Vol. 16, No. 4, 2002.

[14] C. M. Cianci, J. Pugh, A. Martinoli, Exploration of an

Incremental Suite of Microscopic Models for Acoustic

Event Monitoring Using a Robotic Sensor Network, IEEE

Int. Conf. on Robotics and Automation, pp. 3290-3295,

2008.

[15] M. Montemerlo et al., Junior: The Stanford Entry in the

Urban Challenge, Journal of Field Robotics, pp. 569-

597, 2008.

[16] A. Broggi, P. Cerri and P. Antonello, Multi-Resolution

Vehicle Detection using Artifical Vision, IEEE Intelligent

Vehicles Symposium, pp 310-314, 2004.

[17] OpenStreetMap, http://www.openstreetmap.org/.

[18] Open Dynamic Engine, http://www.ode.org/

[19] J. L. Harned, L. E. Johnston, G. Scharpf, Measurement of

tire brake force characteristics as related to wheel slip

(antilock) control system design, SAE Technical Paper

No. 690214, 1969.

[20] E. Bakker, H. B. Pacejka, L. Lidner, A new tire model

with an application in vehicle dynamics studies, SAE

Technical Paper No. 890087, 1989.

[21] A. J. Kotwicki, Dynamic models for torque converter

equipped vehicles, SAE Technical Paper No. 820393,

1982.

[22] D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber,

Micro- and macro-simulation of freeway traffic, Math-

ematical and Computer Modelling, 2002, Vol. 35, pp.

517-547.

[23] M. Linderoth, K. Soltesz, R. M. Murray, Nonlinear

Lateral Control Strategy for Nonholonomic Vehicles,

American Control Conference, pp. 3219-3224, 2008.

[24] N. Koenig, A. Howard, Design and Use Paradigms

for Gazebo, An Open-Source Multi-Robot Simulator,

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 2149-2154, 2004.

[25] Y. Zhang, E. K. Antonsson and A. Martinoli, Evolu-

tionary engineering design synthesis of on-board traffic

monitoring sensors, Research in Engineering Design,

Vol. 19, No. 2-3, pp. 113-125, 2008.

[26] Y. Zhang, E. K. Antonsson and K. Grote, A new threat as-

sessment measure for collision avoidance systems, IEEE

Intelligent Transportation Systems, pp. 968-975, 2006.


