
University of Massachusetts Amherst

From the SelectedWorks of Daiheng Ni

September, 2010

Preliminary Estimate of Highway Capacity Benefit
Attainable with IntelliDrive Technologies
Daiheng Ni, University of Massachusetts - Amherst
Jia Li
Steven Andrews
Haizhong Wang

Available at: https://works.bepress.com/daiheng_ni/12/

http://www.umass.edu
https://works.bepress.com/daiheng_ni/
https://works.bepress.com/daiheng_ni/12/


Preliminary Estimate of Highway Capacity Benefit Attainable with
IntelliDrive Technologies

Daiheng Ni, Jia Li, Steven Andrews, and Haizhong Wang

Abstract— Recent development in IntelliDrive and associ-
ated Vehicular Ad Hoc Networks (VANET) has stimulated
tremendous interests among decision-makers, practitioners, and
researchers due to the potential safety and mobility benefits
provided by these technologies. A primary concern regarding
the deployment of IntelliDrive is degree of market penetration
required for effectiveness. This paper proposes an approach
to analyze the benefit of highway capacity gained from In-
telliDrive. To fulfill this purpose, a model incorporating the
effects of IntelliDrive on car following is formulated, based
on which a rough estimate of the resulting capacity gain is
derived. A simulation study is conducted to verify the model
and an illustrative example is provided to show the order of
magnitude of the capacity gain. This work provides decision-
makers and practitioners a basic understanding of the mobility
benefit obtained from IntelliDrive and how such benefit varies
as market penetration changes.

I. INTRODUCTION

Recent development in IntelliDrive, formally known as Ve-
hicle Infrastructure Integration (VII), has stimulated tremen-
dous interests among decision-makers, practitioners, and
researchers due to the potential safety and mobility benefits
provided by these technologies. Supported by the Dedicated
Short Range Communication (DSRC) standard and Vehicular
Ad Hoc Networks (VANET), IntelliDrive will enable road
vehicles to communicate with each other as well as to road-
side infrastructure in the future. Thus, highways and streets
will become an environment that encompasses ubiquitous
computing and communication. Consequently, a new class
of applications can be developed to dramatically increase
safety, throughput, and energy efficiency. All of these pos-
sibilities depend on large-scale deployment of IntelliDrive.
However, a deployment decision has to take many factors
into consideration. Among others, a primary factor is the
infrastructure needed for success or, alternatively, degree of
market penetration (i.e. percent of vehicles equipped with
IntelliDrive technologies) required for effectiveness.

The above question is very difficult to answer because
of the following: field experiments require a large-scale
IntelliDrive testbed which has yet to be deployed; simula-
tion is unavailable since existing traffic simulation packages
are not designed to model traffic enabled by IntelliDrive;
analytical modeling is prohibitive because of the complexity
and interdependency involved in IntelliDrive. To bypass these
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difficulties, this paper carries a humble goal by following
a simplified modeling approach which is complemented by
Monte Carlo simulation. In addition, the focus is to explore
a feasible approach to conduct preliminary estimation of the
mobility benefit of IntelliDrive, i.e. the increase of highway
capacity brought about by IntelliDrive and how the result
changes as market penetration varies. There are two building
blocks in this approach. The first is to incorporate the
effects of IntelliDrive into driving behavior modeling. For
such a purpose, a simplified Gipps model [1] was used
to attribute the effects of IntelliDrive to the change in the
distribution of drivers’ perception-reaction time. Recognizing
that IntelliDrive may bring other profound changes in traffic
operations than merely perception-reaction time, the model
has to be kept as tractable as possible to make the analysis
feasible yet capturing the major effect of IntelliDrive. Based
on the model, the second building block is a probabilistic
analysis to provide an estimate of highway capacity. In
this part the major tools utilized are Wald’s formula in
probability theory and a theorem regarding the product
moment of stopping time. An analytical approximate formula
for capacity is obtained therein. A Monte Carlo simulation
study is conducted to provide an alternative to verify this
estimate since field tests are not possible at this time. The
result obtained in this article may offer decision-makers and
practitioners some insights into the question at the beginning.

II. EXISTING STUDIES

The idea of studying traffic flow benefits due to advanced
technologies such as Adaptive Cruise Control (ACC) Sys-
tems and Automated Highway Systems (AHS) has been
addressed in the past. A great deal of studies have been
identified which provided insights into highway capacity and
traffic stability. A good survey of these studies can be found
in [2]. A few additional references that present the necessary
context for this study are added here. In their early studies on
flow benefits of AHS, [3], [4] investigated how ACC affected
traffic flow and found that the improvement in capacity is
small. Also focused on ACC, [5] studied the impact of ACC
on traffic flow stability. [6] studied a more challenging case
which involves mixed traffic consisting of ACC automated
vehicles and manually operated vehicles. They found that
the capacity benefit became significant when ACC equipped
cars exceeded 50% market penetration. When all cars were
equipped with the technology, they found a 33% increase in
capacity. [7] further considered Cooperative ACC (CACC)
involving inter-vehicular communication and concluded that
AACC could only have a small impact on highway capacity



(at most a 7% increase), while significant capacity gain
could be expected with increased CACC market penetration
(potentially more than doubling the capacity). [8] studied
similar subject matter with a focus on the impacts of CACC
on a highway-merging scenario. Based on the traffic flow
simulation model MIXIC, they found improved traffic sta-
bility and a slightly increased capacity compared to the non-
AAC equipped scenario.

Inspired by these original studies, our work considers a
more general scenario which incorporates three types of driv-
ing modes enabled by IntelliDrive: namely non-IntelliDrive,
IntelliDrive-assisted, and IntelliDrive-automated. In the non-
IntelliDrive mode, drivers operate their vehicles without any
assistance from IntelliDrive, just as what a regular driver
does. In the IntelliDrive-assisted mode, drivers receive Intel-
liDrive assistances such as driver advisories (e.g. downstream
congestion) and safety warnings (e.g. emergency brake),
but these drivers still assume full control of their vehicles.
The IntelliDrive-automated mode denotes that a vehicle is
operated by IntelliDrive-enabled automatic driving features;
however, the driver may break the loop and take over at any
time as the need arises. In relation to these modes, existing
studies emphasized the IntelliDrive-automated mode since
ACC, AACC, and CACC can be considered as special cases
of this mode. This paper broadens the perspective by also
consider the effect due to IntelliDrive-enabled assistance to
drivers (such as driver advisories and warnings). Moreover,
this research takes a probabilistic approach and analytically
relate the capacity benefit to the attributes of these driving
modes and their market penetration.

III. INCORPORATING INTELLIDRIVE EFFECTS

A. Assumptions and simplifications

IntelliDrive can bring about many fundamental changes to
transportation systems such as ubiquitous situational aware-
ness, more efficient system control, more advanced safety
features, etc. These changes will affect drivers who actually
control their vehicles. Among others, the primary effect of
IntelliDrive on drivers is the distribution of their perception-
reaction time. For example, in the non-IntelliDrive mode,
a driver typically needs to go through the full perception-
reaction process and thus may necessitate a relatively long
perception-reaction time (perhaps, a few seconds) on aver-
age. In addition, drivers without any assistance have less
situational awareness which results in more uncertainty in
their responses. This may give rise to a larger variance in
their perception-reaction time. In the IntelliDrive-automated
mode, the perception process is taken care of by IntelliDrive
and the reaction process is handled by the automatic driving
system. Thus, the resulting perception-reaction time can be
minimal. Also, human drivers are not involved in the driving
loop; therefore, the variance of perception-reaction time may
be close to zero. In the IntelliDrive-assisted mode, a wide
range of possibilities may occur to the distribution. On one
hand, it seems intuitive that IntelliDrive-assistances such as
advisories and warnings can greatly reduce drivers’ percep-
tion time, which is supported by evidences in psychology

literature such as [9]. On the other hand, such a new service
may demand more attention to understand and familiar-
ize and thus require a longer perception time, which is
particularly true during confidence-building process. Before
experimental data become available, the above discussion
on perception-reaction time and their distributions remain
open to debate. Nevertheless, it is reasonable to assume that
the perception-reaction time of non-IntelliDrive, IntelliDrive-
assisted, and IntelliDrive-automated drivers follow different
distributions, as illustrated in Figure 1. Note that no assump-
tion is made regarding their actual distributions and relation.
This keeps the subsequent formulation generic and flexible
for analysts to customize their models. For example, analysts
can plug in suitable perception-reaction time distributions
based their own understanding or experiments in the field or
on driving simulators.

Fig. 1. Perception-reaction time under different driving modes

In addition, it is assumed that IntelliDrive-automated and
IntelliDrive-assisted modes are always able to reap the
benefits of VANET, i.e. such vehicles are always assumed
to be in a vehicular ad-hoc network. It is recognized that
such an assumption is not very true, especially under low
IntelliDrive market penetration. Fortunately, this assumption
is acceptable considering the following. First, it tends to
overestimate highway capacity when there are not many
IntelliDrive-equipped vehicles. Though not desirable, such
an estimate does provide an upper bound of the capacity
gained by IntelliDrive. Second and perhaps more importantly,
the validity of such an assumption increases when the de-
ployment of IntelliDrive is relatively significant, a scenario at
which IntelliDrive aims and under which IntelliDrive makes
the most sense. In order to fully account for this limitation,
one must consider the dynamics of and interdependence
between vehicular ad-hoc networks and vehicular traffic. If
this complication were to be taken into account, an analytical
approach would no longer be adequate. Therefore, the goal
of this research is to conduct a preliminary estimation of
capacity benefit. Considering that field data are rare and the
actual effects of IntelliDrive are still subject to discussion,
an easily understood and tractable approach seems more
desirable to fulfill the purpose.

It is further assumed that IntelliDrive market penetration



(i.e. the percent of total vehicles operating in each of the three
modes) is known. With the above setup, it is straightforward
to derive a car-following model with perception-reaction
time as a parameter. Compared with the original [1] model,
the new model rectifies the perception-reaction time which
considers IntelliDrive-enabled driving modes and incorpo-
rates their market penetration rates. This model is then
used to derive an equilibrium flow-density relationship, from
which maximum flow rate (i.e. the capacity) can be derived.
Considering the random nature of the perception-reaction
time, a probabilistic analysis is performed to investigate the
properties of the capacity and a Monte Carlo simulation is
used to verify the results obtained above.

B. Model formulation
Figure 2 shows two vehicles in car following. According

to Gipps model ([1]), a vehicle should leave enough room
in front of it in order to be able to stop safely behind its
leading vehicle in the event that the leading vehicle applies
emergency brake. A slightly modified Gipps model in a
simpler form can be the following:

Si(t) = xi−1(t)− xi(t) ≥ li−1 + ẋiτi −
ẋ2
i (t)
2bi

+
ẋ2
i−1(t)

2Bi−1

where Si(t) is the spacing between the follower i and its
leader i − 1 at time t. xi(t) and ẋi(t) are location and
speed of i at time t and the same notations apply to i − 1.
τi and bi are i’s perception-reaction time and comfortable
deceleration. li−1 and Bi−1 are i−1’s length and maximum
deceleration.

Fig. 2. Vehicles in car following

Under equilibrium conditions, vehicles tend to behave
uniformly and thus lose their identities. After suppressing
time t and adding an additional delay θ for extra protection,
the spacing becomes

S = l+ ẋ(τ + θ)− ẋ
2

2b
+
ẋ2

2B
= (

1
2B
− 1

2b
)ẋ2 +(τ + θ)ẋ+ l

Thus, the safe spacing is explicitly expressed as a function
of speed v ≡ ẋ (under equilibrium conditions, it is also the
traffic speed) with parameters τ , θ, B, b and l. Among all
the parameters, τ and θ characterize the behavior of drivers
and are independent of speed v and spacing S. B, b, and l
are vehicle properties and can be assumed as constants. Since
density k is related to spacing S as k = 1

S , flow q is obtained
by substituting k and v into the fundamental relation,

q = kv =
v

Gv2 + τ ′v + l

where τ ′ = τ + θ and G = 1
2B −

1
2b . In this relation, v can

be viewed as the primary input. v and τ ′ are independent
variables. The maximum attainable q is of interest. To find
the maximum q (denoted qm), we solve the equation

dq

dv

∣∣∣∣
vm

= −
G− l

v2

(Gv + τ ′ + l
v )

2

∣∣∣∣
vm

= 0

we get the root, vm =
√
l/G, and correspondingly, qm =

1/(2
√
Gl + τ ′). To verify that qm is indeed a maximum as

v varies, one may simply check the second derivative of q
at vm. It turns out that this is true.

IV. PROBABILISTIC ANALYSIS

A. The stopping time formulation with random τ

Note that the above discussion does not incorporate the
random nature of perception-reaction time τ nor its distribu-
tion in different driving modes. Denote fno(t) the probability
density of τ of drivers under the non-IntelliDrive with mean
τno and variance V ar(τno). Similarly, the probability density
of τ of drivers under the IntelliDrive-assisted mode is fas(t)
with mean τas and variance V ar(τas); the probability density
of τ of drivers under the IntelliDrive-automated mode is
fau(t) with mean τau and variance V ar(τau). In addition,
market penetration rates of road vehicles operating in non-
IntelliDrive, IntelliDrive-assisted, and IntelliDrive-automated
modes are denoted as pno, pas, and pau respectively. They
satisfy the following relationships: 0 ≤ pno, pas, pau ≤ 1
and pno + pas + pau = 1. Therefore, the perception-reaction
time of an individual driver i, τi, is a random variable which
can be modeled by drawing first from the percent/probability
of market penetration to determine which driving mode this
driver uses and then from the distribution of perception-
reaction time of that particular mode.

Henceforth, we will investigate the properties of q and qm
as τ takes on random values. Usually, the first order second
moment analysis (FOSM) is sufficient to fulfill this purpose.
However, since FOSM is based on the Taylor expansion of
functions, the accuracy of approximation relies heavily on the
convergence rate of the Taylor series in the neighborhood of
the expansion. For the higher order moment, this is especially
true. In this situation, it is unfortunate that the expression of
qm is ill-posed to adopt the FOSM. This is because qm,
written in the form of f(x) = 1/(a + bx), corresponds to
a slowly converging expansion series when |a + bx| ∼ 0, a
result of comparable values of a and b.

Thus, we tackle the problem in a different way. In par-
ticular, we introduce the stopping time concept such that
the expansion-based analysis like FOSM is avoided. The
procedure is as follows. First, we redefine the flow as,

q = kv =
N

L
v

where v is the traffic speed, L is the length of a segment of
highway in consideration, and N is the number of vehicles
within the length. Flow q, can be written as N

L/v and be
interpreted as the number of vehicles occupying a certain



length of road divided by the time they take to traverse
the road. Under equilibrium conditions, this definition is
equivalent to the original definition. Then we can adopt
the concept of random walk. It is easy to see that N is
actually the stopping time (stopping time, a standard concept
in probability theory, can be roughly regarded as a ‘random
time’ whose value depends on current and historical values of
a stochastic process). A rigorous definition is found in [10])
where a random walk

∑n
i=1 Si with positive drift E(Si) has:

N = inf
n
{n :

n∑
i=1

Si > L}

where inf indicates the infinimum of a set, and

Si = Gv2 + τ ′v + l

Then
µq ≡ E(q) =

v

L
E(N)

Moreover,

E(N) =
L

E(Si)
=

L

Gv2 + µτ ′v + l

where the first equality is due to Wald’s equation, with
its form and derivation given in [10]. Application of this
equation requires E(Si) <∞, which is obviously true from
a realistic point of view. Thus, we obtain the approximation
of expected capacity when speed is v,

µq ≡ E(q) ∼ v

Gv2 + µτ ′v + l

where µτ ′ = E(τ ′). Plugging in the optimal speed v = vm =√
l/G, we obtain the maximum value of approximation of

expected capacity,

µq,m ≡ E(qm) ∼ 1
2
√
Gl + µτ ′

To obtain the variance of q and qm, we need to utilize a
formula regarding the variance of stopping time given in
[11]. In the current scenario, it is,

V ar(N) = µ−3σ2L+ µ−2K + o(1)

where K is a constant independent of L, and

µ = E(Si) = Gv2 + µτ ′v + l

σ2 = V ar(Si) = σ2
τ ′v2

By substituting them into the definition of q, by letting L be
large enough, and by only keeping the dominating term, we
get the variance of flow in the general case,

σ2
q ≡ V ar(q) ∼

σ2
τ ′v4

(Gv2 + µτ ′v + l)3L

Plugging in the optimal speed v = vm =
√
l/G, we obtain

the approximate variance of the maximum flow, i.e. capacity,

σ2
q,m ≡ V ar(qm) ∼ σ2

τ ′ l2

(2l + µτ ′
√
l/G)3G2L

=
σ2
τ ′Gl

(2Gl + µτ ′
√
Gl)3

l

L

We see two quantities,
√
Gl and l/L, together with

characteristics of perception-reaction time τ ′ determine the
variance. It is notable that the involved quantities are all
easily measured, indicating the advantage of our estimate
formula in terms of calibration.

B. Simulation verification

In this section, a simulation study is conducted to verify
the above approximation formulas from the numerical per-
spective. This is necessary since approximate formulas them-
selves do not guarantee satisfactory numerical performance,
as only the orders of approximation accuracy are known. It
is notable that this simulation itself is not a realization of the
Gipps car-following model influenced by IntelliDrive which
is beyond the scope of current study. We designed a Monte
Carlo simulation, with one trial as follows:

1) Select road length in consideration, denoted L, initial-
ize L0 = 0;

2) Randomly sample the perception-reaction time τ , cal-
culate the cumulative length, which is defined as,
Lj+1 = Lj + S;

3) If Lj > L, denote N = max j, calculate q = vN
L ; else

return to (2).
Each trial in the simulation mimics the instantaneous vehicle
spatial distribution on the road, such that the count of
vehicles N at each moment is obtained. In the simulation, we
assume the random perception-reaction time has a density of
the following form,

fτ (t) = paufau(t) + pasfas(t) + pnofno(t)

where
∑
i pi = 1 and i ∈ {au, as, no}. Here fi(·)’s repre-

sents the density of the perception-reaction time distribution
of the i-th group, and pi’s are interpreted as the market
penetration of the corresponding groups. For the purpose of
illustration, we consider an ideal and simplified case. We
assume the fi’s are the density of uniform random variables.
The function fi is of the form,

fi(t) =
1

ui − li
I(t ∈ [li, ui])

It is easy to see, a random variable with the above density
fi has an expectation µi = (ui + li)/2 and a variance σi =
(ui − li)2/12. We then have,

µτ =
3∑
i=1

piµi

στ =

√√√√ 3∑
i=1

piµi,2 − µ2
τ =

√√√√ 3∑
i=1

pi(σ2
i + µ2

i )− µ2
τ



Let the first, second, and third term in expression of fτ rep-
resent the IntelliDrive-automated, IntelliDrive-assisted, and
non-IntelliDrive group, respectively. Then we assume,

µau = 0.5, µas = 1.0, µno = 1.5

σau = 0, σas = 0.2, σno = 0.5

pau = 0.2, pas = 0.5, pno = 0.3

Moreover, we fix B = −4 m/sec2, b = −2 m/sec2, l =
4.5 m (15 feet) and τ ′ = 1.5τ (then there is µτ ′ = 1.5µτ
and στ ′ = 1.5στ ). The number of iterations in each loop is
1000. The lengths of the segments on the one-lane highway
vary from 5 km to 125 km, with a step of 5 km. The traffic
speed varies from vopt−10.5 km/hr to vopt+10.5 km/hr,
with a step of 3.5 km/hr. The vm is the optimal speed
defined above.
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Fig. 3. The comparison of simulated and approximate expectation of flow
µq (in pcphpl) (top plot: simulated value; bottom plot: approximate value)

Observation of the simulation results and the conclusions
drawn are as follows. First, in the case under consideration,
the approximate expectation µq and standard deviation σq
of the flow are close to the simulation results, as shown
in Figure 3 and 4. Second, in particular, the comparison of
µq,m and σq,m with the simulation is shown in Figure 5.
The relative error of µq,m is very small, around 1%. For the
standard deviation σq,m, we see the fit of approximation to
simulation is also near perfect, especially as the distance
L gets larger. To summarize, the simulation of the case
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Fig. 4. The comparison of simulated and approximate standard deviation
of flow σq (in pcphpl) (top plot: simulated value; bottom plot: approximate
value)

when τ takes a specific distribution, numerically justifies
the approximations obtained by probabilistic analysis, and
it intuitively illustrates the quality of these approximations.

V. AN ILLUSTRATIVE EXAMPLE

The simulation study in the above section is able to
provide an estimate of the capacity gain in absolute terms.
Such a result, however, is lower than the typical capacity
under ideal conditions, i.e. 2400 pcphpl for a basic freeway
section. This is due to the conservative nature of the Gipps
model, which is less capable of capturing the close-following
behavior in reality. Developing a more realistic model may
resolve the problem, but the mathematical tractability may
be lost as well. Therefore, it is reasonable to describe the
capacity benefit in relative terms, as discussed below.

To answer the question at the beginning of this paper
(i.e. degree of market penetration required for effectiveness),
we provide the following illustrative example. This example
consists of four cases and in each case the ratio pau/pas is
assumed to be constant. In addition, we define the relative
change in capacity as

r(pau/pas, pno) =
qm(pau, pas, pno)

qm(0, 0, 1)

=
qm((1− pno) pau/pas

pau/pas+1 , (1− pno)
1

pau/pas+1 , pno)

qm(0, 0, 1)



Fig. 5. The comparison of simulated and approximate performances (top
plot: expectation of maximum flow µq,m; bottom plot: standard deviation
of maximum flow σq,m) (distance L, m; flow q, pcphpl; dots: simulated
values; solid line: approximate values)

where qm(·, ·, ·) is the capacity corresponding to mar-
ket penetration (pau, pas, pno), and the second equality is
pau + pas + pno = 1. This formula could be interpreted
as the ratio of increased capacity over the original capacity
(i.e. pno = 100%). By employing this definition, we will
hopefully overcome the lower estimate by the Gipps model.
We obtain the values of r in four cases, i.e., when pau/pas =
0.1, 1, 10, 100. The results are as shown in Figure 6. It is
found that the relative increase of capacity ranges between
20% to 50% when IntelliDrive is fully deployed (i.e. pno =
0), with the former case corresponding to pau/pas = 0.1, the
latter case pau/pas = 100. Note that the above example is a
only a rough estimate for illustration purpose. Nevertheless,
the example does indicate that the benefit from employing
IntelliDrive could be quite significant even when the market
penetration of IntelliDrive-automated vehicles is small. As
more accurate information regarding the involved parameters
becomes available, the estimate can be fine-tuned and more
accurate results are expected. The outcomes can be used to
help make the decision on IntelliDrive deployment in future.

VI. CONCLUDING REMARKS

The purpose of this study is to provide a preliminary
estimate of the capacity benefit obtained from IntelliDrive
deployment. To fulfill this purpose, we present a modification
to the classical Gipps model and a probabilistic approach
to analyze highway capacity by incorporating the effects

Fig. 6. The relative benefits of IntelliDrive as function of market penetration
of IntelliDrive in different cases (x-axis: market penetration of non-assisted
vehicles; y-axis: ratio of increased capacity to the original capacity)

of IntelliDrive. In particular, we obtain the approximate
formulas of expectation and variance of the capacity in a
random setting. We also find that the derived approximate
expectation and variance formulas are numerically credible
through a simulation study. In the future, the study may
be extended to more complicated and realistic scenarios
(e.g. non-equilibrium flow and non-homogeneous types of
vehicles) where more involved simulation is expected before
field experiments in a large-scale testbed become feasible.
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