
 
 

  

Abstract— In this paper we propose a new method for the 
automatic detection and tracking of road traffic signs using an 
on-board single camera. This method aims to increase the 
reliability of the detections such that it can boost the 
performance of any traffic sign recognition scheme. The 
proposed approach exploits a combination of different 
features, such as color, appearance, and tracking information. 
This information is introduced into a recursive Bayesian 
decision framework, in which prior probabilities are 
dynamically adapted to tracking results. This decision scheme 
obtains a number of candidate regions in the image, according 
to their HS (Hue-Saturation). Finally, a Kalman filter with an 
adaptive noise tuning provides the required time and spatial 
coherence to the estimates. Results have shown that the 
proposed method achieves high detection rates in challenging 
scenarios, including illumination changes, rapid motion and 
significant perspective distortion. 

I. INTRODUCTION 
UTOMATIC characterization and recognition of road 
traffic signs appears as a very attractive topic of 

research in the field of advanced driver assistance systems. 
The complexity of the environment, which is continuously 
changing, as well as the real-time operation requirement, 
constitute major challenges in this field. Although many 
different approaches have been proposed in the literature to 
address traffic sign recognition [1], [6], [9], [11], their 
performance highly depends on the ability to previously 
detect and characterize them in the images. Traffic sign 
detection needs to be done swiftly as soon as signs are 
visible, while also being robust to illumination changes and 
perspective distortion, so that time consuming recognition 
engines [1], [6] can operate after detection. 

Detection methods in the literature can be divided into 
three main groups: color-based, shape-based and those 
which combine both color and shape information. Color 
analysis has been exploited in many different ways. For 
instance, in [1] the authors propose a technique based on 
static thresholds in RGB space. A similar framework is 
proposed in [2], [12], where thresholds are applied in HSV 
space. Although they are very fast, these techniques are not 
able to cope with significant color variations due to changes 
in illumination. To improve the performance, more 
complex color models have been proposed. In [7] a Mixture 
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of Gaussians (MoG)-based color detection is used, in which 
several Gaussians are employed in order to model different 
illumination conditions in CIELab color space. Similarly, 
in [6] a Bayesian approach is used to detect road signs, 
where likelihood is modeled as a one-dimensional Gaussian 
distribution applied on the H component of HSI space 
irrespective of the illumination conditions. 

On the other hand, proposed shape-based detection 
systems typically work with grayscale rather than color 
images. The most common techniques are based on the 
extraction of edge or corner points. For instance, Hough 
Transform is used in [4] and Canny detector is utilized 
in [11]. In [8] the authors propose a method based on the 
Fast Radial Symmetry Transform, in order to look for signs 
of several shapes (circular, triangular, octagonal, etc.). All 
these techniques show severe limitations when traffic signs 
appear on cluttered backgrounds, which are particularly 
frequent in urban environments. 

Finally, other authors consider the combination of color 
and shape information as the best way to strengthen their 
algorithms. Particularly, in [10], after a color-based 
segmentation in HSI space, a connected component 
labeling process is carried out in order to find objects in the 
image. Once the objects are found, a fuzzy shape descriptor 
is applied to determine whether the road sign is circular or 
triangular. In [9] the authors apply two Look-up-tables 
(LUT) for both H and S components of HSI space. Then, 
the authors classify the shape of the object comparing the 
FFT of the signature of the object with that of several 
reference shapes.   

In contrast to intra-frame detection, other authors 
propose to use previous information to accomplish sign 
detection. Thereby, instantaneous detection failures (due to 
occlusion, for example) can be overcome. This involves the 
design of a temporal tracking stage, which is usually 
addressed by means of Kalman filters [5] or particle 
filters [7]. 

In this paper an innovative approach to traffic sign 
detection is presented based on the fusion of multiple 
features operating at both pixel and region level, and the 
incorporation of an efficient Kalman-based tracking 
scheme. Detection at pixel level is based on H-S color 
analysis through an innovative MoG model in a Bayesian 
decision framework, which also considers different 
illumination conditions and the presence of misleading 
elements (brick-like and sky).  At region level, a simplified 
appearance model is used to decrease false positive rates, 
and a Kalman-based tracking strategy is proposed to ensure 
detection by taking into account features temporal 
coherence and the traffic signs appearance evolution. 
Previous detection results are used to adapt prior 
information in the color classification stage, and a novel 
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approach to model noise in the Kalman filter framework is 
considered that improves detection accuracy by considering 
the sign-to-vehicle distance evolution. Excellent results are 
shown under different illumination conditions, both in 
highways and urban environments, for blue and red traffic 
sign detection. 

II. SYSTEM OVERVIEW 
The block diagram of the system is depicted in Fig. 1. 

Traffic sign detection is divided into two phases: 
hypothesis generation and hypothesis verification. In the 
former, color and appearance information of traffic signs 
(TS) is analyzed in order to provide a set of regions of 
interest (ROI) which may contain road signs. After the pre-
processing stage (that involves noise reduction, image 
resizing and RGB to HSV conversion), a Bayesian 
classifier is used based on a color modeling space in which 
three illumination conditions are considered: excellent, 
regular and poor. As a result, pixels in the image are 
assigned to the class they are more likely to belong to. This 
pixel-wise classification is used to undertake a connected 
components analysis in which characterization at region 
level is carried out. Based on this characterization, a set of 
candidates is generated holding those compact regions that 
match the expected TS appearance model (defined in terms 
of TS area, pictogram area and aspect ratio). In the 
verification stage, each one of these regions is tracked 
independently by means of a Kalman filter which, based on 
an adaptive tuning of the process and measurement noise, 
provides information to the decision module. In this module 
the TS area evolution (sign and pictogram) and the 
trajectory smoothness constraints are taken into account to 
select the final set of regions to be delivered for 
classification. Naturally, regions that do not match the 
expected dynamic patterns (TS size and trajectory 
evolution) are discarded, while the rest of ROIs are refined, 
both in location and dimensions, for further classification. 

III. COLOR ANALYSIS 
In this stage we separate road signs from the background 

through color analysis taking into account the H and S 
components of HSV space [1]. In particular, most TSs 
feature red or blue borders. Thus, the posterior probability 
( ( | )) of a pixel =  ,  to belong to the class ∈  ( ),  ( ), ( )  is computed 
using the Bayes’ rule as: ( | ) = ( | ) ( )( )                        (1) 

where ( | ) is the likelihood of a pixel z to belong to a 
class , ( ) is the a priori probability of class , and ( ) is the evidence. Initially ( ) are assumed to be 
constant and equal for each class. However, as will be 
explained in Section V, a priori probabilities will change 
dynamically according to the information feedback from 
the tracking stage. As in [1], we assume that  and  
involve independent distributions for all the three classes: 
 ( | ) =  ( | ) ( | )                  (2) 

Fig. 1. Block diagram of the proposed TS detection and tracking system. 
 
The likelihood functions ( | ), k ∈ ,  and                
i ∈ , , are modeled as a mixture of three Gaussians, 
each one modeling a different illumination condition: 
excellent (x), regular (r) and poor (p): ( | ) = 13 1√2 

 ∈ , ,           (3) 

where  and  vary depending on k and i (explicit 
references to them have been removed for clarity). The 
initial parameters ( , ) of the mixtures in (3) are obtained 
through an offline training stage where real road sign 
images under different illuminations have been considered. 
The resulting MoGs are presented in Fig. 2. As can be 
observed, with regards to saturation feature, likelihoods for 
red (b) and blue (d) TSs show a similar behavior, whereas 
hue components, (a) and (c), are very discriminative as they 
cover completely different ranges. Specifically, while for 
blue TSs the range of  values (c) is concentrated around 
0.55, for red TSs (a), valid pixel values are either 
concentrated in the lower or upper part of the valid range 
(0,1), thus forcing to model both ranges independently. 

In order to model the likelihood function for the 
background class, ( | ), a uniform distribution can 
naturally be assumed. However, there are some elements 
that are especially frequent in the background of this kind 
of environments. Particularly relevant are the bricks (or 
brick-like elements) and the sky, which have a similar color 
to the objects of interest, i.e. the traffic signs, and can 
therefore lead to errors unless a special treatment is given to 
them. In particular, we propose to model the background as 
a mixture between a uniform distribution and specific 
functions for the bricks and the sky. 

 

 
(a) (b)

 
(c) (d)

Fig. 2. Designed MoG for each class, for features  and : (a) red class, 
feature , (b) red class, feature , (c) blue class, feature , and (d) 
blue class, feature . 
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On the one hand, regarding the red class, studies have 
shown that the brick distribution in HS plane is mainly 
located in the lower hue values and does not fully overlap 
with that of traffic signs (see Fig. 3, extracted from [3]). 
Saturation values, in contrast, are non-discriminative. This 
was confirmed by tests conducted on our own set of 
images, and thereby a Gaussian function modeling the 
probability of a pixel to be a brick is added to the 
background class likelihood on the hue feature. 

An analogous procedure is used to model the probability 
of a pixel to be part of the sky. Namely, from a set of 
images extracted from our sequence database, the features 

 and  are measured, and Gaussian distributions are 
adjusted to these data. In this case both hue and saturation 
turn out to be meaningful for separation between traffic 
signs and sky.  
 Once distributions for brick and sky are determined, the 
likelihood of the background is defined by a mixture model, 
both for ( | ) and ( | ), as follows: 

( | ) = 13 1√2 + (0,1) 
 ∈ ,            (4) 

( | ) = 12 1√2 + (0,1)            (5) 

where (0,1) represents a uniform distribution between 0 
and 1 (which is the valid domain for both  and  
components). On the other side, ( , ), ( , ) and ( , ) are the parameters of the hue 
distribution for bricks, and of the hue and saturation 
distributions for the sky, respectively. The factors 1 3⁄  and 1 2⁄  ensure that the distributions integrate to one. The 
mixture model for the background likelihood is illustrated 
in Fig. 4: the hue profile comprises the uniform component 
and two Gaussian peaks modeling brick-like elements and 
sky, whereas the saturation is composed of a uniform term 
and a Gaussian function in the low  values corresponding 
to the sky.  

An example of the result of the proposed color-based 
segmentation is shown in Fig. 5. Pixels classified as 
belonging to red and blue traffic signs are painted in white 
in Fig. 5 (d) and (e), respectively. The figure also illustrates 
the improvements of the proposed method compared to the 
use of a uniform background distribution (Fig. 5 (b) and 
(c)). As can be observed, the influence of disturbing 
background elements is considerably reduced, while the 
traffic signs remain clearly visible as elements of interest. 

Fig. 3. HS distribution for red road signs (under different illumination 
conditions) and bricks. 

(a) (b)
Fig. 4. Likelihood distributions for background class: (a) for fetaure , 
(b) for feature . 

(a) (b) (c)

                      (d)                      (e) 
Fig. 5.  Result of color-based segmentation for the example image in (a). 
The result of using a uniform background distribution is shown in (b) and 
(c) for red and blue classes, respectively (the whiter the higher the 
probability of a pixel to be a TS). The corresponding result for the 
proposed framework is shown in (d) and (e). Observe that the amount of 
brick and sky pixels classified as TS is dramatically reduced, while the 
actual TS pixels are preserved.  

 

IV. REGION ANALYSIS 
After color analysis, the probability of the candidates to 

be TSs is further assessed through an additional region-
level modeling. First, color-segmented images are 
binarized, and 8-connected components analysis is applied 
to them for candidate region labeling.  TS characterization 
at region level involves modeling of the following 
parameters: TS area, pictogram area (both in pixels) and 
aspect ratio (width-to-height). We use a cascade of 
classifiers to significantly speed up the analysis. Each 
classifier deals with one of the abovementioned parameters 
and is designed to be simple and fast.  

In the case of the TS area and the TS pictogram area, the 
range of valid values for both parameters is determined 
taking into account that: (i) a TS has to have a minimum 
size to be clearly visible in the image, and (ii) a valid TS 
cannot exceed a certain maximum size. These minimum 
and maximum size values have been experimentally 
determined considering a large set of images acquired with 
different camera settings whose fields of view are able to 
record signals appearing both at the left and right road 
sides.  The profile inferred from experiments for these two 
parameters is similar to that shown in Fig. 6. For the TS 
area (in pixels), = 850 and thresholds are set to ℎ = 700 and ℎ = ℎ + 30, whereas for TS 
pictogram area, = 500, ℎ = 450 and ℎ =ℎ + 30 as well.  
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Fig. 6. Profile followed by the valid range of values for Area and 
Pictogram Area. 
 

Concerning the TS aspect ratio, this parameter has been 
found to be very efficient to identify non-TS regions. 
Following the standard design of road signs, the theoretical 
value of the aspect ratio is the unity. However, perspective 
effects and rotations (especially in yaw angle for road signs, 
see Fig. 7 (a)) make this value significantly lower in most 
cases. Therefore, there is an interval of aspect ratio values, 
[ ℎ , 1] for which regions should be considered as 
potential TSs with the maximum probability. Beyond these 
thresholds the probability is linearly reduced until it reaches 
zero, meaning that the region is not accepted as a candidate 
TS. Different decreasing slopes are considered for the 
upper and lower end values as it is empirically verified that 
the uncertainty determining the lower threshold, ℎ , is 
higher than that for the upper one. Fig. 7 (b) shows the TS 
probability profile with respect to the aspect ratio with ℎ = 0.65.  

V. TRACKING 
In the previous stage, a set of candidate regions 

(hypotheses) have been generated which are likely to hold 
TSs. These ROIs are defined by their bounding boxes (BB). 
Monitoring their evolution along time can significantly 
enrich the accuracy of the detection results two-fold: (i) 
discarding those hypotheses which do not follow the 
expected TSs evolution patterns; (ii) updating the prior 
probabilities for the color analysis stage in the image areas 
where TSs are expected to be located.   

Therefore, we introduce the regions resulting from the 
hypothesis generation stage –characterized by their 
bounding boxes– into a verification stage controlled by a 
Kalman filter associated to each candidate region in order 
to provide temporal coherence and improve the robustness 
of the decision making module. The designed filter is 
defined by the following parameters: 

 

  
                              (a)                                                    (b)    
Fig. 7.  (a) The three TS possible rotation axes; (b) TS probability profile 
with respect to aspect ratio. 
 

= +                             (6) 
 = H +                                 (7) 
 = ( , , , , , , )                    = ( , , , )  

 

A =
1 0 1 0 0 0 00 1 0 1 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 1 00 0 0 0 0 1 00 0 0 0 0 0 1

           H = 1 0 0 0 0 0 00 1 0 0 0 0 00 0 0 0 1 0 00 0 0 0 0 0 1  

 
 

 where (6) and (7)  represent the state and measurement 
equations, respectively. In these equations,  and   are 
the state and measurement vectors, A is the state transition 
matrix, H is the matrix relating  and  and  is the time 
index. The random variables  and  represent the 
process and measurement noise. In ,  and  are the 
coordinates of the upper left corner of the region BB,  
represents its width, ,  and    their respective velocities, 
and  its aspect ratio. These equations involve a first-order 
linear model for the TS position and width, and a zero-
order linear model for its aspect ratio  

In Fig. 8 we can see an example of the process which the 
filter aims to model. Several considerations shall be made 
as to the design of the filter. On the one hand, when the 
distance between the vehicle and the TS is high, parameters 
evolution can be assumed approximately linear, thus the 
Kalman filter is well adapted to the problem. In this case, 
the process noise is low (due to the linear behavior of the 
process) and lower than that of the measurements 
(measurements are not very reliable because of the high 
distance between the camera and the TS). 

On the other hand, as the distance between the TS and 
the vehicle decreases, the evolution of the state parameters 
deviates from linearity. Therefore, process noise increases 
(reflecting the lack of linearity of the modeled process), and 
measurement noise decreases (measurements accuracy 
increases as TSs get closer to the vehicle). 

We propose an innovative noise treatment that takes into 
account the abovementioned considerations: process and 
measurement noise covariance matrices, Q and R 
respectively, usually assumed to be constant [6], are 
modified to reflect the loss of linearity and the  increase in 
measurement accuracy as candidate TSs get closer to the 
vehicle. They are modified based on the BB height increase 
rate between frames (time cannot be considered as TS 
evolution depends on the vehicle speed). This rate, denoted 

, follows a quasi-linear pattern when the TS is far away 
located from the vehicle and diverges from it when it gets 
closer, as shown in Fig. 9 (a). Fig. 9 (b) shows how the 
process noise variance  ( =  ∙ ) in red, and the 
measurement noise  ( =  ∙ ) in blue are modified in 
time according to . 

The aspect ratio parameter must be considered 
separately. As a matter of fact, it should be virtually 
constant in time unless the camera suffers abrupt rotation 
(if so its variation would still be small). Aspect ratio is 
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                              (a)                                                    (b)    
Fig. 12.  Image in (b) shows the region detected for image in (a) after color 
and region analysis. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13.  Example of two TS tracking for a test sequence under good 
illumination.  
 

 
Fig. 14.  Example of TS tracking for a test sequence under bad 
illumination. 

In Fig. 13 we can see the results of the complete traffic 
sign detection system for a test sequence, which contains 
several road signs (both red and blue) in different positions 
in a complex urban environment (comprising bricks and 
sky) under good illumination conditions. The road signs 
oriented towards the vehicle are perfectly detected and 
accurately located along the sequence. 

 
 Finally, we show an example (Fig. 14) of detection under 
poor illumination conditions (the road sign is located in a 
shadow region). Since these conditions have been 
considered during the design of the color analysis stage, the 
system is able to accurately handle it and detect the traffic 
sign.  

VII. CONCLUSIONS 
The proposed method has proven to provide excellent 

traffic sign detection and tracking results. Therefore, it can 
be used to enhance the performance of the posterior 
recognition stage, traditionally addressed through machine 
learning techniques. The main contribution of our approach 
is the use of a recursive Bayesian decision framework that 
allows to easily combine information of different nature, 
such as HS color at pixel level, and temporal and spatial 
coherence of image regions. Tests in both highways and 
urban environments yield an average detection rate above 
94% for challenging situations, including illumination 
changes, clutter and rapid vehicle motion. 
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