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Abstract 

 

This thesis presents an implementation of a Virtual Sensor System which 

extended the testbed capabilities of the Control and Intelligent Transportation Research 

Lab at The Ohio State University.  Through this system physical objects including robots 

and obstacles were modeled in a simulation environment and oriented based on their state 

in the physical world through the use of an existing Virtual Positioning System.  Virtual 

sensors were able to be utilized by robots without the added cost of purchasing the sensor 

and creating an interface between it and the robot controller.  Other components like a 

traffic light were added in order to improve the visualization abilities of the simulation 

environment.  

Three sensors were implemented within this system.  A laser range finder was 

created based on a sensor model already included in the underlying simulator.  A new 

model was implemented to provide measurements from a magnetometer.  A fictitious 

lane edge sensor was also designed to show situations where sensor data can be generated 

independent of constraints in the physical environment. 

In order to test the usability of the Virtual Sensor System, two test scenarios were 

devised.  Proportional and proportional-integral controllers were designed independently 

using the lane edge sensor and a magnetometer array to control a robot as it followed 

along a simple path.  The laser range finder was tested in a small test area containing 

randomly placed obstacles.  Using only the information obtained through this sensor, a 
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control algorithm was written so that the robot maneuvered through the environment 

without coming into contact with the obstacles.  At the same time, the robot produced a 

map representation of the explored portions of the test area. 
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Chapter 1: Introduction 

 

1.1. Motivation 

When designing a controller for a system, the control engineer may not be 

concerned with where the system output measurements are generated.  This is especially 

true during the initial design phases when only a proof of concept controller is required 

before additional funding is provided.  Through the use of virtual sensors, system outputs 

can be generated through simulation of a system model and provided to a control 

application alone or augmented with output from real sensors.   

In an Intelligent Transportation application, a large vehicle is equipped with 

numerous sensors to detect various portions of the vehicles surroundings.  Many of these 

sensors are redundant in order to increase the robustness of the system.  This sensor suite 

can cost hundreds of thousands of dollars.  Like any other control system, several 

simulation steps are performed before an algorithm is tested on the full-scale expensive 

vehicle.  Simulations do allow for repeated testing under similar conditions as well as 

testing of scenarios impossible to plan in a real environment, but lack the sometimes 

necessary nondeterministic components required to test the robustness of the algorithms.  

In cases like this, a scale testbed is created where real robotic vehicles are used as an 

intermediate testing step before an algorithm moves on to the full-scale vehicle.  In order 

to provide a sufficient test scenario, the small-scale robots must be equipped with similar 
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sensing capabilities as their larger counterparts.  Sometimes this is still not cost effective 

as similar sensors may still cost several thousands of dollars.  It may also not be possible 

or time effective to create realistic enough environments for the small robotic vehicles to 

navigate. 

The main focus of this thesis is to describe the implementation of a Virtual Sensor 

System that combines the nondeterministic nature of a physical testbed with the simple 

environment creation and cost effectiveness of a simulation environment in order to 

expand the sensing capabilities of the robotic agents within the testbed.  Within this 

system, robots can be equipped with virtual sensors that interact with the objects 

simulated in a virtual environment.  These virtual objects can be linked to real objects so 

that they are positioned based on the state of the object in the physical testbed.  

Measurements for the virtual sensors are calculated and transmitted to the robots as if 

they were equipped with a physical version of the sensor.  In this chapter, relevant 

literature describing uses and applications of virtual sensors and similar virtual 

environments is reviewed.  Finally, the outline and organization of this thesis is given. 

1.2. Literature Review 

Virtual sensors, sometimes called soft sensors, are software based sensors that use 

an internal system model and other data including a systems control inputs and outputs 

from physical sensors to create a desired output signal.  This provides sensor data to a 

system in place of a real sensor.   

There are several reasons for choosing to use a virtual sensor over a real sensor [1], 

the most common being cases where a specific quantity cannot be measured directly, e.g. 
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the position of a robotic vehicle in Cartesian coordinates.  In these cases an observer 

paradigm is used.  Sometimes real sensors may not respond fast enough or there is 

significant lag due to communication to be ideal for control applications.  Virtual sensors 

can be used to resolve these by predicting the sensor outputs using a Kalman Filter to 

provide continuous output data from the periodic, time-delayed input signals. 

Virtual sensors can also significantly reduce the cost of a sensor suite in order to 

mean budget constraints as physical sensors can be either too expensive to install or 

maintain throughout the lifespan of the sensor.  Some sensors have issues maintaining 

their calibration due to drift.  In these cases, a virtual sensor model can be trained using 

data from a freshly calibrated sensor and used in the system in place of it.  Virtual 

Sensors are also useful when the installation of the physical sensor is not possible due to 

either physical size constraints or environmental constraints (the environment either 

inside or outside the system is too harsh for the sensor to function appropriately). 

A popular use for virtual sensor is in the area of fault tolerance.  If a real sensor 

fails, a virtual sensor can be inserted into a system until the real sensor can be brought 

back online.  [2] used a virtual sensor to provide data redundancy in a Helicopter 

Adaptive Aircraft which was able to take-off as a helicopter then unfold wings and 

transfer motion from the rotor to a propeller to proceed in forward flight as an airplane.  

The output of the virtual sensor was compared to the output of real sensors in order to 

detect a fault.  A nonlinear virtual sensor used Nonlinear AutoRegressive with exogenous 

excitation (NARX) system identification to estimate the sweeping angle of the wings.  

With the use of the virtual sensor, the control system was able to detect a fault, localize 
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the fault within the system, and limit the propagation of the fault until the system was 

able to recover.   

No matter the application, a virtual sensor requires some sort of system model.  

Depending on this model, the control inputs may be needed as well as data from a real 

system or sensor.  This sensor data can be different than the actual information the model 

is estimating.  If the system model is accurate enough, the state of the system can be 

predicted allowing the optimization of control inputs.  A virtual sensor is only as good as 

its model. 

In most cases, the system model may be unknown or rather complex therefore, most 

virtual sensors are based around system identification technologies.  [1] described using a 

neural network to estimate the model of complex nonlinear systems.  Real sensor data is 

used to generate these models so accurate sensors are required in order to ensure an 

accurate virtual sensor. 

Virtual sensors were used to estimate the sideslip angle and lateral forces of a 

vehicle in [3].  Four different observers ( a linear Luenberger observer, an extended 

Luenberger observer, an extended Kalman filter, and a sliding-mode observer ) were 

tested using three different sensor configurations ( yaw rate, vehicle speed, and yaw rate 

and vehicle speed together ) in order to explore the stability of the observers and models 

as the car reaches linear dynamic limits.  Using the Callas vehicle simulator and a 

nonlinear bicycle model, Stéphant, et al. were able to show that the nonlinear observers 

provided the best estimation of the sideslip angle and that the vehicle speed was not 
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needed for sideslip estimation and all observers were sufficient if the lateral acceleration 

was low ( typical for normal driving situations ).  

The University of Washington in conjunction with the Washington State 

Department of Transportation [4] used virtual speed sensors to provide travel time and 

speed measurements of arterials and freeways based on probe sensor locations.  Looking 

only at these locations may not provide an accurate description of current traffic 

conditions ( e.g. high occupancy vehicle lanes tend to be faster and lanes containing 

buses are typically slower ).  The system that was implemented used Kalman filters to 

track vehicles to provide continuous estimations of the vehicle speed and location.  This 

estimated data was used instead of the probe measurements by a Probe Estimator to 

provide reports about traffic conditions.  This system was extended in [5] to interface 

with the existing traffic management system in Seattle, Washington.  The information 

obtained from the existing infrastructure and the probe vehicles were fused together to 

provide the traffic condition estimations.  This merging was initially problematic because 

the probe density was variable in both time and space.   

Virtual sensors have been used in several instances for encapsulating sensor 

information to provide simpler interfaces in an effort to increase usability of the sensor 

data and decrease the overhead of learning the different interfaces.  [6] designed a Mobile 

Virtual Sensors which was a processing middleware for tracking object through several 

cameras in a smart surveillance application.  Each agent was configured to start and stop 

based on a series of events defined by the system programmer, handled simple tracking 

between a programmer-defined set of resources, swapped in and out other resources as 
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the object of interest moved between camera views.  Previously, systems used a multi-

threaded structure where each thread was responsible for gathering data from a small set 

of cameras.  This structure required that each tracking agent be able to obtain information 

from each resource thread thus decreasing the overall speed of the system.  Through the 

mobile virtual sensors, Kumar et al. were able to reduce CPU load by 60% because the 

sensors allowed for more selective processing of the image data. 

This abstraction was not only useful for users but also for the other software 

systems.  NASA’s Jet Propulsion Laboratory discussed resource management in [7] 

where no distinction was made between real and virtual sensors when scheduling or 

monitoring the use of resources in a planetary rover. 

In [8], Kabadayi et al. also utilize virtual sensors for purposes of abstraction.  They 

describe a customizable interface to create a sensor fusion of heterogeneous data.  In their 

system, sensors were abstracted in such a way that the programmer could obtain 

information from sensors that provide “location” or “temperature” instead of specifically 

requiring information from GPS or a thermocouple.  The programmer would then 

implement an aggregator that would combine the different measurements into a custom 

output state.  The update frequency of the aggregation was also customizable independent 

of the update frequencies of individual sensors.   

Xiang and Özgüner describe a tree-shaped hierarchical virtual sensor structure in 

[9] to abstract sensor data from the low physical level to a high symbol level.  A feature 

level of virtual sensors was used to extract features from real sensors.  At this level, there 

was a single virtual sensor for each physical sensor.  The next level used general virtual 
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sensors in a low level data fusion.  Each general virtual sensor combined and integrated 

multiple, possibly heterogeneous virtual sensors from the feature level to create more 

complete and accurate representations of the features.  A high level data fusion layer was 

added above this in order to perform decision making based on both the general virtual 

sensors and the feature level virtual sensors if necessary.  A navigation example was 

presented describing a vehicle equipped with multiple laser range finders, radar, 

ultrasonic, and vision sensors.  First, objects of interest were detected from each sensor 

individually.  Then, the data from groups of sensors were fused together to find similar 

objects of interest.  The decision making level was used to fill an occupancy grid used for 

planning the route the vehicle travelled through the world. 

All of the examples described thus far have required that either the system in which 

the virtual sensor was used or inputs to the virtual sensor be in the real world.  Several 

groups have done work with virtual sensors either completely in a virtual environment or 

augmenting the real world information with virtual information.  Redmill, Martin, and 

Özgüner explain the implementation of a simulation environment designed to test the 

usability of sensor data and sensor fusion algorithms in intelligent transportation 

scenarios in [10].  The modular simulator created through this research, VESim, provided 

three dimensional environment simulations that could be used as input for vision 

algorithms, supported the simulation of vehicle models with six degrees of freedom and 

complex sensor output generation.  This system allowed a user to create repeatable test 

scenarios for testing complex, dynamic control algorithms and multi-level sensor fusion 

algorithms. 
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The Player/Stage Project [11] has been widely used as a robotic development tool 

which encapsulates various hardware components of a robot so that control algorithms 

can be written independent of the robotic platform.  A control application can be initially 

designed using the two dimensional, Stage, or three dimensional, Gazebo, simulators.  

This same application can then be used on a physical robot without modification.  The 

Player/Stage Project also provides several standalone tools that can be used to visualize 

data obtained by a robot’s sensors.  Though these tools are very useful when debugging 

robotic systems, they can sometimes be difficult to interpret because they only display a 

small subset of the data utilized by the control systems.  Collett and MacDonald [12] 

created an augmented reality system which overlaid the robot’s world view on top of an 

image of the real world so that developer’s can have a better understanding of the robot’s 

view of the environment.   

Dixon et al. created a system called RAVE [13] which allowed for the collaboration 

of both real and virtual robots which utilize both real and virtual sensor data.  The 

primary goal of this project was to establish a common way for heterogeneous robots to 

interact with each other.  This was similar to the Player/Stage project.  Virtual sensors 

were used by this system to provide sensing systems for virtual robots as well as to 

augment existing onboard sensors on a real robot with virtual data.  In the latter case, data 

from real sensors sensing only the real world were fused with that from virtual sensors 

sensing only the virtual environment.  Many tools were also created to allow multiple 

users access to visualize robot information and control their systems. 
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1.3. Thesis Organization 

This thesis presents a Virtual Sensor System implemented in the Control and 

Intelligent Transportations Research Lab at The Ohio State University.  The thesis is 

organized as follows: 

Chapter 1 begins by describing the motivation behind this work followed by a 

literature review in the area of virtual sensor networks. 

Chapter 2 describes the initial multi-agent intelligent transportation testbed in use at 

the Control and Intelligent Transportation Research Lab.  Each agent is described 

including software systems and the different robotic vehicles available for testing.  

Several unique testbeds are also described. 

Chapter 3 presents the implementation of the Virtual Sensor System and how it 

interacts with the other agents in the testbeds.  Details are given for both the various 

components implemented in the system and the three virtual sensors that were 

implemented. 

Chapter 4 explains three test scenarios that were implemented in order to test the 

implementation and usability of the Virtual Sensor System.  First, a general control setup 

is given that was used within the test scenarios.  Then, two path following 

implementations are shown one using the lane edge sensor and the second using a 

magnetometer array.  Lastly, an area mapping and obstacle avoidance scenario is 

described.  This scenario utilized the laser range finder.   

Chapter 5 summarizes the work, concludes this thesis, and points out areas where 

future work may be required.  
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Chapter 2: Simulation Environment 

 

2.1. Introduction 

In the Control and Intelligent Transportation Research Laboratory [14], numerous 

systems have been implemented both in hardware and in software in order to explore 

various intelligent vehicle application scenarios.  All of the various components were 

designed so that each system could be used independently of the others in cases where a 

particular component was not needed or if it crashed due to an implementation flaw.  This 

also facilitated the creation of additional components when that need arose.  Systems 

were designed to use the Player interface whenever possible to achieve a smooth 

transition between the simulation and physical environments.  Stage [11] and Gazebo 

have been used in various projects conducted at the CITR Lab to simulate various test 

scenarios before a full physical implementation was attempted. 

The following sections describe the interconnectivity of the various systems in the 

lab including the Virtual Positioning System and the three different robotic vehicles 

utilized.  This architecture allows for the rapid implementation of different testbed 

environments customized to the specific scenarios to be tested.  The details of two such 

environments are outlined, an urban area environment called SimVille [15] and an open 

area environment called MiniMAGIC.  Finally, the Stage simulator is described in detail. 
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2.2. System Architecture 

A diagram of the various component interconnections is shown in Figure 1.  The 

primary components of the system were the Virtual Positioning System and the mobile 

robots.  The positioning system received images of the testbed over Firewire from two 

cameras and detected unique glyphs attached to objects in the environment.  The dotted 

lines in the figure represent the cameras viewing the tags mounted to the mobile robots.  

The state of the tags was transmitted to each of the mobile robots in the testbed.  This 

component is described in more detail in the following section.   

 

Camera(s)

Tag
Dead Reckoning

Control Algorithms

Mobile Robot

Tag
Dead Reckoning

Control Algorithms

Mobile Robot

Traffic Light

Virtual 
Positioning

System

Firewire

Unicast
UDP

Unicast
UDP

V2V

V2V

V2IV2I

 
Figure 1: System Architecture 

 

Each of the mobile robots had a robotic vehicle as its basic component and was 

equipped with several hardware and software components independent of which vehicle 

was utilized.  In addition to its situation specific control logic, the robot included a sensor 
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fusion module which estimated position and orientation states from the measurements 

received from the Virtual Positioning System and the robot’s onboard wheel encoders 

and inertial sensors.   

In order to mimic the modularity of the whole system, the software systems used 

on the robots were created as separate applications that could be run when needed.  

Communication between these various software components was done through the use of 

shared memory structures. 

Player was used on all of the mobile robots in the implementation of the logic 

controllers in order to create a smooth transition between the simulation environment and 

the physical robot as well as the transition between different robotic platforms.  Player 

provided a way of encapsulating all of the platform specific information of each robot 

through a standard software interface.  A configuration file was used to setup this specific 

information.  This file was created once for each robot and could be utilized by any new 

control algorithm without modification. 

The mobile robots communicated between each other through a vehicle to vehicle 

interface.  The V2V packets contained information about the robot’s position, orientation, 

and linear and angular velocities as well as other important information including 

whether the current robot was following another robot or if it was navigating toward a 

specific checkpoint.  Through this interface, the robot indicated whether it was in the 

process of driving into a docking station for charging.    

For urban test environments, a traffic light was implemented and transmitted its 

position and light status to other agents in the system through a vehicle to infrastructure 
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interface.  The V2I packet also contained information about the position of the stop lines 

for the individual lanes of the intersection and timer information to determine the length 

of time until the next light transition.  This packet was based off of the Signal Phase and 

Timing (SPaT) message defined in [16]. Just like the mobile robots, any number of traffic 

lights could be added into the environment without interrupting the other functionality of 

the system.  The physical traffic light used an ATmega128 based RoboStix from Gumstix 

[17] to control several LEDs.  The V2I information was transmitted over 802.11B using a 

serial to wireless module provided by Qualcomm.   

Typically, all of the information between subsystems was transmitted over the 2.4 

GHz wireless band using 802.11B wireless cards.  A 900 MHz wireless network was also 

implemented to support data transmissions to one of the older robotic platforms used. 

2.2.1. Virtual Positioning System 

A Virtual Positioning System was implemented in order to simulate the 

functionality of the Global Positioning System that would be used by intelligent vehicles 

when in outdoor environments.  Two Scorpion cameras from Point Grey Research [18] 

were used to acquire top down images of the lab area.  The intrinsic parameters of each 

camera were calculated before they were mounted to the ceiling of the lab at a height of 

6.5m.  These cameras transmit grayscale images to a processing computer over Firewire 

at a rate of 15 Hz.   

For detection by the Virtual Positioning System, a unique two dimensional 

barcode was mounted to the top of each mobile robot and static object of interest such as 

buildings. The Augmented Reality Toolkit Plus (ARTKPlus) [19] was used to detect 
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these barcodes in the grayscale images from the two Scorpion cameras.  Each image was 

processed independently to give the position and orientation of each tag found in the 

image relative to the center of the camera’s field of view.  This information was then 

translated into a global coordinate system and was tracked in order to estimate linear and 

angular velocities of the tags.  This data was collected for each tag and transmitted over 

Unicast UDP packets to the IP address associated with each tag ID.  Figure 2 shows a 

screenshot of the processing application displaying the images received from each 

camera and an overlay of the tag IDs and positions. 

 

 
Figure 2: Screenshot of the Virtual Position System Processing Application 

 

 

2.3. Robotic Vehicles 

Several robotic vehicles have been interfaced with the testbeds created in the 

Control and Intelligent Transportations Research Lab.  All of the systems created in the 

lab have been designed to facilitate the addition of different agents, robotic or otherwise, 



15 

 

without the rebuilding of the previously added systems.  This section describes three of 

the primary robotic platforms that have been used for various intelligent vehicle designs. 

2.3.1.  iRobot Create  

One of the primary robotic vehicles used in the CITR Lab was the Create 

Programmable Robot from iRobot [20].  The Create, shown in Figure 3, was designed as 

an affordable robot platform tailored toward academic and hobby applications.  The small 

33 centimeter diameter disk shaped robot looked similar to iRobot’s Roomba vacuum 

cleaning robot but provided a small cargo bay and greater interface capabilities in place 

of the vacuuming components.   

The iRobot Roomba Open Interface protocol [21] was used by an external 

microcontroller connected to the Create’s 25 pin cargo bay connector to collect 

information from the Create’s onboard sensors and transmit motor commands to the 

robot.  This connector also included several digital inputs, one analog input, and a few 

digital outputs in case the attached controller does not have these capabilities or if 

addition ones are needed.  The Create was equipped with individual encoders for each of 

the two wheels with millimeter accuracy.  The attached motors would allow the Create to 

travel up to 0.5 m/s.  Four cliff sensors were provided in order to detect if the Create had 

reached the edge of the platform on which it was driving.  To detect whether the robot 

had encountered any physical obstacles, two micro-switches were supplied on the front of 

the Create and were connected by a large bumper.  iRobot’s virtual walls and docking 

stations were detected by utilizing the omnidirectional infrared receiver that was attached 

to the top of the bumper. 
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Figure 3: iRobot Create 

 

A Gumstix Connex [17] microcontroller board was used as the controller 

interface to the Create equipped with a PXA255 Xscale processor from Marvel.  A 

CFStix was connected to the Connex in order to provide a CompactFlash socket for an 

802.11B CompactFlash wireless card.  An Element Direct Sticky Interface board was 

used to connect the Connex to the Create through its 25-pin cargo bay connector.  This 

interface board provides a switching power supply to maximize the Create’s battery life, 

a USB host connector, general purpose IO breakouts, and I
2
C expansion ports.  

  

2.3.2. MobileRobots Pioneer 

MobileRobots [22], formerly ActivMedia Robotics, manufactures the Pioneer 3-

AT four wheel drive, all-terrain robotic platform primarily for research and prototyping 

applications.  Figure 4 shows the basic Pioneer 3-AT platform.  The Pioneer’s drivetrain 

consisted of two high torque, high speed motors each to drive two of the nine inch 
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diameter pneumatic tires.  Three lead acid batteries were used to provide ample power for 

all of the Pioneer’s subsystems.  An external battery charger was provided by 

MobileRobots to charge these batteries.   

The Pioneer was equipped with two eight sensor sonar arrays, one in the front of 

the robot and one in the rear, with each sensor positioned in twenty degree intervals to 

provide a full 360° of coverage.  Each sensor measurement was acquired at 25 Hz and 

provided a resolution between 10 cm and 4 m.  Ten bumpers were used for obstacle 

detection when other sensing methods were inconclusive.   

 

 
Figure 4: MobileRobots Pioneer 3-AT Robotic Platform 

 [http://www.mobilerobots.com/] 

 

The basic Pioneer platform allowed numerous other sensors to be attached to the 

robot in order to expand its capabilities for both indoor and outdoor environments.  For 

outdoor test scenarios, a NovAtel GPS module was attached to the Pioneer, but for the 

indoor environment described here, this sensor was not utilized.  In addition to the GPS 
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module, a Sick LMS-200 Laser Range Finder was mounted to the robotic platform 

providing a 180° field of view at up to 0.25° angular resolution with distance 

measurements up to 80 m.  The Pioneer was also equipped with a Canon VC-C4 camera 

with motorized pan, tilt, and zoom mechanisms which were utilized for vision based 

applications.  Figure 5 shows the Pioneer 3-AT robot with all of the optional accessories 

described.   

A PC/104 form factor computer was equipped with an Intel Pentium 3 processor 

and was used to implement the hybrid control logic necessary for vehicle autonomy.  

This computer had access to all of the onboard sensors and was programmed to utilize all 

of these sensors in order to navigate its environment. 

 

 
Figure 5: Pioneer 3-AT Robot with Optional Sensors 
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2.3.3. K-Team Khepera II 

The Khepera II robot was designed and distributed by the K-Team Corporation 

[23] based in Switzerland.  These 70 mm diameter hockey puck shaped robots were 

equipped with a 25 MHz Motorola 68331 processor programmable through a serial 

connection.  Eight infrared proximity and ambient light sensors surrounded the outside of 

the robot giving it the ability to sense obstacles around it.  Three external analog inputs 

were provided for use with other sensors, but were not used.  An AeroComm [24] serial 

to 900 MHz wireless adapter was attached to the Khepera to provide wireless 

communication to the other agents in the environment.  Figure 6 shows a picture one of 

the Khepera II robots equipped with the AeroComm wireless adapter.  

 
Figure 6: Khepera II Robots 

 

The Khepera II was equipped with high accuracy wheel encoders providing 

submillimeter distance resolution.  The servo motors powering the wheels were able to 
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drive the robot between 0.02 m/s and 0.5 m/s.  Continuous driving would allow for 

approximately one hour of battery life.   

2.4. Environments 

2.4.1. SimVille: An Urban Area Testbed 

SimVille, shown in Figure 7, was created after the 2007 DARPA Urban 

Challenge [25] in order to continue research efforts in urban environment scenarios.  A 

road network was created to be 1/7 scale with 0.5 m wide lanes in order to use the Create 

robots as urban vehicles.  This scale also allowed for the Khepera II robots to be used to 

mimic pedestrian behavior if the test scenario required.  The road network was designed 

to provide areas for testing many diverse scenarios without the need to change the test 

environment.  Several intersections were included both with and without traffic lights.  

An overpass and several simulated buildings were added in order to test GPS dropout 

situations.  A zone area was used to test robotic maneuvers in a more loosely constrained 

area.  Parking spaces were also added into the zone area.  Many of the road lanes were 

laid out in a fashion such that the direction of travel for the lane could be changed or a 

specific purpose be given to it ( e.g. a turn only lane ). 
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Figure 7: Simville Urban Area Environment 

 

A large straight portion of road was created to simulate a highway environment.  

This two lane section was used to test both high and low speed passing and merging 

maneuvers into and out of this section.  Convoy maneuvers were also explored in this 

section, shown in Figure 8.  The exit of this area was used to test methods of having one 

vehicle merge into the middle of an already formed convoy.   
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Figure 8: Convoy Maneuvers 

 

A Road Network Definition File (RNDF) [26] was a road layout specification 

created by DARPA for use in both Grand Challenges and the Urban Challenge.  This file 

format contained information about the start and end locations of a lane in the network as 

well as waypoints on the lane in between the two.  Lane width and the type of lane 

boundary, such as solid yellow or broken white lines, were also included.  Special points 

of interest on the lane could be designated as checkpoints.  A Mission Definition File 

(MDF) was used to list the checkpoints that were required for the vehicle to navigate to.  

Both files were used by the vehicles’ control logic to plan routes through the network. 

2.4.2. MiniMAGIC: An Open Area / Building Testbed 

MiniMAGIC was created as a testbed environment for developing control logic 

and testing various scenarios related to the Multi Autonomous Ground-robotic 

International Challenge (MAGIC) 2010 [27].  MAGIC was sponsored jointly by the 

Australian and United States’ Departments of Defense in an effort to start creating the 
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next generation of robotic vehicles to be effective in both civilian rescue scenarios and 

military operations.  Multi-robot teams navigated through and mapped an open area 

environment trying to locate simulated threats.  Robots also had to be able to navigate 

into and through buildings in order to find some of the targets.   

MiniMAGIC, shown in Figure 9, was designed to maximize open area in order 

for dynamic obstacles to be placed.  Building structures were created to simulate the 

buildings that would be seen at the actual competition field.  Carpeting was used on the 

testbed surface to create a much more rugged terrain similar to the outdoor environment.  

The Pioneer 3-AT robots were used as they were designed as an all-terrain vehicle and 

were more similar in size and sensing capabilities as the robots actually used for the 

competition.   

 

 
Figure 9: MiniMAGIC Environment 
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2.5. Stage Simulator 

The Stage simulator was originally designed as a two dimensional simulation for 

populations of mobile robots.  Robots and sensors used computationally inexpensive 

models rather than high accuracy, computationally expensive models so that real-time 

tests could be performed using entire fleets of robots.  Recent updates expanded the two 

dimensional simulator into two and a half dimensions by utilizing a stack of two 

dimensional planes to simulate the third dimension.  Figure 10 shows a screenshot of 

Stage using the SimVille environment, and Figure 11 shows the MiniMAGIC 

environment implemented in Stage. 

 

 
Figure 10: Stage Simulator with SimVille Environment 
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Simulated controllers were compiled ahead of time and dynamically loaded 

through the use of a world file.  This world file allowed the setup of the ground layout 

and the various static and dynamic objects required in the simulation scenario.  Different 

sensor and robot models could be created in separate files and used in the world file.  

Objects were defined using either a set of points to create a polygon, a simple block 

structure, or a separate image file.  This basic outline was then extruded to a specified 

height to give the illusion of three dimensions.   

 

 
Figure 11: Stage Simulator with MiniMAGIC Environment 

 

Player was used in conjunction with Stage to create logic to control robots as they 

navigated through the simulation environment.  Stage also allowed more flexibility for 

different simulation needs through the libstage modules.  Using this setup, the simulator 

setup and execution could be more specifically customized.  This was the method used to 

implement the Virtual Sensor Framework described in the following chapter. 
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Chapter 3: Virtual Sensors 

 

3.1. Introduction 

In the Control and Intelligent Transportation Research Lab, many autonomous 

vehicle simulations have been conducted using its existing infrastructure.  In order further 

extend the capabilities of the lab, a Virtual Sensor System was created and interfaced 

with the other agents.  In this system, sensors were modeled in the Stage simulation 

environment and were simulated in order to provide data to actual robotic vehicles in the 

testbed as if a real sensor was physically connected to the robot.  This allowed for 

additional sensors to be used by the robot’s control algorithms without the budget 

overhead of purchasing the sensors or the time overhead of creating the interface between 

a new sensor and the robot itself.  Through the implementation of the Virtual Sensor 

System, the randomness of the real world was integrated with the deterministic structure 

and infinite possibilities of a simulation environment. 

The following sections describe how the Virtual Sensor System interacted with 

other agents in the CITR lab and how real world objects were linked to their virtual 

representations.  The implementation of a traffic light is detailed to show how the 

visualization capabilities of the system could be utilized.  Three sensors were 

implemented in the system: a laser range finder, a magnetometer, and a fictitious lane 

edge sensor.  Details on their creation and use are given below. 
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3.2. System Extensions 

3.2.1. System Architecture 

 The Virtual Sensor System runs as an extension to the Stage simulation 

environment.  Through the libstage interface provided by Stage, the system was able to 

control the various aspects of the simulation rather than relying on the default Stage 

executable.  This allowed for more flexibility and control over the execution of the 

system.  The Virtual Sensor System was able to process the Stage world definition file, 

make any necessary modifications to the objects in the world, and execute callback 

functions when individual models were updated.  The world definition file contained 

information about the virtual representation of each robot and its virtual sensor setup as 

well as models for other static objects that were required for a testbed scenario (e.g. 

building, trees, and traffic lights in an urban environment).   

 Figure 12 shows the communication interconnects between the agents in the 

CITR lab with the addition of the Virtual Sensor System.  This system was added to the 

existing lab setup so that it could be started and stopped independently of any other 

running system.  This ensured that the Virtual Sensor System did not have to be running 

if it was not needed for a specific autonomous vehicle scenario run in the testbed.   

 The Virtual Sensor System was able to receive V2V data packets transmitted from 

each of the robotic vehicles in the testbed as well as the V2I data packets sent by the 

traffic light.  Information on the position and orientation of static objects was obtained 

from the Unicast UDP packets generated by the Virtual Positioning System.  Once the 

data was calculated for each sensor in the simulation, Unicast UDP packets containing 



28 

 

this information were transmitted to the corresponding robot for use in its unique control 

software.  

 

 
Figure 12: System Architecture 

 

3.2.2. Linking Real and Virtual Objects 

In the Virtual Sensor System, a link was created between the real objects in the 

testbed and the virtual objects placed in the Stage simulation environment so that the 

virtual objects were placed in the same location as their physical counterparts.  To 

accomplish this goal, tags recognized by the Virtual Positioning System were affixed to 

the top of the physical objects in the testbed.  As they system detected the tags, it would 
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transmit Unicast UDP packets to the computer running the Virtual Sensor System which 

contained the tag’s identification number as well as its position, orientation, and both 

rotational and linear velocities.  A separate application running on this machine received 

these data packets and updated a shared memory structure containing state information 

for all thirty-two tags supported by the Virtual Position System.   

For the virtual object to appear in the simulation environment, a model was added 

to the testbed world file read by Stage.  To create the actual link from the physical object, 

the Virtual Sensor System would look for objects with the name “tag” followed by a 

number between one and thirty-two.  This number corresponds to the tag identification 

number contained in the data packet received from the Virtual Positioning System.  

During each update of the system, the state of the tag of each linked object was read from 

a shared memory structure and was used to update the virtual position of that object.  

Figure 13(a) shows a picture of a box seen in the physical testbed with the tag placed on 

its top surface.  The corresponding virtual object is shown in Figure 13(b).  

One of the benefits of this object linking paradigm was that the virtual object did 

not have to look exactly the same as the physical object.  For instance, a simple box could 

be used in the real testbed to represent a much more complex building in the virtual 

environment.  The tag could also be simply placed on the ground and used to represent a 

tree standing alongside one of the roads in SimVille.  This latter example is shown in 

Figure 14. 

 



30 

 

 
Figure 13: (a) Box Used in Testbed to Represent a Building.  (b) Box Model used in 

Virtual Sensor System. 

 

 

Robot models were handled slightly differently than other objects in the Virtual 

Sensor System.  Rather than receiving the tag information directly from the Virtual 

Positioning System, the Virtual Sensor System received state information directly from 

each robot.  This allowed the robots to use onboard sensors including wheel encoders and 

inertial sensors to augment the state information obtained from the Virtual Positioning 

System.  After calculating its new state, the individual robots transmitted this information 

as a V2V packet which was read by an external program that would update a shared 

memory structure with the new state information.  This structure was read by the Virtual 

Sensor System to update the state of the robot models.  

Models were linked to the corresponding physical iRobot Create robot by being 

named “roomba” followed by the robot identification number.  Support for the Pioneer 

and Khepera robots was not implemented.  During each update of the system, each 

robot’s state was updated according to the information obtained from the V2V messages 

through the shared memory structure.  Figure 15 shows a Create robot both in the real 
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testbed and in the virtual environment.  In this image, the virtual Create robot looks very 

similar to the physical robot.  This does not have to be the case because just as a tree 

model could be linked to a physical tag, the robot’s state could be linked to other shapes 

like a model of a car. 

 

 
Figure 14: Tag Used to Represent Virtual Trees  

 

 
Figure 15: iRobot Creates in Physical Testbed and in the Virtual Sensor System 
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3.2.3. Traffic Light 

 To add to the visual aspect of the Virtual Sensor System, a traffic light was 

implemented for use with SimVille.  The physical traffic light transmitted V2I 

information to all other agents in the testbed.  A simulator was also created to generate 

these messages for situations in which the physical traffic light could not be used.  The 

same program used by the robots to receive this data was used by the Virtual Sensor 

System to determine the state of the light for updating the representation of the light in 

Stage.  Figure 16 shows the physical traffic light in SimVille as well as its representation 

in the Virtual Sensor System. 

 Two different traffic light styles were created for use in the Virtual Sensor 

System.  A simplified traffic light provided a single light for each direction of the 

intersection rather than the typical three.  This allowed the proper color of light to be seen 

in both the default two dimensional view as well as the three dimensional view.  For 

more realistic visualizations, a standard traffic light model was created with three lights 

on each of the four sides.  Since the red light would occlude the status of the other two 

lights in the two dimensional view, a small indicator was placed on the top of this traffic 

light model and was updated to show the current light state in any given direction.  Figure 

17 shows these two traffic light configurations. 
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Figure 16: Real and Virtual Traffic Light 

 

 
Figure 17: Two Different Traffic Light Representations 

 

 In order to decrease the rendering time of a simulation step, Stage utilized the 

display list paradigm [28] of OpenGL.  During initialization of the models, Stage stored 
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all of the drawing calls so that they could be reused in each subsequent frame.  The 

problem with this implementation was that once a model was initialized, no part of its 

model could be changed.  To circumvent this issue, two traffic light models were used 

instead of a single model, one model configured with a red light on two opposite sides 

and yellow on the other two and one model configured with red and green.  One of the 

models was chosen during the rendering of each frame and was rotated 90° if necessary 

in order to obtain the appropriate traffic light representation.  The other model was placed 

underneath the ground plane of the virtual environment (typically at the z = 0 plane) so 

that it would not be seen during the simulation as seen in Figure 18. 

 

 
Figure 18: Secondary Traffic Light Model Hidden From View 

  

 One major drawback with this implementation was that each of the two models 

was required to be defined in Stage’s world definition file.  Also, since the models could 

not be dynamically updated, the virtual traffic light did not support the flashing red and 
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flashing yellow states.  In this implementation, only one traffic light was supported.  Any 

other traffic light models would not be initialized.   

3.3. Sensors 

3.3.1. General Sensor Structure 

The creation of each new sensor required the implementation of three separate 

parts.  First, a simulation model needed to be already available or created within the 

Stage environment.  Then, two interfaces needed to be built, one to add the sensor into 

the Virtual Sensor System and another to allow sensor data to be transmitted to individual 

robots. 

The interface to the Virtual Sensor System required an initialization phase where 

the sensor manager would search for and initialize all instances of that sensor attached to 

each robot in the simulation.  During this phase, the Unicast UDP communication sockets 

were created.   

This interface was also required to implement a callback function that would be 

executed during each time step of the simulation as Stage updated the state of each 

specific model.  The callback function would obtain any data from the sensor, translate 

that data into the specified Unicast UDP packet structure, and transmit the packet to the 

robotic vehicle.  

So that each robotic vehicle was able to be equipped with several separate sensors 

of the same type, the data for each sensor was transmitted to a unique port number.  The 

global interface provided the declaration of the base port numbers for all of the sensors of 

that type and a function that was used to calculated the transmission port number given 
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the base port number, the robot identification number, and the sensor identification 

number.  A structure was also provided to define the data representation of a sensor 

reading. 

3.3.2. Laser Range Finder 

A laser range finder utilizes Light Detection and Ranging (LIDAR) technology in 

order to determine the locations of objects within its field of view.  These devices 

typically consist of a single laser beam that is reflected off of a spinning mirror in order 

to generate a known number of rays in a plane.  These rays reflect off of nearby objects 

and are detected by photo sensors internal to the device.  The distance to an object along 

a ray is calculated from these measurements.  A commercial laser range finder is shown 

in Figure 19.  The device on the left was the same model that was mounted to the Pioneer 

robot ( Sick LMS-200 [29] ) and updates at ~75 Hz, has a maximum range of 80 m, and 

costs over $6000.  The device on the right is a much smaller model from Hokuyo [30] 

which could be mounted to a Create robot.  This sensor only updates at a rate of 10 Hz 

with a maximum range of 5.6 m and still costs over $1500.  The virtual laser range finder 

was created because this price point was not practical for full deployment to all of the 

robots. 
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Figure 19: Two Commercial Laser Range Finders 

[http://www.sick.com/, http://www.hokuyo-aut.jp/] 

 

The implementation of the laser range finder used Stage’s ModelLaser class for 

the low level laser simulation.  This class provided several configuration parameters that 

could be modified within the Stage world definition file.  The field of view was modified 

using fov.  The variables range_min and range_max were used to change the minimum 

and maximum range for each ray of the laser.  Samples defined how many individual ray 

trajectories were calculated within the laser’s field of view.  The resolution variable was 

used in order to decrease the number of calculations performed for each ray.  If resolution 

was set to be greater that one, only every nth ray intersection would be calculated.  The 

remaining range values were then calculated using linear interpolation.  The ray 

intersection calculations were already rather quick since Stage traverses its internal 

occupancy grid to find intersections between the rays and objects in the world as opposed 

to doing complete three dimensional ray-polygon intersections.   
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Since several robotic vehicles would appear in the simulation, modifications were 

made to how Stage displayed the laser data since it draws every laser in the same blue 

color.  The parameter laser_color was added within ModelLaser so that a unique laser 

color could be set within the world definition file for runtime changes.  A sample laser 

definition is shown in Figure 20.   

 

 
 

 

The Unicast UDP structure provided the number of rays that were cast for the 

specific sensor as well as the distance value measured along that ray.  This structure 

supports a maximum of 361 so that it can be transmitted using only a single UDP packet.  

This number allows the user to have 0.5° resolution over a 180° field of view.  Each of 

the range values was represented in millimeters by a sixteen bit unsigned integer to 

define roombalaser laser 

( 

range_max 0.75 

fov 180.0 

samples 361 

size [ 0.156 0.155 0.19 ] 

) 

roomba 

( 

name “roomba0” 

color “steel blue” 

roombalaser 

( 

 pose [ 0 -0.19 -0.025 -90 ] 

color “blue” 

laser_color “blue” 

) 

) 

Figure 20: Example Laser Range Finder Configuration 
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provide a maximum range of 65.535 meters.  Figure 21 is a screen capture of the Virtual 

Sensor System showing a Create robot equipped with a single laser range finder 

configured as shown above.  

 

 
Figure 21: Create Robot with Laser Range Finder 

 

3.3.3. Magnetometer 

A magnetometer is used to measure the strength and direction of a magnetic field.  

The Earth has its own magnetic field which can be measured in order to roughly estimate 

the orientation of an object.  Early research conducted in the field of automated highway 

systems used several magnetometers mounted to a car in order to measure the magnetic 

field of small magnets embedded in the roadway.  These magnets were typically placed 

in the center of the roadway.  The magnetometers were mounted in such a way that the 
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car’s offset with the center of the lane was measured and used as input into its 

autonomous driving system. 

Since Stage did not contain a magnetometer model, one was created for it.  For 

simplicity, the magnetic field of the Earth was ignored in the model because this sensor 

was not intended to be used as a compass.  A magnetic_moment property was added to 

each model so that any object could be used as a magnet.  A magnetometer_return 

property was also added in order for the sensor model to determine if a specific object 

generated a magnetic field.  This was modeled after the approach used for the laser and 

other models available in Stage.  Figure 22 shows an example configuration of a magnet. 

 

 

 

The magnetic field of each object was modeled by the magnetic field generated 

by a cylindrical magnet placed at the center of that object with a given magnetic moment.  

Equation     
   

                                           (1 [31] was used to 

Figure 22: Example Magnet Configuration 

define magnet model 

( 

 magneticmoment 100000 

 magnetometer_return 1 

  

 color “blue” 

 size [ 0.05 0.05 0.10 ] 

) 

magnet 

( 

 pose [ 0 0 -0.09 0 ] 

) 



41 

 

determine the magnitude of the magnitude of magnetic field at a point P = ( x, y, z ) 

referenced to the center of the magnet. 

    
   

                                           (1) 

where µ0 is permeability and M is the magnetic moment. 

 

The world file definition was based off of the ranger model provided by Stage.  In 

this description, a single device was configured to have one or more individual sensors.  

The properties scount and spose determined the number of individual sensors and their 

locations.  The sensitivity of each sensor was initialized though the ssensitivity property.  

The size of the box drawn for each sensor was determined by the ssize property.  Figure 

23 shows an example configuration of a magnetometer with five individual sensors. 
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The UDP packet structure allowed for sixteen sensors to be configured for each 

magnetometer.  The magnitude of the magnetic field measured by each sensor was 

represented by a signed thirty-two bit integer in units of 10
-4

 Gauss.  This allowed for 

magnetic field measurements between -214748.3648 Gauss and 214748.3647 Gauss.  

Figure 24 shows a five sensor magnetometer mounted to the front of a Create robot.  The 

small squares in front of the robot are magnets. 

 

Figure 23: Example Magnetometer Configuration 

define roombamagnetometer magnetometer 

( 

 scount 5 

 spose[0] [ -0.15  0 0 ] 

 spose[0] [ -0.075 0 0 ] 

 spose[0] [  0.00  0 0 ] 

 spose[0] [  0.075 0 0 ] 

 spose[0] [  0.15  0 0 ] 

 ssensitivity [ -10000 10000 ] 

ssize [ 0.01 0.05 ] 

# shape definition removed for simplicity. 

) 

 

roomba 

( 

name “roomba0” 

color “red” 

roombamagnetometer 

( 

 pose [ 0 -0.2 -0.04 0 ] 

) 

) 
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Figure 24: Create Robot with Five Sensor Magnetometer 

 

3.3.4. Lane Edge Sensor  

A lane edge sensor is a fictitious sensor that has been used for teaching basic 

autonomous vehicle control concepts [32].  This sensor provides its user with the distance 

to the edge of the lane.  It is possible to generate this measurement using a fusion of 

different sensor data commonly consisting of a camera or through an observer.  For this 

sensor, the user is more interested in the actual measurement output rather than how the 

data is actually obtained. 

The lane edge sensor was used as an example to show how the flexibility of the 

Virtual Sensor System allowed for the production of a sensor measurement in a way 

different from how the measurement would be collected in the real world.  This 

implementation was based around the laser model provided by Stage.  When processing 

the world definition file, Stage turns any visible object into a volume.  Any road layout in 
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the testbed was loaded into Stage as an image which was processed into a set of 

rectangular prisms whose geometry was drawn rather than a single textured quadrilateral.  

Since the lane edges had a thickness and were added into Stage’s occupancy grid, a laser 

was used to collide with the objects.   

The laser model was configured to cast out several rays within a narrow field of 

view.  The model was placed very close to the ground so that the rays would collide with 

the rather thin road layout geometry.  During the initialization of the Virtual Sensor 

System, only lasers named “laneedge” were initialized as lane edge sensors.  All other 

laser models were assumed to be laser range finders.  After each update of the simulation, 

the range values were obtained for each of these rays.  Based on the location of the sensor 

on the robot and the state of the robot itself, the ranges returned by the laser model were 

transformed into the three dimensional intersection points.  All range values close to the 

maximum range were discarded.   

A line was fit to these intersection points.  The slope and the y-intercept were 

calculated using linear regression.  The line was then extrapolated in order to find the 

distance to the lane edge perpendicular to the robot.  This method was used in order to 

account for cases where the lane edge was dashed or when the sensor was not placed 

perpendicular to the forward direction of the robot.  Figure 25 shows graphically how the 

lane edge distance was calculated.  If the application of the sensor did not require this 

robust of a calculation, the sensor was configured using only a single ray who’s range 

was used as the lane edge measurement. 
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Figure 25: Graphical Representation of Lane Edge Calculation 

 

 The UDP packet structure contained only a single sixteen bit unsigned integer 

representing the distance from the sensor to the lane edge.  The measurement was 

transmitted in millimeters allowing for a maximum lane edge distance of 65.535 meters.  

An example configuration for both a single ray and a multiple ray lane edge sensor is 

shown in Figure 26.  For the single ray, Stage requires that at least two samples are 

defined.  If this was detected, the Virtual Sensor System only interpreted the range from 

the first of the two.  Figure 27 shows two configurations of the lane edge sensor on a 

Create robot, one with a single laser measurement and one with multiple measurements.  

Figure 28 shows the multiple ray configuration of the lane edge sensor on a curved road 

with a dashed lane edge. 
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Figure 26: Example Lane Edge Sensor Configurations 

 

 
Figure 27: Create Robot with Two Different Lane Edge Sensor Configurations 

  

define roombalaneedge laser 

( 

 range_max 0.5 

 fov 10.0 

 samples 10 

 

 # for single ray sensor use: 

 fov 1.0 

 samples 2 

 

 size [ 0.06 0.03 0.01 ] 

 name “laneedge”  

 # shape definition removed for simplicity. 

) 

 

roomba 

( 

name “roomba0” 

color “steel blue” 

roombalaneedge 

( 

 pose [ 0 -0.225 -0.1 0 ] 

 color “blue” 

 laser_color “blue” 

) 

) 
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Figure 28: Lane Edge Sensor on Dashed Lane Edge 
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Chapter 4: Sensor Test Scenarios and Results 

 

4.1. Introduction 

After the Virtual Sensor System was fully implemented, it was necessary to test 

the functionality and practicality of the system.  In order to do this, simple test scenarios 

were completed using the iRobot Create robots to test the three sensors implemented in 

the system.  A path following scenario was designed with two perpendicular straight 

paths connected by a smooth 90° turn.  Both the lane edge sensor and magnetometer were 

used individually to follow this path.  The laser range finder was tested separately in an 

area mapping and obstacle avoidance scenario.  For this test, a three meter by three meter 

area was sectioned off for the robot to navigate through.  Several real and virtual 

obstacles were placed within this area for the robot to avoid.   

The following sections describe how the Virtual Sensor System was used by the 

Create robot in the CITR lab.  The common control logic used in all three sensor use 

cases is first described because the same basic structure was utilized in all three control 

applications.  Details about the path following scenario and the two sensor suites used to 

navigate the test path are given.  The results for each of the two tests are provided.  The 

implementation of the area mapping and obstacle avoidance scenario is described as well. 
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4.2. General Control Logic Setup 

 Though the scenarios for which they were created differed, the three control 

programs followed the same basic structure.  Figure 29 shows the simple finite state 

machine that was used to control the flow of the control application.  Through the use of 

command line parameters, the experimenter was given the ability to decide whether the 

robot would immediately begin executing its control logic or wait for a start signal.  

Although the use of this start signal may be more beneficial when used in multi-robot 

scenarios, it can also be used to start logging applications or to give the user enough time 

to start a video camera.  The Control Logic state was a meta-state [33] meaning that a 

secondary finite state machine was embedded within this state. 

 

 

Figure 29: Common Control Logic State Machine 
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 A component called BumperProxy was provided by the Player interface to allow 

the control application to access the bumper mechanism of the Create.  This interface was 

used so that if the robot collided with any object during testing, the robot would move 

into a Wait state where it stopped driving until the bumper was released at which time the 

application would return to the previous state.  This provided enough time for a 

supervisor to either remove the obstacle or stop the control code if it was the root of the 

error.  The Player interface also provided a Position2dProxy which encapsulated the 

specific robots driving commands by allowing the user to change both the linear and 

rotation speeds of the robot. 

4.3. Path Following 

4.3.1. Path Description 

 Path following is a fundamental component of intelligent transportation systems 

thus making it an ideal scenario to test the functionality of the lane edge sensor and 

magnetometer.  Figure 30 shows the simple path used for testing.  This path was 

originally a segment from the SimVille environment that was isolated and rotated in 

order to achieve the orientation shown.  Before each test, the Create was placed at the left 

most portion of segment one.  This straight path was 2.72 meters in length and led into a 

90° left turn with an approximate radius of 0.93 meters to the center of the lane.  The 

final section was 1.349 meters in length was added to see how the controllers would 

recover from navigating through the curve.   
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 This path was created entirely in the simulation environment of the Virtual Sensor 

System.  Tags for the Virtual Positioning System were placed in the testbed and linked to 

small blocks in the simulation world in order to locate the Create in the proper place 

along the path.  Figure 31 shows these tags in the testbed. 

 

 
Figure 30: Test Path Layout 
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Figure 31: Physical Testbed 

 

4.3.2. Lane Edge Sensor Tests 

 A lane edge sensor was placed 22.5 centimeters from the center of the Create.  

This sensor was composed of sixty one rays in a thirty degree, left pointing field of view.  

Figure 32 shows an overhead view of this setup. 

 

 
Figure 32: Lane Edge Sensor Setup 
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 Since each of the three segments of the path had different lane widths, the control 

algorithm was required to have knowledge about the path in order to attempt to travel in 

the center of the lane during the entire test.  If this was not intended, a mean lane width 

could be selected such that the robot would be within the lane throughout the entire path. 

 A proportional and a proportional-integral controller were used to control the 

steering rate of the robot.  The linear velocity of the robot was set at a constant 0.1 m/s. 

The error, Equations                               (2 and                     

(3, at each time step was calculated from the difference between the current lane edge 

measurement and half of the lane width.  As described before, the lane width changed 

according to the section in which the robot was maneuvering.  The steering input for the 

proportional controller is shown in Equation              (4, and the input for 

the proportional-integral controller is shown in Equation                         

(5.  The integral of the error was calculated using the trapezoidal rule, Equation 

        
 

    

  

 
                (6, using the elapsed time between iterations 

of the controller—about 0.1 seconds—and the error calculated in the previous iteration.  

In some cases, the integral term can grow significantly causing the computer 

representation of the number to overflow.  A common fix for this is to periodically clear 

the integral term.  This was not actually needed during testing of these controllers due to 

the oscillation apparent in the path causing the integral value to be close to zero.  The 

relatively short elapsed time of a test run also made this unnecessary. 
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                              (2) 

 

                    (3) 

where led is half of the lane width for the current section of the path. 

 

             (4) 

where KP is the proportional gain. 

  

                        (5) 

where KP is the proportional gain, and KI is the integral gain. 

 

        
 

    

  

 
                (6) 

 

 Because of several nondeterministic factors in each run, three separate runs were 

performed for each gain value while tuning the controllers.  Each set was analyzed in 

order to determine the next gain value to be tested.  Through this method, a proportional 

gain, KP, of 0.5 was used in both controllers and an integral gain, KI, of 0.015 was used.  

The addition of derivative control did not significantly affect the robots trajectory along 

the path and was thus not included in the final controllers.  Figure 33 shows three 

trajectories of the Create using only the proportional controller.  The trajectories resulting 

from the use of the proportional-integral controller can be seen in Figure 34.  

 Several statistics were calculated to compare the results of the individual 

controllers.  The mean, standard deviation, minimum, and maximum were determined for 

both the initial error vector and the absolute value of the error.  A mean close to zero was 
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desired for the signed error while the mean of the absolute value of the error showed the 

average deviation of the robot’s trajectory to either side of the path.   

 

 Table 1 shows these values for the proportional controller.  The results of the 

proportional-integral controller are shown in Table 2.  All values in both tables are given 

in meters. 

 

 
Figure 33: Proportional Controller Trajectories 

 

 Table 1: Proportional Controller Statistics 

Trial Mean 

Std. 

Dev. Minimum Maximum 

Abs. 

Mean 

Abs. 

Std. 

Dev. 

Abs. 

Minimum 

Abs. 

Maximum 

1 0.027 0.074 -0.194 0.871 0.048 0.063 0.000 0.871 

2 0.030 0.061 -0.161 0.184 0.048 0.048 0.000 0.184 
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3 0.022 0.045 -0.133 0.169 0.035 0.036 0.000 0.169 

 

 
Figure 34: Proportional-Integral Controller Trajectories 

 

Table 2: Proportional-Integral Controller Statistics 

Trial Mean 

Std. 

Dev. Minimum Maximum 

Abs. 

Mean 

Abs. 

Std. 

Dev. 

Abs. 

Minimum 

Abs. 

Maximum 

1 0.017 0.052 -0.190 0.169 0.041 0.036 0.001 0.190 

2 0.015 0.050 -0.165 0.230 0.038 0.035 0.000 0.230 

3 0.017 0.053 -0.145 0.184 0.041 0.037 0.000 0.184 

 

 

4.3.3. Magnetometer Tests 

 A magnetometer sensor array composed of five individual magnetometers was 

placed in front of the Create such that the center sensor was twenty centimeters from the 
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center of the robot.  Two sensors were placed 7.5 cm on either side of the center sensor.  

The remaining two sensors were placed 15 cm from the center, one on either side.  Figure 

35 shows an overhead view of this configuration. 

 

 
Figure 35: Magnetometer Setup  

 

 Magnets were placed in the center of the lane along the entire path approximately 

7.1 centimeters apart.  With the 1/7th scale of the Create robots, this would equate to 0.5 

meters between magnets [34].  Each magnet was 2.5 cm wide and 10 cm long with a 

magnetic moment of 10000 m
2
A.  Figure 36 shows how the magnets were placed along 

the path.   

 Since the string of magnets marks out the center of the lane, a priori information 

about the lane width was not necessary like it was in the lane edge sensor test scenario.  

This knowledge would be necessary in situations where the required path was more 

complex and a route planner component was included in the control algorithm. 

 

0 

1 

2 

3 

4 
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Figure 36: Test Path with Magnets 

 

 Similar to the lane edge sensor test scenario, a proportional controller and a 

proportional-integral controller were used to control the steering rate of the Create.  The 

Create’s velocity was again set to a constant 0.1 m/s.  Because the magnetic field of the 

magnetic field was calculated using an ideal model, the error signal, Equations      

                                 
     (7 and                       (8, for 

the controllers was chosen as the difference between the measurements of the two 

outermost magnetometers in the array.  This was not too unreasonable because the major 

missing component of the measurement was the magnetic field of the Earth.  The two 

sensors were placed close enough together that the magnetic field measured of the Earth 

at the two points would be roughly the same.  Figure 37 shows the magnetic field of six 

magnets in a line measured at a distance of 7.5 cm above the top surface of the magnet.  
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This distance was the same as the distance between the magnetometers on the Create and 

the magnets embedded in the lane.  This separation distance provided an almost 

continuous magnetic field to be measured by the magnetometer.  Since the robot was 

always moving forward and the center of rotation of the robot was not close to the center 

magnetometer sensor, a zero error would result only in the case where the center sensor 

was at the maximum point of the field and the centerline of all five sensors was 

perpendicular to the centerline of the magnets.  The integral of the error was calculated 

using the trapezoidal rule. 

 

                                      
     (7) 

where zi is the magnetic field measurement from the ith sensor. 

 

                      (8)  

 

 The same method was used for tuning the two controllers as was used for the lane 

edge sensor controllers.  The proportional gain, KP, of both controllers was 0.01 and the 

integral gain, KI, for the proportional-integral controller was 0.006.  Figure 38 shows the 

trajectories of three test runs using only proportional control.  The results for the 

proportional-integral controller are shown in Figure 39. 
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Figure 37: Magnetic Field of a Line of Discrete Magnets 

 

 
Figure 38: Proportional Controller Trajectories 
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Figure 39: Proportional-Integral Controller Trajectories 

 

 Table 3 shows statistics for the proportional controller.  The results of the 

proportional-integral controller are shown in Table 4.  All values in both tables are given 

in Gauss. 

 

Table 3: Proportional Controller Statistics 

Trial Mean 

Std. 

Dev. Minimum Maximum 

Abs. 

Mean 

Abs. 

Std. 

Dev. 

Abs. 

Minimum 

Abs. 

Maximum 

1 0.171 0.302 -0.595 1.057 0.272 0.215 0.001 1.057 

2 0.126 0.331 -0.827 1.043 0.284 0.212 0.002 1.043 

3 0.161 0.363 -0.657 1.183 0.315 0.241 0.003 1.183 
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Table 4: Proportional-Integral Controller Statistics 

Trial Mean 

Std. 

Dev. Minimum Maximum 

Abs. 

Mean 

Abs. 

Std. 

Dev. 

Abs. 

Minimum 

Abs. 

Maximum 

1 0.058 0.340 -0.647 0.949 0.291 0.183 0.002 0.949 

2 0.050 0.332 -0.995 0.864 0.273 0.195 0.006 0.995 

3 0.058 0.350 -0.603 1.138 0.306 0.180 0.003 1.138 

 

 

4.4. Area Mapping and Obstacle Avoidance 

4.4.1. Environment Setup 

 To test the functionality of the laser range finder in the Virtual Sensor System, an 

area was created in which the robot would navigate using only data obtained from a front 

mounted laser range finder to avoid obstacles in the area and generate a map of the 

environment.  The only other data available was that obtained from the Virtual 

Positioning System and its other onboard sensors.  A three meter square area was blocked 

out using virtual walls in the Virtual Sensor System.  Positioning markers were placed in 

near the corners of this area for visualization in the physical area.  Three physical objects 

were placed randomly in this area each one approximately fifty centimeters square.  A 

virtual tree was also included; its position was linked to another positioning marker 

placed in the physical area.  Figure 40 shows an overhead view of the world 

representation in the Virtual Sensor System.  Figure 41 shows the physical objects. 

 The Create robot used in this scenario equipped with a laser range finder virtually 

mounted 19 cm from the center of the robot.  This front facing sensor was configured to 

have 361 rays within a 180° field of view providing the robot with 0.5° resolution.  The 

maximum distance measured by each ray was set to 0.75 m.   



63 

 

 
Figure 40: Area Mapping Virtual Environment 

 

 
Figure 41: Physical Testbed of the Area Mapping Scenario 
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4.4.2. Map Representation 

 For the robots representation of the environment, an occupancy grid [35] with 

three centimeter resolution was used.  An occupancy grid is an approach for representing 

an area which divides an area into squares of a fixed dimension.  Each of these squares is 

assigned a probability based on the certainty that it is occupied by an object.  For this 

simple implementation, each cell was initially recorded to be unexplored, and then as the 

robot navigated through the environment, each cell explored by the robot was updated to 

being either occupied or not occupied based on data obtained from the laser range finder.  

 Because it was necessary for the map representation to be transmitted over 

Unicast UDP, the map representation was packed in such a way to minimize the number 

of bytes that required transmission.  Two bits were used to represent the state of each cell 

since there were only three possible states.  Sixteen cells representing a four by four grid 

of three centimeter cells were packed into thirty-two bit unsigned integers.  Figure 42 

shows how these cells were arranged within the unsigned integer.  Bitwise operations 

were used to mask and shift the two bit segments of the integer when updating the state 

of a cell or retrieving that cells current state. 

 A thirty row square matrix of these integers was used to represent a 3.6 meter by 

3.6 meter area.  This matrix plus two eight bit unsigned integers storing the number of 

rows and columns used in the matrix was able to be transmitted in only two UDP packets.  

The full map representation was transmitted at roughly 1 Hz. 
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Figure 42: Cell Area Representation to Integer Representation 

  

4.4.3. Updating the Map 

 To update the map representation of the world, the robot received laser range 

finder updates at approximately 13 Hz.   For each ray in the sensor’s field of view, the 

end point ( Px, Py ) of the ray was calculated using Equation  
  
  

   
  

  
    

       
       

  

 
  

  
            (9. 

 

 
  
  

   
  

  
    

       
       

   
  

  
            (9) 

 

where ( Lx, Ly ) is the position of the laser range finder in global coordinates, r is the 

range measurement of the individual ray obtained from the Virtual Sensor System, θ is 

the sum of the angle of the ray, θray, and the robot’s yaw angle, θrobot, and ( Ox,Oy ) is the 

offset required to place the physical area into the map area.   
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 The offset used for testing was ( Ox,Oy ) = ( 0.25, -1.75 ) to ensure that Px was 

greater than zero and Py was less than zero.  The absolute value of Py was then taken so 

that Py was greater than zero.  Once the position of the endpoint of the ray was 

calculated, Equation  
      
   

   
 

    
 
  
    

              (10 was used to calculate the row 

and column of the cell of the map containing the point.  The cell’s state was updated to be 

occupied if the range of the ray was less than the maximum distance and otherwise, it 

was stored to be not occupied.   

 

       
   

   
 

    
 
  
    

              (10) 

 

 This method only updated the cells on the perimeter of the laser range finder’s 

field of view, however, all of the cells in the polygon created by the ray endpoints and the 

sensors positions are known to be unoccupied.  To add this information to the 

environment map, all of the cells along each ray needed to be updated.  This was 

accomplished through a line rasterization technique [36] using the row and column 

coordinates for the calculated endpoint of the ray and the laser range finder position.  

Figure 43 shows an example ray and its raster graphics representation.  First, the change 

in row value and change in column value were calculated.  The algorithm iterated over 

either the columns or the rows depending on the maximum delta value.  The parametric 

line equation, shown in Equation                                     (11, was 

used to determine the cell that lie on the line connecting the two points.  If the algorithm 
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was iterating over the column values, the parametric variable was calculated using 

Equation   
             

           
           (12, and then plugged into Equation           

                          (11 to calculate the corresponding row value.  Each cell 

was then updated to an unoccupied state. 

 

                                    (11) 

 

  
             

           
           (12) 

where Cmin is the minimum column coordinate and Cmax is the maximum column 

coordinate. 

 

 
Figure 43: Rasterization of Laser Range Finder Ray 

 

4.4.4. Visualization of the Map 

 Since the map representation was transmitted over Unicast UDP, any agent on the 

same network would be able to receive and use this data in some manner.  This agent 
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could be running on any hardware with networking capabilities and written in any 

programming language that supports the network transmissions.  One way would be to 

draw a visual representation of the map so that the user could determine if it was updating 

as desired.  Such visualization programs would be independent agents and could vary in 

complexity based on the need of the user.   

 Two types of visualization programs were implemented for testing purposes.   

The first was an ASCII based display that was viewed inside of a terminal window.  

Figure 44 shows a screen capture of this program displaying a map generated by a Create 

robot in the environment described above.  This image was rotated clockwise 90°.  For 

this display, the integer representation of the state of each cell was printed to the screen.  

Zero was used for unexplored, one for occupied, and a space for the unoccupied cells.   

 

 
Figure 44: ASCII Map Visualization Program 

 

 A second simple graphical based display was also created to show another map 

visualization possibility.  For this display, each cell was drawn as a four pixel by four 
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pixel square.  The color of each cell corresponded to the cell’s state.  Dark gray was used 

for unexplored cells, blue for occupied, and white for unoccupied.  A single pixel wide 

grid was also drawn so that individual cells could be distinguished.  Figure 45 shows a 

screen capture of this program displaying the same map that was displayed by the ASCII 

visualization program. 

 

Figure 45: Simple Map Visualization Program 

 

4.4.5. Obstacle Avoidance 

 The control logic state for the obstacle avoidance was actually a meta-state 

containing a simple state machine.  This state machine is shown in Figure 46.  Once the 

control logic starts, the Create begins driving forward at a speed of 0.1 m/s.  The robot 

continuously processed the data from the laser range finder and would maintain this 

speed until an object in front of the robot was determined to be less than 0.4 m away.  



70 

 

The robot then reduced its speed to 0.05 m/s until the object was less than 0.2 m away.  

When this occurred, the robot found the minimum distance in the left and right thirds of 

the 180° field of view.  The robot then turns in the direction having the largest minimum 

object distance until the object was no longer in the front third of the view.  Once this 

happened, the robot returned to driving straight at a speed of 0.1 m/s.  

 

 
Figure 46: Obstacle Avoidance State Machine 

 

 During testing, this algorithm was able to map the simple area with few problems.  

Because of the simplicity of the algorithm, the robot was susceptible to getting caught in 

tight places or dead ends as the robot the side obstacles would become front obstacles as 

it turned in either direction causing the robot to turn in the opposite direction.  In this way 

the robot would oscillate between turning left and right in the area.  Some areas may have 

gone unexplored while others would be explored multiple times because the robot does 

not favor directions containing a high concentration of unexplored cells. 
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Chapter 5: Discussion and Conclusion 

 

5.1. Discussion and Comparison 

In the path following scenario, both controllers, one using the lane edge sensor 

and the other a magnetometer array, performed best in the straight portions of the path as 

expected.  In the curved section, the lane edge controller significantly overshot the first 

half of the curve and then undercut the second.  The addition of the integral term helped 

but did not completely remove this issue.  This was likely due to the linear approximation 

that was used to estimate the distance to the lane edge in the sensor model since the 

magnetometer controller did not suffer from the same overshooting issues. 

The addition of an integral term to the path following controllers showed an error 

reduction of almost 50% compared to proportional control alone.  Although oscillation 

was still seen in the paths of both controllers, even using only proportional control 

resulted in a path that was sufficiently within the edges of the lane.  This oscillation 

seemed to be caused by the transmission and computation delays of the virtual sensor 

data.  This delay proved to be a significant issue during the debugging of the control logic 

and tuning of the controllers.  The robots were slowed down to have a linear velocity of 

0.1 m/s.  When scaled for full-size, this was only about 1.5 miles per hour, a very 

unrealistic speed.   
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The oscillation could also be attributed to the Virtual Sensor System using only 

object state information obtained directly from the Virtual Positioning System and the 

individual robots at a rate of approximately 10 Hz.  If the timing of the systems were out 

of sync or if a data packet was not received, sensor data may be calculated using the same 

state of the virtual environment causing the controller to react to the new data as if its 

previous action had no effect on the system.  This would cause the robot to over-correct 

thus inducing oscillation. 

5.2. Conclusion and Future Work 

 In this thesis, the Virtual Sensor System was created on top of the Stage two-

dimensional simulation environment for use with the existing infrastructure in the 

Control and Intelligent Transportation Research Laboratory at The Ohio State University.  

This system received state information from the Virtual Positioning System and from 

several robotic vehicles in order to update a simulation environment representing the 

testbed.  It was possible to represent objects in the physical world with virtual models as 

well as add virtual objects to the environment without a corresponding physical 

representation.  Also, the virtual models were not required to be at all related to the object 

used to represent it in the physical world.  The Virtual Sensor System also provided the 

ability to include interactive components such as a traffic light to enhance the visual 

aspects of the simulation environment. 

 The primary objective of the Virtual Sensor System was to allow for physical 

robots to be equipped with virtual sensors in order provide additional inputs to more 

complex control algorithms.  For this purpose, three separate sensors, a laser range finder, 
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a magnetometer array, and a lane edge sensor, were created.  The implementation of 

these sensors showed that the simulation of the sensor could closely resemble how the 

sensor behaves in the real world, like the laser range finder, or could utilize the benefits 

of the simulation environment to generate the data in a way that is much more 

computationally efficient like the lane edge sensor.   

 In order to verify the usability of the Virtual Sensor System, two different test 

scenarios were designed where a control algorithm used the data provided by a virtual 

sensor to complete the challenge.  Two path following controllers were created to show 

possible uses for the lane edge sensor and the magnetometer array.  The laser range finder 

was utilized in an obstacle avoidance scenario where the robot traversed through the test 

area and navigating around obstacles while at the same time generating a map 

representation for the areas already explored. 

 This research resulted in a system that proved usable in simple Intelligent 

Transportation applications; however, there were some aspects that could be improved.  

The most important would be to introduce an extended Kalman filter or similar virtual 

sensor to estimate the state of the physical objects in the environment.  This would 

provide more accurate simulation results because updates would rely on the continuous 

state output of the Kalman filter instead of the periodic measurements obtained from the 

Virtual Sensor Systems and the individual robot’s position estimator.  This would also 

allow for sensor update frequencies to vary between sensors though a computationally 

efficient implementation would require modification of the Stage Simulator to allow for 

selective updating of objects in the environment. 
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 The ease of use of the Virtual Sensor System can be increased by abstracting the 

virtual sensor data into the existing sensor interfaces in Player.  This decreases the 

number of interfaces that need to be learned by a developer.  This modification would 

also make the virtual sensor measurements indistinguishable from real sensor 

measurements allowing a control algorithm to remain unmodified if a physical sensor 

was purchased to replace the virtual one.   

 Minor modifications could also be made to Stage’s rendering system to allow for 

objects that can visually update dynamically.  Such a change would reduce the 

complexity of the traffic light component by removing the need for a second hidden 

model as well as increase the functionality because blinking light states can easily be 

handled. 
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