

Virtual Sensor System: Merging the Real World with a Simulation Environment

THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

the Graduate School of The Ohio State University

By

Michael A. Vernier, B.S.

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2010

Master's Examination Committee:

Professor Ümit Özgüner, Advisor

Professor Yuan Zheng

Copyright by

Michael A. Vernier, B.S.

2010

ii

Abstract

This thesis presents an implementation of a Virtual Sensor System which

extended the testbed capabilities of the Control and Intelligent Transportation Research

Lab at The Ohio State University. Through this system physical objects including robots

and obstacles were modeled in a simulation environment and oriented based on their state

in the physical world through the use of an existing Virtual Positioning System. Virtual

sensors were able to be utilized by robots without the added cost of purchasing the sensor

and creating an interface between it and the robot controller. Other components like a

traffic light were added in order to improve the visualization abilities of the simulation

environment.

Three sensors were implemented within this system. A laser range finder was

created based on a sensor model already included in the underlying simulator. A new

model was implemented to provide measurements from a magnetometer. A fictitious

lane edge sensor was also designed to show situations where sensor data can be generated

independent of constraints in the physical environment.

In order to test the usability of the Virtual Sensor System, two test scenarios were

devised. Proportional and proportional-integral controllers were designed independently

using the lane edge sensor and a magnetometer array to control a robot as it followed

along a simple path. The laser range finder was tested in a small test area containing

randomly placed obstacles. Using only the information obtained through this sensor, a

iii

control algorithm was written so that the robot maneuvered through the environment

without coming into contact with the obstacles. At the same time, the robot produced a

map representation of the explored portions of the test area.

iv

Dedication

Dedicated to my family and friends

v

Acknowledgments

 First, I would like to thank my advisor, Dr. Ümit Özgüner, for providing the

opportunity for me to work with him the past few years. I would not have been able to

succeed without his guidance, support, and patience. I am grateful to both Dr. Özgüner

and Dr. Yuan Zheng for being on my committee and reviewing this thesis.

 I am extremely thankful for everyone I have worked with in the Control and

Intelligent Transportation Research Lab, especially Dr. Keith Redmill, Arda Kurt, and

Scott Biddlestone. Without their help and patience throughout this project, I would not

have been able to accomplish it.

 Also, I am very thankful to Dr. Rick Freuler and the Fundamentals of Engineering

for Honors program that I have been a part of for so many years. The knowledge that I

have gained and the friends that I have made from both going through the program as a

student and as a teaching assistant are invaluable to me.

 I have taught a lot of students over the years in the Fundamentals of Engineering

for Honors program and through both FIRST Robotics and FIRST Lego League. I would

like to thank all of them for motivating me with their never ending intelligence and

curiosity.

 Finally, I would like to thank my parents, Anthony and Betty, for their unending

love and patience over the years. Without the supportive environment created by them,

vi

my sister, Amy, my brother, Timothy, and all of my friends, I know that I would not have

been able to achieve as much as I have.

vii

Vita

December 29, 1984 .. Born — La Junta, Colorado, USA

2007 B.S. Electrical and Computer Engineering, The Ohio State University

2007 to present Graduate Teaching Associate, The Ohio State University

Publications

[1] M Vernier, C Morin, P Wensing, R Hartlage, B E Carruthers, R Freuler, "Use of a

Low-Cost Camera-Based Positioning System in a First-Year Engineering

Cornerstone Design Project," in Proceedings of the ASEE 2009 Annual Conference

and Exposition, Austin, Texas, 2009.

[2] S. Biddlestone, A. Kurt, M. Vernier, K. Redmill, and Ü. Özgüner, "An Indoor

Intelligent Transportation Testbed for Urban Traffic Scenarios," in Proceedings of

the International IEEE Conference on Intelligent Transportation Systems, St. Louis,

Missouri, 2009.

[3] M Vernier, C Morin, P Wensing, R Hartlage, B E Carruthers, R Freuler, "Use of a

Low-Cost Camera-Based Positioning System in a First-Year Engineering

Cornerstone Design Project," ASEE Computers in Education, vol. 1, no. 2, pp. 6-14.

April 2010.

Fields of Study

Major Field: Electrical and Computer Engineering

viii

Table of Contents

Abstract .. ii

Dedication ... iv

Acknowledgments ...v

Vita .. vii

List of Tables... xi

List of Figures .. xii

Chapter 1: Introduction ..1

1.1. Motivation ...1

1.2. Literature Review ..2

1.3. Thesis Organization ...9

Chapter 2: Simulation Environment ... 10

2.1. Introduction ... 10

2.2. System Architecture .. 11

2.2.1. Virtual Positioning System ... 13

2.3. Robotic Vehicles ... 14

2.3.1. iRobot Create .. 15

ix

2.3.2. MobileRobots Pioneer .. 16

2.3.3. K-Team Khepera II .. 19

2.4. Environments .. 20

2.4.1. SimVille: An Urban Area Testbed .. 20

2.4.2. MiniMAGIC: An Open Area / Building Testbed 22

2.5. Stage Simulator ... 24

Chapter 3: Virtual Sensors ... 26

3.1. Introduction ... 26

3.2. System Extensions ... 27

3.2.1. System Architecture ... 27

3.2.2. Linking Real and Virtual Objects.. 28

3.2.3. Traffic Light ... 32

3.3. Sensors .. 35

3.3.1. General Sensor Structure .. 35

3.3.2. Laser Range Finder .. 36

3.3.3. Magnetometer .. 39

3.3.4. Lane Edge Sensor ... 42

Chapter 4: Sensor Test Scenarios and Results .. 47

4.1. Introduction ... 47

x

4.2. General Control Logic Setup ... 48

4.3. Path Following .. 49

4.3.1. Path Description ... 49

4.3.2. Lane Edge Sensor Tests .. 51

4.3.3. Magnetometer Tests ... 55

4.4. Area Mapping and Obstacle Avoidance ... 61

4.4.1. Environment Setup ... 61

4.4.2. Map Representation .. 63

4.4.3. Updating the Map ... 64

4.4.4. Visualization of the Map .. 66

4.4.5. Obstacle Avoidance .. 68

Chapter 5: Discussion and Conclusion ... 70

5.1. Discussion and Comparison ... 70

5.2. Conclusion and Future Work ... 71

Bibliography .. 74

xi

List of Tables

Table 1: Proportional Controller Statistics ... 54

Table 2: Proportional-Integral Controller Statistics .. 55

Table 3: Proportional Controller Statistics ... 60

Table 4: Proportional-Integral Controller Statistics .. 61

xii

List of Figures

Figure 1: System Architecture ... 11

Figure 2: Screenshot of the Virtual Position System Processing Application 14

Figure 3: iRobot Create.. 16

Figure 4: MobileRobots Pioneer 3-AT Robotic Platform ... 17

Figure 5: Pioneer 3-AT Robot with Optional Sensors .. 18

Figure 6: Khepera II Robots... 19

Figure 7: Simville Urban Area Environment .. 21

Figure 8: Convoy Maneuvers ... 22

Figure 9: MiniMAGIC Environment .. 23

Figure 10: Stage Simulator with SimVille Environment ... 24

Figure 11: Stage Simulator with MiniMAGIC Environment .. 25

Figure 12: System Architecture.. 28

Figure 13: (a) Box Used in Testbed to Represent a Building. (b) Box Model used in

Virtual Sensor System. .. 30

Figure 14: Tag Used to Represent Virtual Trees... 31

Figure 15: iRobot Creates in Physical Testbed and in the Virtual Sensor System 31

Figure 16: Real and Virtual Traffic Light ... 33

Figure 17: Two Different Traffic Light Representations... 33

Figure 18: Secondary Traffic Light Model Hidden From View 34

xiii

Figure 19: Two Commercial Laser Range Finders ... 37

Figure 20: Example Laser Range Finder Configuration.. 38

Figure 22: Create Robot with Laser Range Finder.. 39

Figure 23: Example Magnet Configuration .. 40

Figure 24: Example Magnetometer Configuration ... 41

Figure 25: Create Robot with Five Sensor Magnetometer .. 42

Figure 26: Graphical Representation of Lane Edge Calculation...................................... 44

Figure 27: Example Lane Edge Sensor Configurations .. 45

Figure 28: Create Robot with Two Different Lane Edge Sensor Configurations 46

Figure 29: Lane Edge Sensor on Dashed Lane Edge .. 46

Figure 30: Common Control Logic State Machine ... 48

Figure 31: Test Path Layout ... 50

Figure 32: Physical Testbed ... 51

Figure 33: Lane Edge Sensor Setup ... 51

Figure 34: Proportional Controller Trajectories .. 54

Figure 35: Proportional-Integral Controller Trajectories... 55

Figure 36: Magnetometer Setup ... 56

Figure 37: Test Path with Magnets ... 57

Figure 38: Magnetic Field of a Line of Discrete Magnets ... 59

Figure 39: Proportional Controller Trajectories .. 59

Figure 40: Proportional-Integral Controller Trajectories... 60

Figure 41: Area Mapping Virtual Environment .. 62

file:///C:/Users/Michael/Documents/Class/SU2010/Research/current/Masters%20Thesis.docx%23_Toc269728895
file:///C:/Users/Michael/Documents/Class/SU2010/Research/current/Masters%20Thesis.docx%23_Toc269728897
file:///C:/Users/Michael/Documents/Class/SU2010/Research/current/Masters%20Thesis.docx%23_Toc269728898

xiv

Figure 42: Physical Testbed of the Area Mapping Scenario ... 62

Figure 43: Cell Area Representation to Integer Representation 64

Figure 44: Rasterization of Laser Range Finder Ray .. 66

Figure 45: ASCII Map Visualization Program ... 67

Figure 46: Simple Map Visualization Program .. 68

Figure 47: Obstacle Avoidance State Machine ... 69

1

Chapter 1: Introduction

1.1. Motivation

When designing a controller for a system, the control engineer may not be

concerned with where the system output measurements are generated. This is especially

true during the initial design phases when only a proof of concept controller is required

before additional funding is provided. Through the use of virtual sensors, system outputs

can be generated through simulation of a system model and provided to a control

application alone or augmented with output from real sensors.

In an Intelligent Transportation application, a large vehicle is equipped with

numerous sensors to detect various portions of the vehicles surroundings. Many of these

sensors are redundant in order to increase the robustness of the system. This sensor suite

can cost hundreds of thousands of dollars. Like any other control system, several

simulation steps are performed before an algorithm is tested on the full-scale expensive

vehicle. Simulations do allow for repeated testing under similar conditions as well as

testing of scenarios impossible to plan in a real environment, but lack the sometimes

necessary nondeterministic components required to test the robustness of the algorithms.

In cases like this, a scale testbed is created where real robotic vehicles are used as an

intermediate testing step before an algorithm moves on to the full-scale vehicle. In order

to provide a sufficient test scenario, the small-scale robots must be equipped with similar

2

sensing capabilities as their larger counterparts. Sometimes this is still not cost effective

as similar sensors may still cost several thousands of dollars. It may also not be possible

or time effective to create realistic enough environments for the small robotic vehicles to

navigate.

The main focus of this thesis is to describe the implementation of a Virtual Sensor

System that combines the nondeterministic nature of a physical testbed with the simple

environment creation and cost effectiveness of a simulation environment in order to

expand the sensing capabilities of the robotic agents within the testbed. Within this

system, robots can be equipped with virtual sensors that interact with the objects

simulated in a virtual environment. These virtual objects can be linked to real objects so

that they are positioned based on the state of the object in the physical testbed.

Measurements for the virtual sensors are calculated and transmitted to the robots as if

they were equipped with a physical version of the sensor. In this chapter, relevant

literature describing uses and applications of virtual sensors and similar virtual

environments is reviewed. Finally, the outline and organization of this thesis is given.

1.2. Literature Review

Virtual sensors, sometimes called soft sensors, are software based sensors that use

an internal system model and other data including a systems control inputs and outputs

from physical sensors to create a desired output signal. This provides sensor data to a

system in place of a real sensor.

There are several reasons for choosing to use a virtual sensor over a real sensor [1],

the most common being cases where a specific quantity cannot be measured directly, e.g.

3

the position of a robotic vehicle in Cartesian coordinates. In these cases an observer

paradigm is used. Sometimes real sensors may not respond fast enough or there is

significant lag due to communication to be ideal for control applications. Virtual sensors

can be used to resolve these by predicting the sensor outputs using a Kalman Filter to

provide continuous output data from the periodic, time-delayed input signals.

Virtual sensors can also significantly reduce the cost of a sensor suite in order to

mean budget constraints as physical sensors can be either too expensive to install or

maintain throughout the lifespan of the sensor. Some sensors have issues maintaining

their calibration due to drift. In these cases, a virtual sensor model can be trained using

data from a freshly calibrated sensor and used in the system in place of it. Virtual

Sensors are also useful when the installation of the physical sensor is not possible due to

either physical size constraints or environmental constraints (the environment either

inside or outside the system is too harsh for the sensor to function appropriately).

A popular use for virtual sensor is in the area of fault tolerance. If a real sensor

fails, a virtual sensor can be inserted into a system until the real sensor can be brought

back online. [2] used a virtual sensor to provide data redundancy in a Helicopter

Adaptive Aircraft which was able to take-off as a helicopter then unfold wings and

transfer motion from the rotor to a propeller to proceed in forward flight as an airplane.

The output of the virtual sensor was compared to the output of real sensors in order to

detect a fault. A nonlinear virtual sensor used Nonlinear AutoRegressive with exogenous

excitation (NARX) system identification to estimate the sweeping angle of the wings.

With the use of the virtual sensor, the control system was able to detect a fault, localize

4

the fault within the system, and limit the propagation of the fault until the system was

able to recover.

No matter the application, a virtual sensor requires some sort of system model.

Depending on this model, the control inputs may be needed as well as data from a real

system or sensor. This sensor data can be different than the actual information the model

is estimating. If the system model is accurate enough, the state of the system can be

predicted allowing the optimization of control inputs. A virtual sensor is only as good as

its model.

In most cases, the system model may be unknown or rather complex therefore, most

virtual sensors are based around system identification technologies. [1] described using a

neural network to estimate the model of complex nonlinear systems. Real sensor data is

used to generate these models so accurate sensors are required in order to ensure an

accurate virtual sensor.

Virtual sensors were used to estimate the sideslip angle and lateral forces of a

vehicle in [3]. Four different observers (a linear Luenberger observer, an extended

Luenberger observer, an extended Kalman filter, and a sliding-mode observer) were

tested using three different sensor configurations (yaw rate, vehicle speed, and yaw rate

and vehicle speed together) in order to explore the stability of the observers and models

as the car reaches linear dynamic limits. Using the Callas vehicle simulator and a

nonlinear bicycle model, Stéphant, et al. were able to show that the nonlinear observers

provided the best estimation of the sideslip angle and that the vehicle speed was not

5

needed for sideslip estimation and all observers were sufficient if the lateral acceleration

was low (typical for normal driving situations).

The University of Washington in conjunction with the Washington State

Department of Transportation [4] used virtual speed sensors to provide travel time and

speed measurements of arterials and freeways based on probe sensor locations. Looking

only at these locations may not provide an accurate description of current traffic

conditions (e.g. high occupancy vehicle lanes tend to be faster and lanes containing

buses are typically slower). The system that was implemented used Kalman filters to

track vehicles to provide continuous estimations of the vehicle speed and location. This

estimated data was used instead of the probe measurements by a Probe Estimator to

provide reports about traffic conditions. This system was extended in [5] to interface

with the existing traffic management system in Seattle, Washington. The information

obtained from the existing infrastructure and the probe vehicles were fused together to

provide the traffic condition estimations. This merging was initially problematic because

the probe density was variable in both time and space.

Virtual sensors have been used in several instances for encapsulating sensor

information to provide simpler interfaces in an effort to increase usability of the sensor

data and decrease the overhead of learning the different interfaces. [6] designed a Mobile

Virtual Sensors which was a processing middleware for tracking object through several

cameras in a smart surveillance application. Each agent was configured to start and stop

based on a series of events defined by the system programmer, handled simple tracking

between a programmer-defined set of resources, swapped in and out other resources as

6

the object of interest moved between camera views. Previously, systems used a multi-

threaded structure where each thread was responsible for gathering data from a small set

of cameras. This structure required that each tracking agent be able to obtain information

from each resource thread thus decreasing the overall speed of the system. Through the

mobile virtual sensors, Kumar et al. were able to reduce CPU load by 60% because the

sensors allowed for more selective processing of the image data.

This abstraction was not only useful for users but also for the other software

systems. NASA’s Jet Propulsion Laboratory discussed resource management in [7]

where no distinction was made between real and virtual sensors when scheduling or

monitoring the use of resources in a planetary rover.

In [8], Kabadayi et al. also utilize virtual sensors for purposes of abstraction. They

describe a customizable interface to create a sensor fusion of heterogeneous data. In their

system, sensors were abstracted in such a way that the programmer could obtain

information from sensors that provide “location” or “temperature” instead of specifically

requiring information from GPS or a thermocouple. The programmer would then

implement an aggregator that would combine the different measurements into a custom

output state. The update frequency of the aggregation was also customizable independent

of the update frequencies of individual sensors.

Xiang and Özgüner describe a tree-shaped hierarchical virtual sensor structure in

[9] to abstract sensor data from the low physical level to a high symbol level. A feature

level of virtual sensors was used to extract features from real sensors. At this level, there

was a single virtual sensor for each physical sensor. The next level used general virtual

7

sensors in a low level data fusion. Each general virtual sensor combined and integrated

multiple, possibly heterogeneous virtual sensors from the feature level to create more

complete and accurate representations of the features. A high level data fusion layer was

added above this in order to perform decision making based on both the general virtual

sensors and the feature level virtual sensors if necessary. A navigation example was

presented describing a vehicle equipped with multiple laser range finders, radar,

ultrasonic, and vision sensors. First, objects of interest were detected from each sensor

individually. Then, the data from groups of sensors were fused together to find similar

objects of interest. The decision making level was used to fill an occupancy grid used for

planning the route the vehicle travelled through the world.

All of the examples described thus far have required that either the system in which

the virtual sensor was used or inputs to the virtual sensor be in the real world. Several

groups have done work with virtual sensors either completely in a virtual environment or

augmenting the real world information with virtual information. Redmill, Martin, and

Özgüner explain the implementation of a simulation environment designed to test the

usability of sensor data and sensor fusion algorithms in intelligent transportation

scenarios in [10]. The modular simulator created through this research, VESim, provided

three dimensional environment simulations that could be used as input for vision

algorithms, supported the simulation of vehicle models with six degrees of freedom and

complex sensor output generation. This system allowed a user to create repeatable test

scenarios for testing complex, dynamic control algorithms and multi-level sensor fusion

algorithms.

8

The Player/Stage Project [11] has been widely used as a robotic development tool

which encapsulates various hardware components of a robot so that control algorithms

can be written independent of the robotic platform. A control application can be initially

designed using the two dimensional, Stage, or three dimensional, Gazebo, simulators.

This same application can then be used on a physical robot without modification. The

Player/Stage Project also provides several standalone tools that can be used to visualize

data obtained by a robot’s sensors. Though these tools are very useful when debugging

robotic systems, they can sometimes be difficult to interpret because they only display a

small subset of the data utilized by the control systems. Collett and MacDonald [12]

created an augmented reality system which overlaid the robot’s world view on top of an

image of the real world so that developer’s can have a better understanding of the robot’s

view of the environment.

Dixon et al. created a system called RAVE [13] which allowed for the collaboration

of both real and virtual robots which utilize both real and virtual sensor data. The

primary goal of this project was to establish a common way for heterogeneous robots to

interact with each other. This was similar to the Player/Stage project. Virtual sensors

were used by this system to provide sensing systems for virtual robots as well as to

augment existing onboard sensors on a real robot with virtual data. In the latter case, data

from real sensors sensing only the real world were fused with that from virtual sensors

sensing only the virtual environment. Many tools were also created to allow multiple

users access to visualize robot information and control their systems.

9

1.3. Thesis Organization

This thesis presents a Virtual Sensor System implemented in the Control and

Intelligent Transportations Research Lab at The Ohio State University. The thesis is

organized as follows:

Chapter 1 begins by describing the motivation behind this work followed by a

literature review in the area of virtual sensor networks.

Chapter 2 describes the initial multi-agent intelligent transportation testbed in use at

the Control and Intelligent Transportation Research Lab. Each agent is described

including software systems and the different robotic vehicles available for testing.

Several unique testbeds are also described.

Chapter 3 presents the implementation of the Virtual Sensor System and how it

interacts with the other agents in the testbeds. Details are given for both the various

components implemented in the system and the three virtual sensors that were

implemented.

Chapter 4 explains three test scenarios that were implemented in order to test the

implementation and usability of the Virtual Sensor System. First, a general control setup

is given that was used within the test scenarios. Then, two path following

implementations are shown one using the lane edge sensor and the second using a

magnetometer array. Lastly, an area mapping and obstacle avoidance scenario is

described. This scenario utilized the laser range finder.

Chapter 5 summarizes the work, concludes this thesis, and points out areas where

future work may be required.

10

Chapter 2: Simulation Environment

2.1. Introduction

In the Control and Intelligent Transportation Research Laboratory [14], numerous

systems have been implemented both in hardware and in software in order to explore

various intelligent vehicle application scenarios. All of the various components were

designed so that each system could be used independently of the others in cases where a

particular component was not needed or if it crashed due to an implementation flaw. This

also facilitated the creation of additional components when that need arose. Systems

were designed to use the Player interface whenever possible to achieve a smooth

transition between the simulation and physical environments. Stage [11] and Gazebo

have been used in various projects conducted at the CITR Lab to simulate various test

scenarios before a full physical implementation was attempted.

The following sections describe the interconnectivity of the various systems in the

lab including the Virtual Positioning System and the three different robotic vehicles

utilized. This architecture allows for the rapid implementation of different testbed

environments customized to the specific scenarios to be tested. The details of two such

environments are outlined, an urban area environment called SimVille [15] and an open

area environment called MiniMAGIC. Finally, the Stage simulator is described in detail.

11

2.2. System Architecture

A diagram of the various component interconnections is shown in Figure 1. The

primary components of the system were the Virtual Positioning System and the mobile

robots. The positioning system received images of the testbed over Firewire from two

cameras and detected unique glyphs attached to objects in the environment. The dotted

lines in the figure represent the cameras viewing the tags mounted to the mobile robots.

The state of the tags was transmitted to each of the mobile robots in the testbed. This

component is described in more detail in the following section.

Camera(s)

Tag
Dead Reckoning

Control Algorithms

Mobile Robot

Tag
Dead Reckoning

Control Algorithms

Mobile Robot

Traffic Light

Virtual
Positioning

System

Firewire

Unicast
UDP

Unicast
UDP

V2V

V2V

V2IV2I

Figure 1: System Architecture

Each of the mobile robots had a robotic vehicle as its basic component and was

equipped with several hardware and software components independent of which vehicle

was utilized. In addition to its situation specific control logic, the robot included a sensor

12

fusion module which estimated position and orientation states from the measurements

received from the Virtual Positioning System and the robot’s onboard wheel encoders

and inertial sensors.

In order to mimic the modularity of the whole system, the software systems used

on the robots were created as separate applications that could be run when needed.

Communication between these various software components was done through the use of

shared memory structures.

Player was used on all of the mobile robots in the implementation of the logic

controllers in order to create a smooth transition between the simulation environment and

the physical robot as well as the transition between different robotic platforms. Player

provided a way of encapsulating all of the platform specific information of each robot

through a standard software interface. A configuration file was used to setup this specific

information. This file was created once for each robot and could be utilized by any new

control algorithm without modification.

The mobile robots communicated between each other through a vehicle to vehicle

interface. The V2V packets contained information about the robot’s position, orientation,

and linear and angular velocities as well as other important information including

whether the current robot was following another robot or if it was navigating toward a

specific checkpoint. Through this interface, the robot indicated whether it was in the

process of driving into a docking station for charging.

For urban test environments, a traffic light was implemented and transmitted its

position and light status to other agents in the system through a vehicle to infrastructure

13

interface. The V2I packet also contained information about the position of the stop lines

for the individual lanes of the intersection and timer information to determine the length

of time until the next light transition. This packet was based off of the Signal Phase and

Timing (SPaT) message defined in [16]. Just like the mobile robots, any number of traffic

lights could be added into the environment without interrupting the other functionality of

the system. The physical traffic light used an ATmega128 based RoboStix from Gumstix

[17] to control several LEDs. The V2I information was transmitted over 802.11B using a

serial to wireless module provided by Qualcomm.

Typically, all of the information between subsystems was transmitted over the 2.4

GHz wireless band using 802.11B wireless cards. A 900 MHz wireless network was also

implemented to support data transmissions to one of the older robotic platforms used.

2.2.1. Virtual Positioning System

A Virtual Positioning System was implemented in order to simulate the

functionality of the Global Positioning System that would be used by intelligent vehicles

when in outdoor environments. Two Scorpion cameras from Point Grey Research [18]

were used to acquire top down images of the lab area. The intrinsic parameters of each

camera were calculated before they were mounted to the ceiling of the lab at a height of

6.5m. These cameras transmit grayscale images to a processing computer over Firewire

at a rate of 15 Hz.

For detection by the Virtual Positioning System, a unique two dimensional

barcode was mounted to the top of each mobile robot and static object of interest such as

buildings. The Augmented Reality Toolkit Plus (ARTKPlus) [19] was used to detect

14

these barcodes in the grayscale images from the two Scorpion cameras. Each image was

processed independently to give the position and orientation of each tag found in the

image relative to the center of the camera’s field of view. This information was then

translated into a global coordinate system and was tracked in order to estimate linear and

angular velocities of the tags. This data was collected for each tag and transmitted over

Unicast UDP packets to the IP address associated with each tag ID. Figure 2 shows a

screenshot of the processing application displaying the images received from each

camera and an overlay of the tag IDs and positions.

Figure 2: Screenshot of the Virtual Position System Processing Application

2.3. Robotic Vehicles

Several robotic vehicles have been interfaced with the testbeds created in the

Control and Intelligent Transportations Research Lab. All of the systems created in the

lab have been designed to facilitate the addition of different agents, robotic or otherwise,

15

without the rebuilding of the previously added systems. This section describes three of

the primary robotic platforms that have been used for various intelligent vehicle designs.

2.3.1. iRobot Create

One of the primary robotic vehicles used in the CITR Lab was the Create

Programmable Robot from iRobot [20]. The Create, shown in Figure 3, was designed as

an affordable robot platform tailored toward academic and hobby applications. The small

33 centimeter diameter disk shaped robot looked similar to iRobot’s Roomba vacuum

cleaning robot but provided a small cargo bay and greater interface capabilities in place

of the vacuuming components.

The iRobot Roomba Open Interface protocol [21] was used by an external

microcontroller connected to the Create’s 25 pin cargo bay connector to collect

information from the Create’s onboard sensors and transmit motor commands to the

robot. This connector also included several digital inputs, one analog input, and a few

digital outputs in case the attached controller does not have these capabilities or if

addition ones are needed. The Create was equipped with individual encoders for each of

the two wheels with millimeter accuracy. The attached motors would allow the Create to

travel up to 0.5 m/s. Four cliff sensors were provided in order to detect if the Create had

reached the edge of the platform on which it was driving. To detect whether the robot

had encountered any physical obstacles, two micro-switches were supplied on the front of

the Create and were connected by a large bumper. iRobot’s virtual walls and docking

stations were detected by utilizing the omnidirectional infrared receiver that was attached

to the top of the bumper.

16

Figure 3: iRobot Create

A Gumstix Connex [17] microcontroller board was used as the controller

interface to the Create equipped with a PXA255 Xscale processor from Marvel. A

CFStix was connected to the Connex in order to provide a CompactFlash socket for an

802.11B CompactFlash wireless card. An Element Direct Sticky Interface board was

used to connect the Connex to the Create through its 25-pin cargo bay connector. This

interface board provides a switching power supply to maximize the Create’s battery life,

a USB host connector, general purpose IO breakouts, and I
2
C expansion ports.

2.3.2. MobileRobots Pioneer

MobileRobots [22], formerly ActivMedia Robotics, manufactures the Pioneer 3-

AT four wheel drive, all-terrain robotic platform primarily for research and prototyping

applications. Figure 4 shows the basic Pioneer 3-AT platform. The Pioneer’s drivetrain

consisted of two high torque, high speed motors each to drive two of the nine inch

17

diameter pneumatic tires. Three lead acid batteries were used to provide ample power for

all of the Pioneer’s subsystems. An external battery charger was provided by

MobileRobots to charge these batteries.

The Pioneer was equipped with two eight sensor sonar arrays, one in the front of

the robot and one in the rear, with each sensor positioned in twenty degree intervals to

provide a full 360° of coverage. Each sensor measurement was acquired at 25 Hz and

provided a resolution between 10 cm and 4 m. Ten bumpers were used for obstacle

detection when other sensing methods were inconclusive.

Figure 4: MobileRobots Pioneer 3-AT Robotic Platform

 [http://www.mobilerobots.com/]

The basic Pioneer platform allowed numerous other sensors to be attached to the

robot in order to expand its capabilities for both indoor and outdoor environments. For

outdoor test scenarios, a NovAtel GPS module was attached to the Pioneer, but for the

indoor environment described here, this sensor was not utilized. In addition to the GPS

18

module, a Sick LMS-200 Laser Range Finder was mounted to the robotic platform

providing a 180° field of view at up to 0.25° angular resolution with distance

measurements up to 80 m. The Pioneer was also equipped with a Canon VC-C4 camera

with motorized pan, tilt, and zoom mechanisms which were utilized for vision based

applications. Figure 5 shows the Pioneer 3-AT robot with all of the optional accessories

described.

A PC/104 form factor computer was equipped with an Intel Pentium 3 processor

and was used to implement the hybrid control logic necessary for vehicle autonomy.

This computer had access to all of the onboard sensors and was programmed to utilize all

of these sensors in order to navigate its environment.

Figure 5: Pioneer 3-AT Robot with Optional Sensors

19

2.3.3. K-Team Khepera II

The Khepera II robot was designed and distributed by the K-Team Corporation

[23] based in Switzerland. These 70 mm diameter hockey puck shaped robots were

equipped with a 25 MHz Motorola 68331 processor programmable through a serial

connection. Eight infrared proximity and ambient light sensors surrounded the outside of

the robot giving it the ability to sense obstacles around it. Three external analog inputs

were provided for use with other sensors, but were not used. An AeroComm [24] serial

to 900 MHz wireless adapter was attached to the Khepera to provide wireless

communication to the other agents in the environment. Figure 6 shows a picture one of

the Khepera II robots equipped with the AeroComm wireless adapter.

Figure 6: Khepera II Robots

The Khepera II was equipped with high accuracy wheel encoders providing

submillimeter distance resolution. The servo motors powering the wheels were able to

20

drive the robot between 0.02 m/s and 0.5 m/s. Continuous driving would allow for

approximately one hour of battery life.

2.4. Environments

2.4.1. SimVille: An Urban Area Testbed

SimVille, shown in Figure 7, was created after the 2007 DARPA Urban

Challenge [25] in order to continue research efforts in urban environment scenarios. A

road network was created to be 1/7 scale with 0.5 m wide lanes in order to use the Create

robots as urban vehicles. This scale also allowed for the Khepera II robots to be used to

mimic pedestrian behavior if the test scenario required. The road network was designed

to provide areas for testing many diverse scenarios without the need to change the test

environment. Several intersections were included both with and without traffic lights.

An overpass and several simulated buildings were added in order to test GPS dropout

situations. A zone area was used to test robotic maneuvers in a more loosely constrained

area. Parking spaces were also added into the zone area. Many of the road lanes were

laid out in a fashion such that the direction of travel for the lane could be changed or a

specific purpose be given to it (e.g. a turn only lane).

21

Figure 7: Simville Urban Area Environment

A large straight portion of road was created to simulate a highway environment.

This two lane section was used to test both high and low speed passing and merging

maneuvers into and out of this section. Convoy maneuvers were also explored in this

section, shown in Figure 8. The exit of this area was used to test methods of having one

vehicle merge into the middle of an already formed convoy.

22

Figure 8: Convoy Maneuvers

A Road Network Definition File (RNDF) [26] was a road layout specification

created by DARPA for use in both Grand Challenges and the Urban Challenge. This file

format contained information about the start and end locations of a lane in the network as

well as waypoints on the lane in between the two. Lane width and the type of lane

boundary, such as solid yellow or broken white lines, were also included. Special points

of interest on the lane could be designated as checkpoints. A Mission Definition File

(MDF) was used to list the checkpoints that were required for the vehicle to navigate to.

Both files were used by the vehicles’ control logic to plan routes through the network.

2.4.2. MiniMAGIC: An Open Area / Building Testbed

MiniMAGIC was created as a testbed environment for developing control logic

and testing various scenarios related to the Multi Autonomous Ground-robotic

International Challenge (MAGIC) 2010 [27]. MAGIC was sponsored jointly by the

Australian and United States’ Departments of Defense in an effort to start creating the

23

next generation of robotic vehicles to be effective in both civilian rescue scenarios and

military operations. Multi-robot teams navigated through and mapped an open area

environment trying to locate simulated threats. Robots also had to be able to navigate

into and through buildings in order to find some of the targets.

MiniMAGIC, shown in Figure 9, was designed to maximize open area in order

for dynamic obstacles to be placed. Building structures were created to simulate the

buildings that would be seen at the actual competition field. Carpeting was used on the

testbed surface to create a much more rugged terrain similar to the outdoor environment.

The Pioneer 3-AT robots were used as they were designed as an all-terrain vehicle and

were more similar in size and sensing capabilities as the robots actually used for the

competition.

Figure 9: MiniMAGIC Environment

24

2.5. Stage Simulator

The Stage simulator was originally designed as a two dimensional simulation for

populations of mobile robots. Robots and sensors used computationally inexpensive

models rather than high accuracy, computationally expensive models so that real-time

tests could be performed using entire fleets of robots. Recent updates expanded the two

dimensional simulator into two and a half dimensions by utilizing a stack of two

dimensional planes to simulate the third dimension. Figure 10 shows a screenshot of

Stage using the SimVille environment, and Figure 11 shows the MiniMAGIC

environment implemented in Stage.

Figure 10: Stage Simulator with SimVille Environment

25

Simulated controllers were compiled ahead of time and dynamically loaded

through the use of a world file. This world file allowed the setup of the ground layout

and the various static and dynamic objects required in the simulation scenario. Different

sensor and robot models could be created in separate files and used in the world file.

Objects were defined using either a set of points to create a polygon, a simple block

structure, or a separate image file. This basic outline was then extruded to a specified

height to give the illusion of three dimensions.

Figure 11: Stage Simulator with MiniMAGIC Environment

Player was used in conjunction with Stage to create logic to control robots as they

navigated through the simulation environment. Stage also allowed more flexibility for

different simulation needs through the libstage modules. Using this setup, the simulator

setup and execution could be more specifically customized. This was the method used to

implement the Virtual Sensor Framework described in the following chapter.

26

Chapter 3: Virtual Sensors

3.1. Introduction

In the Control and Intelligent Transportation Research Lab, many autonomous

vehicle simulations have been conducted using its existing infrastructure. In order further

extend the capabilities of the lab, a Virtual Sensor System was created and interfaced

with the other agents. In this system, sensors were modeled in the Stage simulation

environment and were simulated in order to provide data to actual robotic vehicles in the

testbed as if a real sensor was physically connected to the robot. This allowed for

additional sensors to be used by the robot’s control algorithms without the budget

overhead of purchasing the sensors or the time overhead of creating the interface between

a new sensor and the robot itself. Through the implementation of the Virtual Sensor

System, the randomness of the real world was integrated with the deterministic structure

and infinite possibilities of a simulation environment.

The following sections describe how the Virtual Sensor System interacted with

other agents in the CITR lab and how real world objects were linked to their virtual

representations. The implementation of a traffic light is detailed to show how the

visualization capabilities of the system could be utilized. Three sensors were

implemented in the system: a laser range finder, a magnetometer, and a fictitious lane

edge sensor. Details on their creation and use are given below.

27

3.2. System Extensions

3.2.1. System Architecture

 The Virtual Sensor System runs as an extension to the Stage simulation

environment. Through the libstage interface provided by Stage, the system was able to

control the various aspects of the simulation rather than relying on the default Stage

executable. This allowed for more flexibility and control over the execution of the

system. The Virtual Sensor System was able to process the Stage world definition file,

make any necessary modifications to the objects in the world, and execute callback

functions when individual models were updated. The world definition file contained

information about the virtual representation of each robot and its virtual sensor setup as

well as models for other static objects that were required for a testbed scenario (e.g.

building, trees, and traffic lights in an urban environment).

 Figure 12 shows the communication interconnects between the agents in the

CITR lab with the addition of the Virtual Sensor System. This system was added to the

existing lab setup so that it could be started and stopped independently of any other

running system. This ensured that the Virtual Sensor System did not have to be running

if it was not needed for a specific autonomous vehicle scenario run in the testbed.

 The Virtual Sensor System was able to receive V2V data packets transmitted from

each of the robotic vehicles in the testbed as well as the V2I data packets sent by the

traffic light. Information on the position and orientation of static objects was obtained

from the Unicast UDP packets generated by the Virtual Positioning System. Once the

data was calculated for each sensor in the simulation, Unicast UDP packets containing

28

this information were transmitted to the corresponding robot for use in its unique control

software.

Figure 12: System Architecture

3.2.2. Linking Real and Virtual Objects

In the Virtual Sensor System, a link was created between the real objects in the

testbed and the virtual objects placed in the Stage simulation environment so that the

virtual objects were placed in the same location as their physical counterparts. To

accomplish this goal, tags recognized by the Virtual Positioning System were affixed to

the top of the physical objects in the testbed. As they system detected the tags, it would

29

transmit Unicast UDP packets to the computer running the Virtual Sensor System which

contained the tag’s identification number as well as its position, orientation, and both

rotational and linear velocities. A separate application running on this machine received

these data packets and updated a shared memory structure containing state information

for all thirty-two tags supported by the Virtual Position System.

For the virtual object to appear in the simulation environment, a model was added

to the testbed world file read by Stage. To create the actual link from the physical object,

the Virtual Sensor System would look for objects with the name “tag” followed by a

number between one and thirty-two. This number corresponds to the tag identification

number contained in the data packet received from the Virtual Positioning System.

During each update of the system, the state of the tag of each linked object was read from

a shared memory structure and was used to update the virtual position of that object.

Figure 13(a) shows a picture of a box seen in the physical testbed with the tag placed on

its top surface. The corresponding virtual object is shown in Figure 13(b).

One of the benefits of this object linking paradigm was that the virtual object did

not have to look exactly the same as the physical object. For instance, a simple box could

be used in the real testbed to represent a much more complex building in the virtual

environment. The tag could also be simply placed on the ground and used to represent a

tree standing alongside one of the roads in SimVille. This latter example is shown in

Figure 14.

30

Figure 13: (a) Box Used in Testbed to Represent a Building. (b) Box Model used in

Virtual Sensor System.

Robot models were handled slightly differently than other objects in the Virtual

Sensor System. Rather than receiving the tag information directly from the Virtual

Positioning System, the Virtual Sensor System received state information directly from

each robot. This allowed the robots to use onboard sensors including wheel encoders and

inertial sensors to augment the state information obtained from the Virtual Positioning

System. After calculating its new state, the individual robots transmitted this information

as a V2V packet which was read by an external program that would update a shared

memory structure with the new state information. This structure was read by the Virtual

Sensor System to update the state of the robot models.

Models were linked to the corresponding physical iRobot Create robot by being

named “roomba” followed by the robot identification number. Support for the Pioneer

and Khepera robots was not implemented. During each update of the system, each

robot’s state was updated according to the information obtained from the V2V messages

through the shared memory structure. Figure 15 shows a Create robot both in the real

31

testbed and in the virtual environment. In this image, the virtual Create robot looks very

similar to the physical robot. This does not have to be the case because just as a tree

model could be linked to a physical tag, the robot’s state could be linked to other shapes

like a model of a car.

Figure 14: Tag Used to Represent Virtual Trees

Figure 15: iRobot Creates in Physical Testbed and in the Virtual Sensor System

32

3.2.3. Traffic Light

 To add to the visual aspect of the Virtual Sensor System, a traffic light was

implemented for use with SimVille. The physical traffic light transmitted V2I

information to all other agents in the testbed. A simulator was also created to generate

these messages for situations in which the physical traffic light could not be used. The

same program used by the robots to receive this data was used by the Virtual Sensor

System to determine the state of the light for updating the representation of the light in

Stage. Figure 16 shows the physical traffic light in SimVille as well as its representation

in the Virtual Sensor System.

 Two different traffic light styles were created for use in the Virtual Sensor

System. A simplified traffic light provided a single light for each direction of the

intersection rather than the typical three. This allowed the proper color of light to be seen

in both the default two dimensional view as well as the three dimensional view. For

more realistic visualizations, a standard traffic light model was created with three lights

on each of the four sides. Since the red light would occlude the status of the other two

lights in the two dimensional view, a small indicator was placed on the top of this traffic

light model and was updated to show the current light state in any given direction. Figure

17 shows these two traffic light configurations.

33

Figure 16: Real and Virtual Traffic Light

Figure 17: Two Different Traffic Light Representations

 In order to decrease the rendering time of a simulation step, Stage utilized the

display list paradigm [28] of OpenGL. During initialization of the models, Stage stored

34

all of the drawing calls so that they could be reused in each subsequent frame. The

problem with this implementation was that once a model was initialized, no part of its

model could be changed. To circumvent this issue, two traffic light models were used

instead of a single model, one model configured with a red light on two opposite sides

and yellow on the other two and one model configured with red and green. One of the

models was chosen during the rendering of each frame and was rotated 90° if necessary

in order to obtain the appropriate traffic light representation. The other model was placed

underneath the ground plane of the virtual environment (typically at the z = 0 plane) so

that it would not be seen during the simulation as seen in Figure 18.

Figure 18: Secondary Traffic Light Model Hidden From View

 One major drawback with this implementation was that each of the two models

was required to be defined in Stage’s world definition file. Also, since the models could

not be dynamically updated, the virtual traffic light did not support the flashing red and

35

flashing yellow states. In this implementation, only one traffic light was supported. Any

other traffic light models would not be initialized.

3.3. Sensors

3.3.1. General Sensor Structure

The creation of each new sensor required the implementation of three separate

parts. First, a simulation model needed to be already available or created within the

Stage environment. Then, two interfaces needed to be built, one to add the sensor into

the Virtual Sensor System and another to allow sensor data to be transmitted to individual

robots.

The interface to the Virtual Sensor System required an initialization phase where

the sensor manager would search for and initialize all instances of that sensor attached to

each robot in the simulation. During this phase, the Unicast UDP communication sockets

were created.

This interface was also required to implement a callback function that would be

executed during each time step of the simulation as Stage updated the state of each

specific model. The callback function would obtain any data from the sensor, translate

that data into the specified Unicast UDP packet structure, and transmit the packet to the

robotic vehicle.

So that each robotic vehicle was able to be equipped with several separate sensors

of the same type, the data for each sensor was transmitted to a unique port number. The

global interface provided the declaration of the base port numbers for all of the sensors of

that type and a function that was used to calculated the transmission port number given

36

the base port number, the robot identification number, and the sensor identification

number. A structure was also provided to define the data representation of a sensor

reading.

3.3.2. Laser Range Finder

A laser range finder utilizes Light Detection and Ranging (LIDAR) technology in

order to determine the locations of objects within its field of view. These devices

typically consist of a single laser beam that is reflected off of a spinning mirror in order

to generate a known number of rays in a plane. These rays reflect off of nearby objects

and are detected by photo sensors internal to the device. The distance to an object along

a ray is calculated from these measurements. A commercial laser range finder is shown

in Figure 19. The device on the left was the same model that was mounted to the Pioneer

robot (Sick LMS-200 [29]) and updates at ~75 Hz, has a maximum range of 80 m, and

costs over $6000. The device on the right is a much smaller model from Hokuyo [30]

which could be mounted to a Create robot. This sensor only updates at a rate of 10 Hz

with a maximum range of 5.6 m and still costs over $1500. The virtual laser range finder

was created because this price point was not practical for full deployment to all of the

robots.

37

Figure 19: Two Commercial Laser Range Finders

[http://www.sick.com/, http://www.hokuyo-aut.jp/]

The implementation of the laser range finder used Stage’s ModelLaser class for

the low level laser simulation. This class provided several configuration parameters that

could be modified within the Stage world definition file. The field of view was modified

using fov. The variables range_min and range_max were used to change the minimum

and maximum range for each ray of the laser. Samples defined how many individual ray

trajectories were calculated within the laser’s field of view. The resolution variable was

used in order to decrease the number of calculations performed for each ray. If resolution

was set to be greater that one, only every nth ray intersection would be calculated. The

remaining range values were then calculated using linear interpolation. The ray

intersection calculations were already rather quick since Stage traverses its internal

occupancy grid to find intersections between the rays and objects in the world as opposed

to doing complete three dimensional ray-polygon intersections.

38

Since several robotic vehicles would appear in the simulation, modifications were

made to how Stage displayed the laser data since it draws every laser in the same blue

color. The parameter laser_color was added within ModelLaser so that a unique laser

color could be set within the world definition file for runtime changes. A sample laser

definition is shown in Figure 20.

The Unicast UDP structure provided the number of rays that were cast for the

specific sensor as well as the distance value measured along that ray. This structure

supports a maximum of 361 so that it can be transmitted using only a single UDP packet.

This number allows the user to have 0.5° resolution over a 180° field of view. Each of

the range values was represented in millimeters by a sixteen bit unsigned integer to

define roombalaser laser

(

range_max 0.75

fov 180.0

samples 361

size [0.156 0.155 0.19]

)

roomba

(

name “roomba0”

color “steel blue”

roombalaser

(

 pose [0 -0.19 -0.025 -90]

color “blue”

laser_color “blue”

)

)

Figure 20: Example Laser Range Finder Configuration

39

provide a maximum range of 65.535 meters. Figure 21 is a screen capture of the Virtual

Sensor System showing a Create robot equipped with a single laser range finder

configured as shown above.

Figure 21: Create Robot with Laser Range Finder

3.3.3. Magnetometer

A magnetometer is used to measure the strength and direction of a magnetic field.

The Earth has its own magnetic field which can be measured in order to roughly estimate

the orientation of an object. Early research conducted in the field of automated highway

systems used several magnetometers mounted to a car in order to measure the magnetic

field of small magnets embedded in the roadway. These magnets were typically placed

in the center of the roadway. The magnetometers were mounted in such a way that the

40

car’s offset with the center of the lane was measured and used as input into its

autonomous driving system.

Since Stage did not contain a magnetometer model, one was created for it. For

simplicity, the magnetic field of the Earth was ignored in the model because this sensor

was not intended to be used as a compass. A magnetic_moment property was added to

each model so that any object could be used as a magnet. A magnetometer_return

property was also added in order for the sensor model to determine if a specific object

generated a magnetic field. This was modeled after the approach used for the laser and

other models available in Stage. Figure 22 shows an example configuration of a magnet.

The magnetic field of each object was modeled by the magnetic field generated

by a cylindrical magnet placed at the center of that object with a given magnetic moment.

Equation

 (1 [31] was used to

Figure 22: Example Magnet Configuration

define magnet model

(

 magneticmoment 100000

 magnetometer_return 1

 color “blue”

 size [0.05 0.05 0.10]

)

magnet

(

 pose [0 0 -0.09 0]

)

41

determine the magnitude of the magnitude of magnetic field at a point P = (x, y, z)

referenced to the center of the magnet.

 (1)

where µ0 is permeability and M is the magnetic moment.

The world file definition was based off of the ranger model provided by Stage. In

this description, a single device was configured to have one or more individual sensors.

The properties scount and spose determined the number of individual sensors and their

locations. The sensitivity of each sensor was initialized though the ssensitivity property.

The size of the box drawn for each sensor was determined by the ssize property. Figure

23 shows an example configuration of a magnetometer with five individual sensors.

42

The UDP packet structure allowed for sixteen sensors to be configured for each

magnetometer. The magnitude of the magnetic field measured by each sensor was

represented by a signed thirty-two bit integer in units of 10
-4

 Gauss. This allowed for

magnetic field measurements between -214748.3648 Gauss and 214748.3647 Gauss.

Figure 24 shows a five sensor magnetometer mounted to the front of a Create robot. The

small squares in front of the robot are magnets.

Figure 23: Example Magnetometer Configuration

define roombamagnetometer magnetometer

(

 scount 5

 spose[0] [-0.15 0 0]

 spose[0] [-0.075 0 0]

 spose[0] [0.00 0 0]

 spose[0] [0.075 0 0]

 spose[0] [0.15 0 0]

 ssensitivity [-10000 10000]

ssize [0.01 0.05]

shape definition removed for simplicity.

)

roomba

(

name “roomba0”

color “red”

roombamagnetometer

(

 pose [0 -0.2 -0.04 0]

)

)

43

Figure 24: Create Robot with Five Sensor Magnetometer

3.3.4. Lane Edge Sensor

A lane edge sensor is a fictitious sensor that has been used for teaching basic

autonomous vehicle control concepts [32]. This sensor provides its user with the distance

to the edge of the lane. It is possible to generate this measurement using a fusion of

different sensor data commonly consisting of a camera or through an observer. For this

sensor, the user is more interested in the actual measurement output rather than how the

data is actually obtained.

The lane edge sensor was used as an example to show how the flexibility of the

Virtual Sensor System allowed for the production of a sensor measurement in a way

different from how the measurement would be collected in the real world. This

implementation was based around the laser model provided by Stage. When processing

the world definition file, Stage turns any visible object into a volume. Any road layout in

44

the testbed was loaded into Stage as an image which was processed into a set of

rectangular prisms whose geometry was drawn rather than a single textured quadrilateral.

Since the lane edges had a thickness and were added into Stage’s occupancy grid, a laser

was used to collide with the objects.

The laser model was configured to cast out several rays within a narrow field of

view. The model was placed very close to the ground so that the rays would collide with

the rather thin road layout geometry. During the initialization of the Virtual Sensor

System, only lasers named “laneedge” were initialized as lane edge sensors. All other

laser models were assumed to be laser range finders. After each update of the simulation,

the range values were obtained for each of these rays. Based on the location of the sensor

on the robot and the state of the robot itself, the ranges returned by the laser model were

transformed into the three dimensional intersection points. All range values close to the

maximum range were discarded.

A line was fit to these intersection points. The slope and the y-intercept were

calculated using linear regression. The line was then extrapolated in order to find the

distance to the lane edge perpendicular to the robot. This method was used in order to

account for cases where the lane edge was dashed or when the sensor was not placed

perpendicular to the forward direction of the robot. Figure 25 shows graphically how the

lane edge distance was calculated. If the application of the sensor did not require this

robust of a calculation, the sensor was configured using only a single ray who’s range

was used as the lane edge measurement.

45

Figure 25: Graphical Representation of Lane Edge Calculation

 The UDP packet structure contained only a single sixteen bit unsigned integer

representing the distance from the sensor to the lane edge. The measurement was

transmitted in millimeters allowing for a maximum lane edge distance of 65.535 meters.

An example configuration for both a single ray and a multiple ray lane edge sensor is

shown in Figure 26. For the single ray, Stage requires that at least two samples are

defined. If this was detected, the Virtual Sensor System only interpreted the range from

the first of the two. Figure 27 shows two configurations of the lane edge sensor on a

Create robot, one with a single laser measurement and one with multiple measurements.

Figure 28 shows the multiple ray configuration of the lane edge sensor on a curved road

with a dashed lane edge.

46

Figure 26: Example Lane Edge Sensor Configurations

Figure 27: Create Robot with Two Different Lane Edge Sensor Configurations

define roombalaneedge laser

(

 range_max 0.5

 fov 10.0

 samples 10

 # for single ray sensor use:

 fov 1.0

 samples 2

 size [0.06 0.03 0.01]

 name “laneedge”

 # shape definition removed for simplicity.

)

roomba

(

name “roomba0”

color “steel blue”

roombalaneedge

(

 pose [0 -0.225 -0.1 0]

 color “blue”

 laser_color “blue”

)

)

47

Figure 28: Lane Edge Sensor on Dashed Lane Edge

48

Chapter 4: Sensor Test Scenarios and Results

4.1. Introduction

After the Virtual Sensor System was fully implemented, it was necessary to test

the functionality and practicality of the system. In order to do this, simple test scenarios

were completed using the iRobot Create robots to test the three sensors implemented in

the system. A path following scenario was designed with two perpendicular straight

paths connected by a smooth 90° turn. Both the lane edge sensor and magnetometer were

used individually to follow this path. The laser range finder was tested separately in an

area mapping and obstacle avoidance scenario. For this test, a three meter by three meter

area was sectioned off for the robot to navigate through. Several real and virtual

obstacles were placed within this area for the robot to avoid.

The following sections describe how the Virtual Sensor System was used by the

Create robot in the CITR lab. The common control logic used in all three sensor use

cases is first described because the same basic structure was utilized in all three control

applications. Details about the path following scenario and the two sensor suites used to

navigate the test path are given. The results for each of the two tests are provided. The

implementation of the area mapping and obstacle avoidance scenario is described as well.

49

4.2. General Control Logic Setup

 Though the scenarios for which they were created differed, the three control

programs followed the same basic structure. Figure 29 shows the simple finite state

machine that was used to control the flow of the control application. Through the use of

command line parameters, the experimenter was given the ability to decide whether the

robot would immediately begin executing its control logic or wait for a start signal.

Although the use of this start signal may be more beneficial when used in multi-robot

scenarios, it can also be used to start logging applications or to give the user enough time

to start a video camera. The Control Logic state was a meta-state [33] meaning that a

secondary finite state machine was embedded within this state.

Figure 29: Common Control Logic State Machine

50

 A component called BumperProxy was provided by the Player interface to allow

the control application to access the bumper mechanism of the Create. This interface was

used so that if the robot collided with any object during testing, the robot would move

into a Wait state where it stopped driving until the bumper was released at which time the

application would return to the previous state. This provided enough time for a

supervisor to either remove the obstacle or stop the control code if it was the root of the

error. The Player interface also provided a Position2dProxy which encapsulated the

specific robots driving commands by allowing the user to change both the linear and

rotation speeds of the robot.

4.3. Path Following

4.3.1. Path Description

 Path following is a fundamental component of intelligent transportation systems

thus making it an ideal scenario to test the functionality of the lane edge sensor and

magnetometer. Figure 30 shows the simple path used for testing. This path was

originally a segment from the SimVille environment that was isolated and rotated in

order to achieve the orientation shown. Before each test, the Create was placed at the left

most portion of segment one. This straight path was 2.72 meters in length and led into a

90° left turn with an approximate radius of 0.93 meters to the center of the lane. The

final section was 1.349 meters in length was added to see how the controllers would

recover from navigating through the curve.

51

 This path was created entirely in the simulation environment of the Virtual Sensor

System. Tags for the Virtual Positioning System were placed in the testbed and linked to

small blocks in the simulation world in order to locate the Create in the proper place

along the path. Figure 31 shows these tags in the testbed.

Figure 30: Test Path Layout

1

2

3

S

52

Figure 31: Physical Testbed

4.3.2. Lane Edge Sensor Tests

 A lane edge sensor was placed 22.5 centimeters from the center of the Create.

This sensor was composed of sixty one rays in a thirty degree, left pointing field of view.

Figure 32 shows an overhead view of this setup.

Figure 32: Lane Edge Sensor Setup

53

 Since each of the three segments of the path had different lane widths, the control

algorithm was required to have knowledge about the path in order to attempt to travel in

the center of the lane during the entire test. If this was not intended, a mean lane width

could be selected such that the robot would be within the lane throughout the entire path.

 A proportional and a proportional-integral controller were used to control the

steering rate of the robot. The linear velocity of the robot was set at a constant 0.1 m/s.

The error, Equations (2 and

(3, at each time step was calculated from the difference between the current lane edge

measurement and half of the lane width. As described before, the lane width changed

according to the section in which the robot was maneuvering. The steering input for the

proportional controller is shown in Equation (4, and the input for

the proportional-integral controller is shown in Equation

(5. The integral of the error was calculated using the trapezoidal rule, Equation

 (6, using the elapsed time between iterations

of the controller—about 0.1 seconds—and the error calculated in the previous iteration.

In some cases, the integral term can grow significantly causing the computer

representation of the number to overflow. A common fix for this is to periodically clear

the integral term. This was not actually needed during testing of these controllers due to

the oscillation apparent in the path causing the integral value to be close to zero. The

relatively short elapsed time of a test run also made this unnecessary.

54

 (2)

 (3)

where led is half of the lane width for the current section of the path.

 (4)

where KP is the proportional gain.

 (5)

where KP is the proportional gain, and KI is the integral gain.

 (6)

 Because of several nondeterministic factors in each run, three separate runs were

performed for each gain value while tuning the controllers. Each set was analyzed in

order to determine the next gain value to be tested. Through this method, a proportional

gain, KP, of 0.5 was used in both controllers and an integral gain, KI, of 0.015 was used.

The addition of derivative control did not significantly affect the robots trajectory along

the path and was thus not included in the final controllers. Figure 33 shows three

trajectories of the Create using only the proportional controller. The trajectories resulting

from the use of the proportional-integral controller can be seen in Figure 34.

 Several statistics were calculated to compare the results of the individual

controllers. The mean, standard deviation, minimum, and maximum were determined for

both the initial error vector and the absolute value of the error. A mean close to zero was

55

desired for the signed error while the mean of the absolute value of the error showed the

average deviation of the robot’s trajectory to either side of the path.

 Table 1 shows these values for the proportional controller. The results of the

proportional-integral controller are shown in Table 2. All values in both tables are given

in meters.

Figure 33: Proportional Controller Trajectories

 Table 1: Proportional Controller Statistics

Trial Mean

Std.

Dev. Minimum Maximum

Abs.

Mean

Abs.

Std.

Dev.

Abs.

Minimum

Abs.

Maximum

1 0.027 0.074 -0.194 0.871 0.048 0.063 0.000 0.871

2 0.030 0.061 -0.161 0.184 0.048 0.048 0.000 0.184

56

3 0.022 0.045 -0.133 0.169 0.035 0.036 0.000 0.169

Figure 34: Proportional-Integral Controller Trajectories

Table 2: Proportional-Integral Controller Statistics

Trial Mean

Std.

Dev. Minimum Maximum

Abs.

Mean

Abs.

Std.

Dev.

Abs.

Minimum

Abs.

Maximum

1 0.017 0.052 -0.190 0.169 0.041 0.036 0.001 0.190

2 0.015 0.050 -0.165 0.230 0.038 0.035 0.000 0.230

3 0.017 0.053 -0.145 0.184 0.041 0.037 0.000 0.184

4.3.3. Magnetometer Tests

 A magnetometer sensor array composed of five individual magnetometers was

placed in front of the Create such that the center sensor was twenty centimeters from the

57

center of the robot. Two sensors were placed 7.5 cm on either side of the center sensor.

The remaining two sensors were placed 15 cm from the center, one on either side. Figure

35 shows an overhead view of this configuration.

Figure 35: Magnetometer Setup

 Magnets were placed in the center of the lane along the entire path approximately

7.1 centimeters apart. With the 1/7th scale of the Create robots, this would equate to 0.5

meters between magnets [34]. Each magnet was 2.5 cm wide and 10 cm long with a

magnetic moment of 10000 m
2
A. Figure 36 shows how the magnets were placed along

the path.

 Since the string of magnets marks out the center of the lane, a priori information

about the lane width was not necessary like it was in the lane edge sensor test scenario.

This knowledge would be necessary in situations where the required path was more

complex and a route planner component was included in the control algorithm.

0

1

2

3

4

58

Figure 36: Test Path with Magnets

 Similar to the lane edge sensor test scenario, a proportional controller and a

proportional-integral controller were used to control the steering rate of the Create. The

Create’s velocity was again set to a constant 0.1 m/s. Because the magnetic field of the

magnetic field was calculated using an ideal model, the error signal, Equations

 (7 and (8, for

the controllers was chosen as the difference between the measurements of the two

outermost magnetometers in the array. This was not too unreasonable because the major

missing component of the measurement was the magnetic field of the Earth. The two

sensors were placed close enough together that the magnetic field measured of the Earth

at the two points would be roughly the same. Figure 37 shows the magnetic field of six

magnets in a line measured at a distance of 7.5 cm above the top surface of the magnet.

59

This distance was the same as the distance between the magnetometers on the Create and

the magnets embedded in the lane. This separation distance provided an almost

continuous magnetic field to be measured by the magnetometer. Since the robot was

always moving forward and the center of rotation of the robot was not close to the center

magnetometer sensor, a zero error would result only in the case where the center sensor

was at the maximum point of the field and the centerline of all five sensors was

perpendicular to the centerline of the magnets. The integral of the error was calculated

using the trapezoidal rule.

 (7)

where zi is the magnetic field measurement from the ith sensor.

 (8)

 The same method was used for tuning the two controllers as was used for the lane

edge sensor controllers. The proportional gain, KP, of both controllers was 0.01 and the

integral gain, KI, for the proportional-integral controller was 0.006. Figure 38 shows the

trajectories of three test runs using only proportional control. The results for the

proportional-integral controller are shown in Figure 39.

60

Figure 37: Magnetic Field of a Line of Discrete Magnets

Figure 38: Proportional Controller Trajectories

61

Figure 39: Proportional-Integral Controller Trajectories

 Table 3 shows statistics for the proportional controller. The results of the

proportional-integral controller are shown in Table 4. All values in both tables are given

in Gauss.

Table 3: Proportional Controller Statistics

Trial Mean

Std.

Dev. Minimum Maximum

Abs.

Mean

Abs.

Std.

Dev.

Abs.

Minimum

Abs.

Maximum

1 0.171 0.302 -0.595 1.057 0.272 0.215 0.001 1.057

2 0.126 0.331 -0.827 1.043 0.284 0.212 0.002 1.043

3 0.161 0.363 -0.657 1.183 0.315 0.241 0.003 1.183

62

Table 4: Proportional-Integral Controller Statistics

Trial Mean

Std.

Dev. Minimum Maximum

Abs.

Mean

Abs.

Std.

Dev.

Abs.

Minimum

Abs.

Maximum

1 0.058 0.340 -0.647 0.949 0.291 0.183 0.002 0.949

2 0.050 0.332 -0.995 0.864 0.273 0.195 0.006 0.995

3 0.058 0.350 -0.603 1.138 0.306 0.180 0.003 1.138

4.4. Area Mapping and Obstacle Avoidance

4.4.1. Environment Setup

 To test the functionality of the laser range finder in the Virtual Sensor System, an

area was created in which the robot would navigate using only data obtained from a front

mounted laser range finder to avoid obstacles in the area and generate a map of the

environment. The only other data available was that obtained from the Virtual

Positioning System and its other onboard sensors. A three meter square area was blocked

out using virtual walls in the Virtual Sensor System. Positioning markers were placed in

near the corners of this area for visualization in the physical area. Three physical objects

were placed randomly in this area each one approximately fifty centimeters square. A

virtual tree was also included; its position was linked to another positioning marker

placed in the physical area. Figure 40 shows an overhead view of the world

representation in the Virtual Sensor System. Figure 41 shows the physical objects.

 The Create robot used in this scenario equipped with a laser range finder virtually

mounted 19 cm from the center of the robot. This front facing sensor was configured to

have 361 rays within a 180° field of view providing the robot with 0.5° resolution. The

maximum distance measured by each ray was set to 0.75 m.

63

Figure 40: Area Mapping Virtual Environment

Figure 41: Physical Testbed of the Area Mapping Scenario

64

4.4.2. Map Representation

 For the robots representation of the environment, an occupancy grid [35] with

three centimeter resolution was used. An occupancy grid is an approach for representing

an area which divides an area into squares of a fixed dimension. Each of these squares is

assigned a probability based on the certainty that it is occupied by an object. For this

simple implementation, each cell was initially recorded to be unexplored, and then as the

robot navigated through the environment, each cell explored by the robot was updated to

being either occupied or not occupied based on data obtained from the laser range finder.

 Because it was necessary for the map representation to be transmitted over

Unicast UDP, the map representation was packed in such a way to minimize the number

of bytes that required transmission. Two bits were used to represent the state of each cell

since there were only three possible states. Sixteen cells representing a four by four grid

of three centimeter cells were packed into thirty-two bit unsigned integers. Figure 42

shows how these cells were arranged within the unsigned integer. Bitwise operations

were used to mask and shift the two bit segments of the integer when updating the state

of a cell or retrieving that cells current state.

 A thirty row square matrix of these integers was used to represent a 3.6 meter by

3.6 meter area. This matrix plus two eight bit unsigned integers storing the number of

rows and columns used in the matrix was able to be transmitted in only two UDP packets.

The full map representation was transmitted at roughly 1 Hz.

65

Figure 42: Cell Area Representation to Integer Representation

4.4.3. Updating the Map

 To update the map representation of the world, the robot received laser range

finder updates at approximately 13 Hz. For each ray in the sensor’s field of view, the

end point (Px, Py) of the ray was calculated using Equation

 (9.

 (9)

where (Lx, Ly) is the position of the laser range finder in global coordinates, r is the

range measurement of the individual ray obtained from the Virtual Sensor System, θ is

the sum of the angle of the ray, θray, and the robot’s yaw angle, θrobot, and (Ox,Oy) is the

offset required to place the physical area into the map area.

66

 The offset used for testing was (Ox,Oy) = (0.25, -1.75) to ensure that Px was

greater than zero and Py was less than zero. The absolute value of Py was then taken so

that Py was greater than zero. Once the position of the endpoint of the ray was

calculated, Equation

 (10 was used to calculate the row

and column of the cell of the map containing the point. The cell’s state was updated to be

occupied if the range of the ray was less than the maximum distance and otherwise, it

was stored to be not occupied.

 (10)

 This method only updated the cells on the perimeter of the laser range finder’s

field of view, however, all of the cells in the polygon created by the ray endpoints and the

sensors positions are known to be unoccupied. To add this information to the

environment map, all of the cells along each ray needed to be updated. This was

accomplished through a line rasterization technique [36] using the row and column

coordinates for the calculated endpoint of the ray and the laser range finder position.

Figure 43 shows an example ray and its raster graphics representation. First, the change

in row value and change in column value were calculated. The algorithm iterated over

either the columns or the rows depending on the maximum delta value. The parametric

line equation, shown in Equation (11, was

used to determine the cell that lie on the line connecting the two points. If the algorithm

67

was iterating over the column values, the parametric variable was calculated using

Equation

 (12, and then plugged into Equation

 (11 to calculate the corresponding row value. Each cell

was then updated to an unoccupied state.

 (11)

 (12)

where Cmin is the minimum column coordinate and Cmax is the maximum column

coordinate.

Figure 43: Rasterization of Laser Range Finder Ray

4.4.4. Visualization of the Map

 Since the map representation was transmitted over Unicast UDP, any agent on the

same network would be able to receive and use this data in some manner. This agent

68

could be running on any hardware with networking capabilities and written in any

programming language that supports the network transmissions. One way would be to

draw a visual representation of the map so that the user could determine if it was updating

as desired. Such visualization programs would be independent agents and could vary in

complexity based on the need of the user.

 Two types of visualization programs were implemented for testing purposes.

The first was an ASCII based display that was viewed inside of a terminal window.

Figure 44 shows a screen capture of this program displaying a map generated by a Create

robot in the environment described above. This image was rotated clockwise 90°. For

this display, the integer representation of the state of each cell was printed to the screen.

Zero was used for unexplored, one for occupied, and a space for the unoccupied cells.

Figure 44: ASCII Map Visualization Program

 A second simple graphical based display was also created to show another map

visualization possibility. For this display, each cell was drawn as a four pixel by four

69

pixel square. The color of each cell corresponded to the cell’s state. Dark gray was used

for unexplored cells, blue for occupied, and white for unoccupied. A single pixel wide

grid was also drawn so that individual cells could be distinguished. Figure 45 shows a

screen capture of this program displaying the same map that was displayed by the ASCII

visualization program.

Figure 45: Simple Map Visualization Program

4.4.5. Obstacle Avoidance

 The control logic state for the obstacle avoidance was actually a meta-state

containing a simple state machine. This state machine is shown in Figure 46. Once the

control logic starts, the Create begins driving forward at a speed of 0.1 m/s. The robot

continuously processed the data from the laser range finder and would maintain this

speed until an object in front of the robot was determined to be less than 0.4 m away.

70

The robot then reduced its speed to 0.05 m/s until the object was less than 0.2 m away.

When this occurred, the robot found the minimum distance in the left and right thirds of

the 180° field of view. The robot then turns in the direction having the largest minimum

object distance until the object was no longer in the front third of the view. Once this

happened, the robot returned to driving straight at a speed of 0.1 m/s.

Figure 46: Obstacle Avoidance State Machine

 During testing, this algorithm was able to map the simple area with few problems.

Because of the simplicity of the algorithm, the robot was susceptible to getting caught in

tight places or dead ends as the robot the side obstacles would become front obstacles as

it turned in either direction causing the robot to turn in the opposite direction. In this way

the robot would oscillate between turning left and right in the area. Some areas may have

gone unexplored while others would be explored multiple times because the robot does

not favor directions containing a high concentration of unexplored cells.

71

Chapter 5: Discussion and Conclusion

5.1. Discussion and Comparison

In the path following scenario, both controllers, one using the lane edge sensor

and the other a magnetometer array, performed best in the straight portions of the path as

expected. In the curved section, the lane edge controller significantly overshot the first

half of the curve and then undercut the second. The addition of the integral term helped

but did not completely remove this issue. This was likely due to the linear approximation

that was used to estimate the distance to the lane edge in the sensor model since the

magnetometer controller did not suffer from the same overshooting issues.

The addition of an integral term to the path following controllers showed an error

reduction of almost 50% compared to proportional control alone. Although oscillation

was still seen in the paths of both controllers, even using only proportional control

resulted in a path that was sufficiently within the edges of the lane. This oscillation

seemed to be caused by the transmission and computation delays of the virtual sensor

data. This delay proved to be a significant issue during the debugging of the control logic

and tuning of the controllers. The robots were slowed down to have a linear velocity of

0.1 m/s. When scaled for full-size, this was only about 1.5 miles per hour, a very

unrealistic speed.

72

The oscillation could also be attributed to the Virtual Sensor System using only

object state information obtained directly from the Virtual Positioning System and the

individual robots at a rate of approximately 10 Hz. If the timing of the systems were out

of sync or if a data packet was not received, sensor data may be calculated using the same

state of the virtual environment causing the controller to react to the new data as if its

previous action had no effect on the system. This would cause the robot to over-correct

thus inducing oscillation.

5.2. Conclusion and Future Work

 In this thesis, the Virtual Sensor System was created on top of the Stage two-

dimensional simulation environment for use with the existing infrastructure in the

Control and Intelligent Transportation Research Laboratory at The Ohio State University.

This system received state information from the Virtual Positioning System and from

several robotic vehicles in order to update a simulation environment representing the

testbed. It was possible to represent objects in the physical world with virtual models as

well as add virtual objects to the environment without a corresponding physical

representation. Also, the virtual models were not required to be at all related to the object

used to represent it in the physical world. The Virtual Sensor System also provided the

ability to include interactive components such as a traffic light to enhance the visual

aspects of the simulation environment.

 The primary objective of the Virtual Sensor System was to allow for physical

robots to be equipped with virtual sensors in order provide additional inputs to more

complex control algorithms. For this purpose, three separate sensors, a laser range finder,

73

a magnetometer array, and a lane edge sensor, were created. The implementation of

these sensors showed that the simulation of the sensor could closely resemble how the

sensor behaves in the real world, like the laser range finder, or could utilize the benefits

of the simulation environment to generate the data in a way that is much more

computationally efficient like the lane edge sensor.

 In order to verify the usability of the Virtual Sensor System, two different test

scenarios were designed where a control algorithm used the data provided by a virtual

sensor to complete the challenge. Two path following controllers were created to show

possible uses for the lane edge sensor and the magnetometer array. The laser range finder

was utilized in an obstacle avoidance scenario where the robot traversed through the test

area and navigating around obstacles while at the same time generating a map

representation for the areas already explored.

 This research resulted in a system that proved usable in simple Intelligent

Transportation applications; however, there were some aspects that could be improved.

The most important would be to introduce an extended Kalman filter or similar virtual

sensor to estimate the state of the physical objects in the environment. This would

provide more accurate simulation results because updates would rely on the continuous

state output of the Kalman filter instead of the periodic measurements obtained from the

Virtual Sensor Systems and the individual robot’s position estimator. This would also

allow for sensor update frequencies to vary between sensors though a computationally

efficient implementation would require modification of the Stage Simulator to allow for

selective updating of objects in the environment.

74

 The ease of use of the Virtual Sensor System can be increased by abstracting the

virtual sensor data into the existing sensor interfaces in Player. This decreases the

number of interfaces that need to be learned by a developer. This modification would

also make the virtual sensor measurements indistinguishable from real sensor

measurements allowing a control algorithm to remain unmodified if a physical sensor

was purchased to replace the virtual one.

 Minor modifications could also be made to Stage’s rendering system to allow for

objects that can visually update dynamically. Such a change would reduce the

complexity of the traffic light component by removing the need for a second hidden

model as well as increase the functionality because blinking light states can easily be

handled.

75

Bibliography

[1] E. Wilson, "Virtual Sensor Technology for Process Optimization," in Symposium on

Computers and Controls in the metals Industry, St. Petersburg Beach, Florida,

December, 1997.

[2] G. Heredia and A. Ollero, "Virtual Sensor for Failure Detection, Identification and

Recovery in the Transition Phase of a Morphing Aircraft," Sensors, vol. 10, no. 3,

pp. 2188-2201, March 2010.

[3] J. Stéphant, A. Charara, and D. Meizel, "Virtual Sensor: Application to Vehicle

Sideslip Angle and Transversal Forces," IEEE Transactions on Industrial

Electronics, vol. 51, no. 2, pp. 278-289, April 2004.

[4] D. Dailey and F. Cathey, "Virtual Speed Sensors using Transit Vehicles as Traffic

Probes," in Proceedings of the IEEE 5th International Conference on Intelligent

Transportation Systems, Singapore, 2002, pp. 560-565.

[5] D. Dailey and F. Cathey, "Deployment of a Virtual Sensor System, based on Transit

Probes, in an Operational Traffic Management System," University of Washington,

Seattle, Technical Report WA-RD 660.1, 2006.

[6] R. Kumar, J. Shin, L. Iftode, and U. Ramachandran, "Mobile Virtual Sensors: A

Scalable Programming and Execution Framework for Smart Surveillance," in

76

Proceedings of the 5th Workshop on Embedded Network Sensors (Hot EmNets

2008), June 2008.

[7] E. Gat, M. Slack, D. Miller, and R. Fiby, "Path Planning and Execution Monitoring

for a Planetary Rover," in Proceedings of the IEEE International Conference on

Robotics and Automation, 1990, pp. 20-25.

[8] S. Kabadayi, A. Pridgen, and C. Julien, "Virtual Sensors: Abstracting Data from

Physical Sensors," in Proceedings of the 2006 International Symposium on a World

of Wireless, Mobile and Multimedia Networks, 2006.

[9] Z. Xiang and Ü Özgüner, "Environmental Perception and Multi-sensor Data Fusion

for Off-road Autonomous Vehicles," in Proceedings of the 8th international IEEE

Conference on Intelligent Transportation Systems, Vienna, Austria, 2005, pp. 584-

589.

[10] K. Redmill, J. Martin, and Ü. Özgüner, "Sensor and Data Fusion Design and

Evaluation with a Virtual Environment Simulator," in Proceedings of the IEEE

Intelligent Vehicles Symposium, Dearborn, Michigan, 2000, pp. 668-674.

[11] (2010) The Player/Stage Project. [Online]. http://playerstage.sourceforge.net/

[12] T. Collett and B. MacDonald, "Augmented Reality Visualisation for Player," in

Proceedings of the 2006 IEEE International Conference on Robotics and

Automation, Orlando, Florida, 2006, pp. 3954-3959.

[13] K. Dixon, J. Dolan, W. Huang, C. Paredis, and P. Khosla, "RAVE: A Real and

Virtual Environment for Multiple Mobile Robot Systems," in Proceedings of the

http://playerstage.sourceforge.net/

77

IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999, pp.

1360-1367.

[14] (2010) Control & Intelligent Transportation Research Lab. [Online].

http://www2.ece.ohio-state.edu/citr/

[15] S. Biddlestone, A. Kurt, M. Vernier, K. Redmill, and Ü. Özgüner, "An Indoor

Intelligent Transportation Testbed for Urban Traffic Scenarios," in Proceedings of

the International IEEE Conference on Intelligent Transportation Systems, St. Louis,

Missouri, 2009.

[16] SAE International, DRAFT SAE J2735 Dedicated Short Range Communications

(DSRC) Message Set Dictionary Rev 29, available at

http://www.itsware.net/ITSschemas/DSRC/.

[17] (2010) Gumstix. [Online]. http://www.gumstix.com/

[18] (2010) Point Grey. [Online]. http://www.ptgrey.com/

[19] C. Doppler. (2010) Handheld Augmented Reality. [Online].

http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php

[20] iRobot. (2010) Education & Research Robots. [Online].

http://www.irobot.com/create/

[21] iRobot, iRobot Create Open Interface, available at

http://www.irobot.com/filelibrary/create/Create%20Open%20Interface_v2.pdf.

[22] INC. Mobile Robots. (2010) Intelligent Mobile Robotic Platforms. [Online].

http://www.mobilerobots.com/

http://www2.ece.ohio-state.edu/citr/
http://www.gumstix.com/
http://www.ptgrey.com/
http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
http://www.irobot.com/create/
http://www.mobilerobots.com/

78

[23] K-Team Corporation. (2010) Mobile Robotics. [Online]. http://www.k-team.com/

[24] Laird Technologies. (2010, July) Laird Technologies. [Online].

http://www.lairdtech.com/

[25] DARPA. (2007, November) Urban Challenge. [Online].

http://www.darpa.mil/grandchallenge/

[26] DARPA, Route Network Definition File (RNDF) and Mission Data, 2007, available

at http://www.darpa.mil/grandchallenge/docs/rndf_mdf_formats_031407.pdf.

[27] Australian Government Defense Science and Technology Organisation. (2010)

MAGIC 2010: Super-smart robots wanted for interational challenge. [Online].

http://www.dsto.defence.gov.au/MAGIC2010/

[28] OpenGL, Display Lists, 1997, available at

http://www.opengl.org/documentation/specs/version1.1/glspec1.1/node123.html.

[29] SICK. (2010, July) Sensor Intelligence. [Online]. http://www.sick.com/

[30] HOKUYO. (2010, July) HOKUYO. [Online]. http://www.hokuyo-aut.jp/

[31] H. Xu, C. Wang, and R. Yang, "Extended Kalman Filter Based Magnetic Guidance

for Intelligent Vehicles," in Proceedings of the Intelligent Vehicles Symposium 2006,

Tokyo, Japan, 2006, pp. 169-175.

[32] Ü. Özgüner, Autonomy in Vehicles, 2008, Lecture notes from ECE 753.02 at The

Ohio State University.

[33] Ü. Özgüner et al., "Simulation and Testing Environments for the DARPA Urban

Challenge," in Proceedings of the IEEE International Conference on Vehicular

http://www.k-team.com/
http://www.lairdtech.com/
http://www.darpa.mil/grandchallenge/
http://www.dsto.defence.gov.au/MAGIC2010/
http://www.sick.com/
http://www.hokuyo-aut.jp/

79

Electronics and Safety, Columbus, OH, 2008, pp. 222-226.

[34] DY. Im, YJ. Ryoo, YY. Jung, J. Lee, and YH. Chang, "Development of Steering

Control System for Autonomous Vehicle Using Array Magnetic Sensors," in

Proceedings of the International Conference on Control, Automation and Systems,

Seoul, Korea, 2007, pp. 690-693.

[35] A. Elfes, "Occupancy Grids: A Probabilistic Framework for Robot Perception and

Navigation," Carnegie Mellon University, Pittsburgh, PA, Doctoral Thesis 1989.

[36] L. McMillan. (1996) Line-Drawing Algorithms. [Online].

http://www.cs.unc.edu/~mcmillan/comp136/Lecture6/Lines.html

http://www.cs.unc.edu/~mcmillan/comp136/Lecture6/Lines.html

