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Abstract— This paper addresses the problem of reliably
detecting parking spots in semi-filled parking lots using on-
board laser line scanners. In order to identify parking spots,
one needs to detect parked vehicles and interpret the park-
ing environment. Our approach uses a supervised learning
technique to achieve vehicle detection by identifying vehicle
bumpers from laser range scans. In particular, we use AdaBoost
to train a classifier based on relevant geometric features of data
segments that correspond to car bumpers. Using the detected
bumpers as landmarks of vehicle hypotheses, our algorithm
constructs a topological graph representing the structure of
the parking space. Spatial analysis is then performed on the
topological graph to identify potential parking spots. Algorithm
performance is evaluated through a series of experimental tests.

I. INTRODUCTION

There has been an increased need and interests in intelli-
gent driving systems within the past decade, as exemplified
by projects such as the DARPA Urban Challenge [1]. For
intelligent vehicles, the ability to park autonomously is
one of the most fundamental requirements. In particular,
we are developing a Virtual Valet system [2] for vehicles
to park themselves that mimics regular valet service. The
major requirement for this system is to operate autonomously
without any infrastructure support.

In this paper, we focus on detecting available spots in
semi-filled parking spaces using an on-board laser line scan-
ner. We consider a typical semi-filled parking space as one
in which all vehicles are parked side-by-side as shown in
Fig. 1, and where several spots are available among these
parked vehicles. In order to identify these spots, one needs
to detect parked vehicles, analyze the parking patterns, and
interpret their spatial relationship.

Parking lots are typical semi-structured environments.
Perception in such environments involves not only low-
level detection of targets, but also high-level inference of
the underlying structures. Usually, in a semi-filled parking
lot, due to occlusions and limited space, sensors can only
obtain limited measurements of vehicles, typically from only
one side of them. If the low-level detection of vehicles
is restricted or infeasible, the high-level spacial inference
may fail to reveal the underlying structure of the parking
environment. The identification of available parking spots,
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Fig. 1. Examples of Semi-Filled Parking Lots and View from Sensor; the
parking space of the second figure corresponds to the sensor data plot.

which relies on the precise interpretation of the structure,
can become a significant challenge.

For the Virtual Valet system, we developed an algorithm
based on the assumption that the ability to detect vehicles
from a partial contour enables the interpretation of the
parking structure in relatively packed environments. Since
the bumper is the least occluded side of vehicles in typical
parking lots where cars are parked side-by-side (Fig. 1), we
attempt to identify parked vehicles via detecting bumpers.
Upon reliable detection of bumpers, our algorithm identifies
available spots by interpreting the spatial structure of the
given parking lot. The structure is represented by a spacial
distribution of vehicle hypotheses constructed from detected
bumpers.

The paper is organized as follows: Section II reviews
the related work. Section III describes our algorithm that
addresses the detection of vehicle bumpers and available
spots in semi-filled parking space. Section IV presents the
evaluation of our algorithm performance from a series of
experiments. Finally, Section V summarizes the results and
concludes the paper.

II. RELATED WORK

A number of research efforts have been made for au-
tonomous driving in structured, unstructured, and semi-
structured environments. Structured environments [1] such



as highways are usually imposed with explicit topological
graphs, and perception usually does not require uncovering
any underlying structures. Unstructured environments [3]
which are typically encountered off paved roads have no
explicit topological graphs imposed, and the vehicles are
not as constrained when driving, thus perception in such
environment usually addresses traversability analysis. Ap-
proaches used in these two cases are inadequate in semi-
structured environments [1], [4], [5], which require both
low-level detection of targets and high-level inference of the
underlying structures.

In semi-filled parking spaces, the targets are parked ve-
hicles and parking spots. While technologies such as loop
detectors can be used to sense vehicles, they are not always
available as a part of the infrastructure in every potential
parking space. Many driving assistance systems use ultra-
sonic sensors or radar to detect targets [6], [7], but they are
not applicable in the autonomous driving domain due to low
accuracy. Several approaches have been attempted addressing
detection of vehicles and parking spots, including detection
with optical sensors (i.e. cameras), with sensors fusing of
both laser and camera, and with only laser range scanners
[1], [5], [8].

Optical sensor-based and sensor fusion-based approaches
rely on cameras for perception. Cameras can capture a
tremendous wealth of visual information, which can be used
to identify more subtle changes and distinctions between
objects. However, they are sensitive to lighting. Furthermore,
in semi-filled parking lots (Fig. 1), in addition to the unstable
lighting conditions, the targets occlude each other exposing
only partial contours, which affects the camera’s ability to
accurately perceive the targets. On the other hand, though
lasers can only obtain range data, they are largely unaffected
by lighting. In our application, we chose to take advantage of
the LADAR’s ability to provide accurate range measurements
at high rates, which makes it easier to determine the exact
position of objects surrounding the vehicle.

In the DARPA Urban Challenge [1], many laser based
techniques were used for autonomous driving in both struc-
tured and semi-structured environments including parking
spaces. However, since the locations of parking lots and
spots are known beforehand, provided by the high resolution
Road Network Description File (RNDF) map, the techniques
demonstrated focus mainly on navigation or motion planning
of parking maneuvers. In real life, autonomous vehicles
not always have access to such information. In fact, in
the Challenge, the RNDF assumed that the parking spots
were empty, which indeed affected the performance of the
RRT path planner in one of the vehicles at a parking check
point. This incidence indicates that even when precise prior
information is given, due to the dynamical nature of the
environment and the potential misinterpretation of the prior
information, autonomous vehicles can not operate reliably
without comprehensive perception systems for tasks such as
spot detection.

Keat et al [5] attempted vehicle detection and car park
mapping using only 2D laser range scans. In the task of

vehicle detection, they generate vehicle hypotheses from the
2D line segments by verifying the detection of a vehicle’s
two adjacent sides. Unfortunately, the environments may
contain many objects such as corners of buildings which
contain two sides suggestively similar to those of vehicles.
These invalid cases can pass the validation of vehicle hy-
potheses test and mislead subsequent tests. Additionally,
the experiments described were conducted in sparse parking
spaces in which vehicles are not parked in a tightly packed
pattern. Thus, the performance of vehicle detection was not
evaluated for relatively packed environments, such as semi-
filled parking spaces in busy downtown garages or shop-
ping malls. Usually, due to occlusion, laser scanners could
not obtain measurements of complete contours of vehicles
containing two sides. Thus, the vehicle detection algorithm
that validates two adjacent sides would fail. To address this
issue, we believe that further classification criteria, such as
geometric features, is necessary to achieve reliable detection.

In [8], Jung et al reviewed different parking assistance
techniques and introduced a laser-based system. As their
system is a driving assistance application, they assume that
sufficient prior knowledge is available. For example, they
assume that when the system is operating, the target spot and
adjacent vehicles are in front of the sensor already, which
is impractical in autonomous driving. Also, they discard
cases of wide parking space between two adjacent vehicles,
which eliminates potential situations where there are two
vacant spots between the two adjacent vehicles. These priors
are not applicable in autonomous driving scenarios, where
certain intelligent behaviors are required and where the
autonomous system needs to reliably and robustly interpret
the environment.

Considering these issues, we propose an algorithm that
can reliably detect vehicles from laser range scans of mostly
single side of vehicles, in our case, bumpers. Specifically,
we use AdaBoost [9] to detect vehicle bumpers. Arras et
al [10] achieved impressive performance using pre-defined
geometric features and an AdaBoost classifier to detect
pedestrians from 2D laser range scans. In our application, we
found that vehicle bumpers can be characterized through a
set of geometric features that can be used for their detection.

Most directly related to our work in terms of inferring
underlying structures is the research of Dolgov and Thrun
[4], who described an algorithm addressing the detection
of topological structures for autonomous driving in semi-
structured environments such as parking lots. They focus
on robust estimation of lane networks in parking lots, and
address the navigation problem of path planning. In our
work, we focus on the detection of available parking spots.
Specifically, from a set of bumpers, our algorithm constructs
the topological graph represented by a spatial distribution of
the vehicle hypotheses, which reflects the spatial structure
of the given parking lot. By interpreting this structure,
our algorithm can identify available spots and maintain
them in the graph representation using probabilistic methods.
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Fig. 2. Algorithm Overview and Process Flow

III. ALGORITHM DESCRIPTION

There are two stages in the algorithm. Stage I performs
detection of car bumpers. Stage II performs spatial analysis,
probability update and parking spot identification. Fig. 2
shows an overview of the algorithm.

A. Stage I

In Stage I, the algorithm takes as inputs observations
from laser range scans. Formally, each observation consists
of consecutive bearings z = {r1, r2, ..., rm}, on which our
algorithm performs bumper detection via clustering, filtering,
bumper extraction, features extraction, and classification.
The output is a set of segments and classification results.
Each step is described in detail in the following sections.

1) Clustering: This step first converts ranges into points
in Cartesian coordinates, and groups points that are possibly
associated with the same objects using Dietmayer’s cluster-
ing approach [11], [12], where the algorithm iterates through
all the points of a scan in sequence, and separates the points
whose distances between consecutive points are greater than
a threshold. The output is an ordered sequence of clusters
C = {C1, C2, ..., CN}, where

⋃
Ci = z, for i = 1, 2, ..., N .

The distance threshold Dthd is:

Dthd = C0 + C1min(ri, ri+1),

where C1 =
√

2(1− cos∆α) = D(ri, ri+1)/ri, and C0

is a constant, in our case, C0 = 30[cm]; ∆α is the
angle difference between the two beams; D(ri, ri+1) is the
Euclidean distance between two consecutive points that are
returned by ith beam ri and i+ 1th beam ri+1,

D(ri, ri+1) =
√
r2i + r2i+1 − 2riri+1cos∆α.

2) Filtering & Bumper Extraction: This step first per-
forms occlusion reasoning and filtering of invalid measure-
ments, after which a subset of original clusters C ′ ⊆ C
is selected, where C ′ = {C ′1, C ′2, ..., C ′M}. Among these
clusters, there are instances of only vehicle bumpers, which
do not need to be further segmented; there are also instances
of L-shaped contours containing two sides of vehicles shown
in Fig. 3, which need to be further segmented to extract
bumpers. Formally, after occlusion reasoning and filtering,
the algorithm takes in the set of clusters C ′, segments all
L-shaped clusters, and outputs the corresponding segments
S = {S1, S2, ..., Sm}, where for each L-shaped cluster C ′i,
C ′i = {Sj , Sj+1}. Specifically, there are 3 processes in this
step:

a. Occlusion reasoning: In packed environments such as
busy parking lots, occlusion is common and can separate a
target’s measurements into multiple clusters. Our algorithm
identifies potential occlusion using the conditions described
below, and joins those clusters that are believed to belong
to the same targets. Specifically, the algorithm takes three
consecutive clusters in each step, denoting C1, C2, C3, and
concludes C2 is occluding C1 and C3 if the three conditions
are met: 1) C2’s width is less than a threshold estimated
from standard bumper width; 2) C2 is in front of C1, C3

with jump distances greater than a threshold determined by
clustering criteria; 3) by joining C1 and C3, the result cluster
displays continuity in shape.

b. Filtering invalid and insufficient points: Due to in-
compatibility between a target’s albedo and the sensor’s
wavelength, a LADAR occasionally returns invalid measure-
ments on car bumpers. The filtering module discards invalid
range data, which are abnormally large values, and joins the
adjacent clusters that are originally separated by these points
and that are close enough to satisfy the clustering criterion.

c. Bumper extraction: The L-shaped segmentation tech-
nique is performed following the split and merge techniques
[13], [14], [15]. In our algorithm, we only do split and
merge once, obtaining two best-fit lines of the two resulting
segments of the cluster. The cluster is determined to be L-
shaped if the angle between the two lines is in the range
[60◦, 120◦]. Fig. 3 shows an example in which bumpers are
extracted from the segmentation.

One interesting observation is that front bumpers are
generally rounder and lower than rear ones, especially
for small cars. In L-shaped segmentation some front
bumpers are occasionally divided into two segments. But
the influence on overall performance is trivial because of
evidence accumulation and Bayesian update.

3) Feature Extraction: For each segment Si, this step
computes features Fi = {f1, f2, ..., f11}. These eleven
geometric features, with which car bumpers are well dis-
criminated, will be used for classification by an AdaBoost
classifier. Each feature is a function f : Si → R that takes
an input segment Si ∈ S and outputs a real value. These
features are:

f1. Distance to Centroid: The distance from the sensor to
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Fig. 3. Examples of bumper extraction; the three L-shaped clusters are
segmented and potential bumpers (in red ”o”) are extracted.

the centroid of the segment. It is important as a normalizing
term, since laser scans become sparser as distance increases.

f2. Width: The Euclidean distance between the first and
the last point of the segment.

f3. Convexity or non-Convexity: This feature determines
whether the segment is concave or convex. Most bumpers
only appear convex from the sensor’s perspective. It is
determined by dcircle − dcentroid, where dcentroid is f1,
and dcircle is the distance from sensor to the center of
the segment’s best fitting circle computed in f9. A convex
segment corresponds to a positive value while a concave one
corresponds to a negative value.

f4. Mean Angular Difference: This feature measures the
degree of convexity/concavity of the segment. Different from
f3, which decides whether a segment is convex or concave,
this feature computes the degree of convexity/concavity: It
is determined by traversing the points of the segment Si =
{x1, x2, ..., xn}, taking three consecutive points (xi−1, xi,
xi+1) each time, and computes the average of the the angles
βi between the vectors ~xi−1xi and ~xixi+1:

βi = 6 ( ~xi−1xi, ~xixi+1).

f5. Density: The density of a segment is measured by the
standard deviation of points in the segment to its centroid.

f6. Linearity1: This feature, similar to the linear regression
technique, measures the squared residual sum of the segment
to its best fitting line in the least squares sense. It outputs
the squared residual sum of all points in the segment, which
indicates its degree of straightness.

f7. Boundary Length: As an alternative to width, this
feature measures the boundary length of the segment’s poly-
line representation:

l =

n−1∑
j=1

|xj+1 − xj |

where n is the number of points f8, and xj is a point
of Cartesian representation in the current segment Si =
{x1, x2, ..., xn}.

f8. Number of Points: The number of points in the
segmentSi, n = |Si|.

f9. Circularity1: This feature measures the circularity of
the segment. Similar to linearity, the circularity is the squared
residual sum of the segment to its best fitting circle in the
least squares sense.

f10. Boundary Regularity1: This feature is the standard
deviation of all poly-line lengths of the segment, each poly-
line length is li,i+1 = |xj+1 − xj | as computed in f7.

f11. Mean Curvature1: As an alternative reference to f4,
this feature measures the mean curvature of the segment.

The order in which these features were presented above
reflects their relevancy for classification in decreasing
order. We notice that distance to the segment’s centroid,
width, convexity or non-convexity, mean angular difference
(degree of convexity), and density are the most relevant for
classification.

4) Classification: This step classifies each segment using
the AdaBoost technique. With the eleven features extracted
for each segment, the algorithm then feeds every segment’s
feature vector into the trained AdaBoost classifier. The clas-
sifier makes decisions on behalf of each segment Si either
belonging to bumper class or non bumper class. According
to the weighted votes of the weak classifiers, the AdaBoost
outputs the more likely class label li. In our case, each weak
classifier is a binary threshold classifier.

Formally, the output is the set E of all segments, each with
its classification score wi ∈ R and labels li = sign(wi):

E = {(Si, wi, li)}, i = 1, 2, ..., |S|,

where li = +1 indicates segment Si is a bumper, and li =
−1 indicates Si is not a bumper.

Note that for two segments Sj and Sj+1 that
were originally extracted from an L-shaped cluster
C ′i = {Sj , Sj+1}, only one of them can be a bumper
while the other being the side of the vehicle. At this stage,
the AdaBoost classifier is used to classify each segment
independently based on geometric features. In the next
stage, additional filtering will be performed considering
spatial relations without the assumption of independence.

B. Stage II

In Stage II, the output of Stage I, E, is taken as input
to initialize or update the posterior probability of bumper
landmarks. These landmarks are used to construct a
topological graph defined in section B3. Spatial analysis and
parking pattern grouping are performed on the graph, upon
which potential parking spots can be identified. These spots
are then turned to landmarks whose posterior probabilities
are being updated with subsequent observations. There are
four steps in this process, which are described below.

1) Construction of Vehicle Hypothesis: For each segment
Si classified as bumper, we construct a vehicle hypothesis
as the configuration

hi = (li, ψi, pi),

where li ∈ R2 is the parked vehicle’s location in Cartesian
representation of 2D world frame, ψi ∈ R2 is the yaw
direction vector of the hypothesized vehicle, and pi is the
posterior probability of the hypothesis being a valid one,
which will be updated as described in subsequent section.

1The implementation details can be found in [10].



The yaw direction ψi is determined by taking the normal
vector of the segment’s best fitting line. Given location and
yaw, the algorithm generates a bounding box for each vehicle
hypothesis. The width of the bounding box is determined by
the bumper width (feature f2), and the length is approximated
using the length-width ratio of standard vehicles. Fig. 4,
Fig. 5 show examples of vehicle hypotheses overlaid with
bounding boxes.

Since the previous classification is performed on each seg-
ment based on geometric features, there exist false-positives
that result from other objects which are geometrically similar
to a bumper from laser’s perspective. These false positives
can be filtered if additional information is taken into consid-
eration:

a. Filter by width: The width (feature f2) of a potential
bumper segment Si is greater than a normal bumper could
be, or Si’s adjacent segment, which is potentially the side of
a vehicle, is wider than a normal car side could be.

b. Filter by obstacles in bounding boxes: Some segment
S′ is believed to be not a part of a vehicle, but lies inside
the bounding box of some vehicle hypothesis, the segment
S′ is potentially an obstacle. In this case it is unlikely that
a vehicle can fit in. In either case, the probability of the
associated hypothesis pi is decreased.

Note that the filtering needs to be performed after the
classification in Stage I because it is used to verify or
disprove the classification results and the validity of bumper
candidates generated from Stage I. In Stage I the classifier’s
decision is made based solely on eleven geometric features,
and it assumes that each segment is independent from each
other. By filtering with additional criteria and eliminating the
assumption of segments’ independence, the algorithm forms
a stronger and more accurate belief than classification based
on geometric features alone, which facilitates subsequent
spots identification.

2) Landmark Association & Update: After filtering, data
association from these bumpers to landmarks is performed.
Specifically, for each bumper, the algorithm takes its current
observation zt at time t, which is the new scan ranges zt =
{rt1, rt2, ..., rtm}. Then the algorithm performs association by
finding the landmark hi that maximizes the probability of it
being an observation of the landmark zti :

ht−1i∗ = arg max
ht−1
i

p(zti |ht−1i , zt, st),

where st is the current state (location and orientation)
of our vehicle. The association is performed using Nearest
Neighbor (NN) approach.

Once the corresponding landmarks are found, the algo-
rithm updates the posterior probability of these landmarks
being valid bumpers based on the Bayesian framework for
evidence accumulation [16]:

P (hti∗ |ht−1i∗ , zt, st).

In implementation, the classification output in Stage I for
each segment, E, is taken to update the posterior of the
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Fig. 4. An example of detected parking spots and parked vehicles in sensor
frame. The red segments are determined by our algorithm to be bumpers;
vehicle hypotheses are overlaid with bounding boxes; blue triangles are
detected open parking spots.
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Fig. 5. An example of the topological structure. Top-Left: A semi-filled
parking lot; parked vehicles in each parking group are connected by black
lines (edges of Minimum Spanning Tree, formally defined in section B.3).
Note that two potential spots in the bottom parking group are rejected
because obstacles are detected in the potential spots’ areas. Top-Right:
Corresponding topological graph; red squares are nodes. Bottom-Left: A
semi-filled uniformed-layout parking lot; note that two adjacent parking
spots are identified because the space detected is wide enough to fit two
vehicles according to the parking pattern of the parking group. Bottom-
Right: Corresponding topological graph; red squares are nodes.

landmark in log-odds form. If no close enough landmarks
are found matching some bumper candidate, a new landmark
is initialized for it.

3) Update of Topological Structure: Topological graphs
are regarded as efficient representations of the world that
omit the irrelevant details in the environment and concern
only the most relevant factors [14], [17]. For the purpose of
identifying open spots in a parking space, our topological
representation of the parking lots concerns the poses of
parked vehicles and their spatial relationships. Thus, in our
graph, we represent parked vehicles as nodes. Two nodes are
connected with an edge if the two parked vehicles (nodes)
are close to each other, and display similar parking patterns.
Each node is encoded with the corresponding vehicle’s
unique landmark ID and its configuration hi. Fig. 5 shows



examples of resulting topological graphs. The following three
procedures are performed to construct the topological graph:

a. Initializing Nodes: A landmark k is initialized as node
in the topological structure if pk is greater than a threshold
determined by the frequency of probability update, indicating
the algorithm is confident about the landmark as a valid
vehicle bumper.

b. Grouping: In real parking lots, vehicles are usually
parked according to the layout of parking spots, which
display uniform parking patterns in terms of aligned positions
and directions. Different sets of parking spots display differ-
ent parking patterns. Thus, to identify valid parking spots
among these parking sets, a grouping procedure is necessary
to encapsulate nodes that have similar parking patterns. The
grouping is performed such that 1) nodes of each group
are within a distance threshold and 2) the differences of
landmarks yaw directions in each group are less than a
threshold. The thresholds are estimated from standard layout
in parking spaces. This ensures that nodes of each group
present similar parking patterns.

c. Connecting Nodes of Same Group: In order to detect
parking spots in each parking set, we need to extract the
spatial relationship of the nodes in the parking set. The
spatial relationship is simply represented as edges in the
topological graphs. For each group, the algorithm constructs
the Minimum Spanning Tree (MST) that connects the pairs
of landmark nodes with least distance. The weight of each
MST edge is simply the distance between the two end
nodes. The MST representation ensures that two nodes
connected by an edge are most likely the adjacent vehicles
in their parking set (Fig. 5). This allows us to identify
potential open spots in each parking set as described in the
following section.

4) Identification of Parking Spots: A potentially open
parking spot is identified in between two adjacent vehicle
landmarks of the same parking set, provided that the distance
between the two landmarks is greater than a threshold (3
meters in our case), estimated from standard parking spot
spaces. Fig. 5 shows examples of spot landmarks between
vehicle landmarks in the topological graph.

Note that given 2D range scans, we only initialize a
parking spot hypothesis if it is located between two bumper
landmarks of the same parking set. This imposes the require-
ment that a valid node of spot landmark must depend on two
adjacent vehicles as references.

One may notice that this rules out many potential spots
that are adjacent to only one vehicle landmark and spots
that are standalone, commonly found in sparse parking lots.
The consideration is that only one vehicle landmark can
hardly provide sufficient and reliable reference to validate
the spots, given only 2D range data. One can easily come up
with a counter example where a spot is identified adjacent
to one vehicle, while the vehicle is next to road and the
detected spot stands in the middle of the road. In this case,
a car that parks at this ”spot” becomes an obstacle on the
road. On the other hand, since we are interested in relatively

Fig. 6. Experimental Vehicle - NavLab 11

packed environments such as semi-filled parking spaces in
city center or malls, one can expect a number of parked
vehicles to provide sufficient references for spot detection.
Thus, given the practical concerns, we require that one or
a few consecutive spots must have two adjacent vehicles as
references.

Once a potential spot is identified, it will be initialized
with location, computed as the mean of locations of two
referred vehicle nodes between which the spot locates.
Similar to bumper landmarks, data association using Nearest
Neighbor approach on the spot hypothesis will be performed
to associate it with an existing spot landmark, or the spot
hypothesis will be initialize as a new spot landmark if no
close existing landmarks are found.

IV. EXPERIMENTS

Our experimental vehicle is a Jeep Wrangler named
Navlab 11 as shown in Fig. 6. The LADAR we used to
collect data is a SICK LMS-291 laser range finder, mounted
in front of the vehicle 60 cm above the ground. Data rate
was 37.5Hz, 180◦ field of view, with 0.5◦ resolution.

A. Training the Bumper Classifier

We trained our classifier for bumper detection with data
collected in a semi-filled parking lot, where most of the
spots are occupied with cars tightly close to each other,
and several spots are open. Specifically, the points from
a total of 731 scans were clustered into 5234 segments,
among which 2825 segments are manually labeled as positive
samples (bumpers), and 2409 segments negative samples
(non bumpers). The training process uses multiple iterations
to generate a single strong classifier that is an ensemble of
weak classifiers. During each iteration of training, a new
weak classifier is added with a weight adjusted to focus on
examples that were misclassified in previous iteration. The
complete set of labeled segments was divided into a training
set and a test set, and 8-fold cross-validation was used.

B. Experiments

To evaluate bumper detection, we used a data set collected
in the semi-filled parking space as shown in Fig. 1(above).
The data set is randomly divided into 8 folds, and we applied
8-fold cross validation. In each validation, 7 folds are used



TABLE I
CONFUSION MATRIX FOR BUMPER & SPOT DETECTION

Detected bumper Detected non-bumper Total
True bumper 2472 (87.50%) 353 (12.50%) 2825
True non-bumper 507 (21.05%) 1902 (78.95%) 2409

Detected spot Detected invalid spot

True spot 34 (94.44%) 2 (5.54%) 36
True invalid spot 3 (12.50%) 21 (87.50%) 24
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Fig. 7. ROC plot for bumper classification / spot detection

to train the classifier while the remaining fold is used for
testing, and the average performance of the eight validations
is used to evaluate the classifier. The confusion matrix and
ROC plots for bumper detection are shown in Table I and
Fig. 7. From the table we can see our algorithm obtained
87.50% bumper detection rate at the optimal operation point,
where the highest iso-accuracy line under the class distribu-
tion intersects with the convex hull, resulting in the good
separation of two classes with balanced tradeoff between
detection rate and false positive rate. There were failures
during our experiment, in which some vehicle bumpers
were far from our laser, and as our experimental vehicle
drove away, the laser did not obtain adequate measurements
for evidence accumulation, resulting in low confidence and
detection failure.

To evaluate spot detection, we used four data sets collected
in different settings. Set I and II are collected in typical
semi-filled parking lots in which most spots are occupied
and several spots are available, as shown in Fig. 1; Set
III is collected in a relatively sparse parking space where
several spots are occupied while most are available; Set IV is
collected in a less structured parking space, in which vehicles
are parked in a less uniformed pattern than in a standard
parking lot in terms of pose alignment. In the test,we dialed
the bumper detector to operate at the optimal operation point
of 87.5% detection rate. Based on the bumper classification
results gained in Stage I, the algorithm constructed the
topological structure of the parking lot, and maintained
landmarks of both vehicle and potential parking spots.

Fig. 8. Histogram for Parking Spots Detection Value Distribution; green
line and black line are the Gaussian distributions of the positive samples
(valid spots) and negative samples (invalid spots) respectively; green bars
and black bars are the frequencies of the scores given by the algorithm on
valid spots and invalid spots respectively.

The spot detection results are shown in Table I and Fig. 7.
Of the 60 potential spots manually labeled as ground truth,
36 are valid and 24 are invalid. Note that when evaluating
the spot detector, given the constrains of 2D range data,
we count all the potential spots that our system should be
able to detect. Specifically, a valid parking spot is an open
space in between two reference vehicles that matches the
parking pattern and is wider than 3 meters; an invalid spot is
a wide enough space in between two reference vehicles that
follows the parking pattern, but contains obstacles such as
pedestrians, plants, pillars, electric poles, street lights, etc.,
shown in Fig. 5.

Our algorithm can operate at a point resulting in the per-
formance shown in Table I. The distribution of the confidence
scores for these 60 potential spots is displayed in Fig. 8 as a
histogram. The ROC plot is shown in Fig. 7. As suggested
by the decision value distribution, the detection performance
is encouraging. We found that most failures were due to
inadequate measurements for evidence accumulation as our
experimental vehicle drove by. In particular, the false positive
spots were invalid spots defined in previous paragraph,
containing occluded obstacles, mostly pedestrians; these ob-
stacles were hardly detected as our experimental vehicle
drove by, resulting in inadequate measurements. Note that
when operating in reality, false positive detections could lead
to accidents. Thus, an applicable operation point for our
autonomous system should be imposed at the false positive
rate of 0%, where the corresponding true positive detection
rate of 52% is obtained. This means that the system ensures
that one out of every two empty spots may not be detected,
but it also guarantees that the test vehicle will not collide
with another car because of a false detection.

By comparison, Jung et al [8] proposed a system with spot
detection rate of 98%. However, as mentioned in Section II,
since their system is for the purpose of driving assistance,
during their experiments the sensor was placed in front of
parking spots prior to detection. While our system is for
the purpose of fully autonomous parking, our autonomous
vehicle detects the spots when driving around parking space
without any prior knowledge of the environments, it instead
relies on inference of the environments and interpretation
of the underlying structures. Keat et al [5] presented the



car park mapping system, but they did not show evaluation
results quantitatively.

V. CONCLUSION

The paper proposes an approach to detect vehicles and
parking spots in relatively packed environment with only one
on-board 2D laser range finder. It combines both detection
of targets and inference of the environments. With the use of
an AdaBoost classifier and topological graph representation,
our algorithm is capable of detecting vehicle bumpers and
parking spots in semi-filled parking lots under occlusion and
sensor constraints.

Because of concern for robustness, in our experiments,
we tested settings such as sparse and less structured parking
spaces, in which our algorithm is still able to robustly
detect parking spots as long as enough reference is available
to infer the spacial layout. In our approach, we rule out
potential parking spots that have few reference vehicles,
because perception with only 2D range data requires us to
impose dependence on these adjacent vehicles as references.
Also, since our algorithm detects vehicles through the
detection of bumpers, it works in both row and diagonal
parking structures described in [18] where cars are parked
side-by-side and bumpers are visible; while its performance
is limited in lane parking structures where cars are parked
head-to-tail alongside the road and bumpers are only
partially visible.
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