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Two-stage Part-Based Pedestrian Detection

Andreas Møgelmose, Antonio Prioletti, Mohan M. Trivedi, Alberto Broggi, and Thomas B. Moeslund

Abstract— This paper introduces a part-based two-stage
pedestrian detector. The system finds pedestrian candidates
with an AdaBoost cascade on Haar-like features. It then verifies
each candidate using a part-based HOG-SVM doing first a
regression and then a classification based on the estimated
function output from the regression. It uses the Histogram of
Oriented Gradients (HOG) computed on both the full, upper
and lower body of the candidates, and uses these in the final
verification. The system has been trained and tested on the
INRIA dataset and performs better than similar previous work,
which uses full-body verification.

I. INTRODUCTION

Pedestrian detection is currently a very large research field.
It can be used in surveillance, Advanced Driver Assistance
Systems (ADAS), and many other places. The ADAS sce-
nario offers plenty of challenges (as summarized in [1]):
High variability in appearance among pedestrians, cluttered
backgrounds, highly dynamic scenes with both pedestrian
and camera motion, and strict requirements in both speed and
reliability. Input from a reliable pedestrian detection system
can be used to warn the driver about people in front of the car
(a warning that must not overload the driver with information
[2]), prepare or even activate a braking maneuver to prevent
a collision, or deploy other safety systems such as airbags.

ADAS is a a challenging domain to work within. Braking
systems take a short while to apply, and reaction times must
be fast for driving, where fractions of a second can be the
deciding factor between a collision and a near-miss. At the
same time, the system must be robust, so the braking system
is not deployed mistakenly (due to a false positive detection),
which could itself lead to accidents, or worse, not deployed
at all (due to a missed detection). Further reasoning than just
detection is necessary in such a framework, with pedestrian
intent estimation being a good example, as presented in
[3] and reviewed in [4] or as another example, automatic
breaking as in [5].

The approach presented in reference [6] is a combination
of a Haar based boosted cascade classifier for high speed
with a HOG-SVM detector for reducing false positives. The
approach that we describe in this paper, can be viewed as
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an extension of this idea. In our approach, we extend such a
combination idea with to a part-based solution, which lowers
the false positive rate even further. The part-based philosophy
has never before been applied to this detection scheme.

This paper is structured as follows: In the next section,
we describe some of the work related to ours and we
provide an overview of our algorithm. In the next sections
we describe each stage in the algorithm in detail. Finally, in
V, we describe the performance of our algorithm followed
by suggestions for future work and a conclusion.

II. GENERAL APPROACH AND RELATED WORK

As mentioned, pedestrian detection is a field with much
attention from the research community. Even when narrowed
to applications in connection with cars and ADAS, a large
body of work exists. A classic method of pedestrian detection
is a boosted cascade on Haar-like features, first presented by
Viola and Jones [7]. It is very fast, but lacks robustness due to
the high appearance variability among pedestrians in the real
world. Instead, many people turn to the HOG-SVM solution
presented by Dalal and Triggs [8]. It is much more robust
and generally detect pedestrians in harder situations, while
keeping a low number of false positives. Its problem lies
in processing speed. As mentioned, the ADAS application
requires fast processing, something that is not immediately
obtainable with the HOG-SVM detector. The HOG-SVM
method was explored for use with infrared images in [9].
For further exploration of pedestrian detectors, we refer the
reader to the general survey by Gerónimo et. al. [1] or, for
vision-only based systems, Gandhi and Trivedi [10], [11],
and Krotosky and Trivedi [12]. The system presented in our
paper uses monocular vision as base for the detection. This
means that the hardware requirements for the car are low
and realistically possible - many cars are already outfitted
with a front facing camera for other purposes, such as lane
detection. For a survey of monocular vision based methods,
see [13].

We combine the speed of the Haar detector with the
robustness of a part-based HOG-SVM detector. The base
for the method used in this paper was first presented by
Geismann and Schneider [6], but is also covered by others in
various versions [14], [15]. Apart from using a combination
of a Haar-cascade and HOG-SVM, Geismann and Schneider
also evaluated using a sparse HOG descriptor to speed up
the verification. Part-based pedestrian detection has been
presented in other contexts before, such as [16], [17], [18].

The properties of the Haar cascade and the HOG-SVM
detector make them prime candidates for combination: The
Haar cascade does the initial pass, finding Regions Of
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Fig. 1. The flow of the algorithm described in this paper.

Interest (ROIs) that are passed on to the HOG-SVM detector
which verifies the initial findings by the Haar cascade. The
first stage is called the detection stage and the second the
verification stage. That is the basics of the approach outlined
in [6]. As mentioned earlier, the Haar cascade is not very
robust, but that is not a problem, since we use it only for
determination of ROIs, so we can allow many false positives,
which also drives up the number of true positives to an
acceptable level.

Our goal is to lower the number of false positives without
too much penalty in the detection rate. In order to do this, we
alter the verification stage to not only verify based on a full
body classification, but also a lower body and upper body
classifier. We combine these results to figure out whether the
ROI contains a person.

The combination of verification results is done in two ways
which are compared: A simple majority vote, requiring at
least two of three classifiers to verify the detection, and a
more advanced way which introduces a third stage to the
algorithm, classifying each window based on the estimated
function value from an SVM regression performed on each
part.

An overview of the flow through the algorithm can be seen
in fig. 1.

III. DETECTION STAGE

The detection stage is an AdaBoost cascade on Haar-
features [7]. It works by using AdaBoost to learn a number of
weak classifiers, which are combined into strong classifiers.
Several layers (called stages) of these strong classifiers are
then combined in a cascade to create the final detection. The
cascaded structure makes the algorithm very fast, since most
candidates are discarded in one of the first stages, thus not
having to be calculated in following stages. Only the actual
detections have to pass through all stages. The algorithm is
described in detail in [7].

Throughout this paper, we work with the INRIA Pedes-
trian Dataset [8]. Thus, the detection cascade was trained
with the training set given therein: 2416 positive images and

Fig. 2. Example of the output from the detection stage. It is clear that it
contains several false positives, but that is desired, since it ensures that also
the true positives are included.

12180 negative images. The training images were cropped
closely around the annotated persons, because Haar-cascades
does not benefit from having as much background included
as HOG-based classifiers. After the crop the training images
were resized to 12x28 pixels.

The detection stage is set up so that it finds the maximum
possible number of pedestrians, which also means that it
will return plenty of false positives. A larger number of
false positives will slow down the computation, since the
verification stage must process more, but it is a worthy trade-
off given that the true positive rate of this stage forms the
upper bound of detections for the entire system.

The detection stage returns bounding boxes of all the
potential pedestrians in the picture, which are sent on to
the verification stage. Part based detection in the detection
stage is not used, since the data from [19] shows that the
Haar cascade generally performs bad in part-based detection
schemes. An example of the output of the detection stage
can be seen on fig. 2.
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Fig. 3. The four types of training images used in this system: The three
parts for the verification stage, and a closer crop for the detection stage.

IV. VERIFICATION STAGE

The part-based verification stage used in this work dif-
fers from the full-body verification stage of Geismann and
Schneider’s [6]. We use a part-based detection scheme. The
verification stage consists of two sub-stages: The individual
part verification and the combined verification. Three SVM
regressions based on dense HOG descriptors are calculated
and applied to the ROIs given by the detection stage.
One is for full body classification, one is for lower body
classification, and one is for upper body classifications.

Our algorithm uses classic dense HOG descriptors (as
opposed to the sparse descriptors used in [6]). They are
calculated using integral images in an effort to speed up the
process, as described in [20]. Since HOG works best if some
amount of background is introduced to the detection window,
the ROIs are resized appropriately from the tight boxes that
are returned by the detection stage. Then the content of the
ROIs is scaled so it matches the size the SVMs were trained
with. At this point the HOG is calculated and passed on to
the SVMs.

As in the detection stage, each SVM is trained with the
INRIA training set. The full body SVM was trained with
the full training images, whereas the lower- and upper-body
SVMs were trained with the lower and upper half of the
training images, respectively. In our system, there is no
overlap between the lower and upper body. The parts of
training images used for each type are shown in fig. 3. So
in total, three SVMs were used.

To do the combined verification, two different methods
were tested: Majority voting and regression output classifi-
cation.

For majority voting, a regular SVM for classification was
trained. It returns which class (pedestrian vs. non-pedestrian)
the current detection window belongs to. If at least two out

TABLE I
OVERVIEW OF THE DETECTION RATES ACHIEVED BY GEISMANN AND

SCHNEIDER [6] WITH 0.2 FALSE POSITIVE PER FRAME

Video 1 2 3 4 5 Mean

Dense descriptor 52% 70% 91% 61% 55% 65.8%

Sparse descriptor 45% 53% 85% 69% 58% 62%

of three classifiers label the window as a pedestrian, it is
described as a detection. If a detection is labeled 1 and no
detection is labeled -1, the formula used for the majority
voting is:

lout =

{
1 if

∑i<3
i=0 li ≥ 1

−1 if
∑i<3

i=0 li < 1
(1)

where lout is the final decision and li is the output from one
of the three part-based detectors.

For regression output classification, the three part SVMs
were instead trained for regression. The training was per-
formed so the resulting function would ideally return 1 in the
case of a detection and -1 when nothing was found. When an
unknown window is passed through the output function, it
will return a value close to 1 if it is a pedestrian, and a value
close to -1 otherwise. The output of these three regressions
create their own 3 dimensional feature space. Another SVM
has been trained to classify in this space. The output from
the three regressions is passed into this second SVM and the
output from that classifier is the final label.

V. EXPERIMENTS AND TEST

In order to set various parameters so that the best possible
performance is achieved, several experiments have been
performed. While the training part of the INRIA dataset was
used to train both the detection stage and the verification
stage, the test part has been used as base for these experi-
ments. It contains 742 images in total, of which 289 contain
one or more persons. In total the test set contains 589 persons
that should be detected by a perfect system.

The baseline for the comparison is the performance of the
system in a configuration similar to the one by Geismann
and Schneider: Two stages, but no part-based verification.
The principal results from their paper can be seen in table I.
Each of the five results in the table are from a test video they
obtained from a driving car. Unfortunately we do not have
access to the test videos they used, so our results cannot
be compared directly with those. Instead we compare the
performance of our own implementation of their algorithm
to out part-based algorithm.

One of the most important parameters in the system is
the number of stages in the Haar-cascade, in this paper
designated k. It is interesting to see what impact the changes
in k has on the complete system. In fig. 4, an ROC curve is
shown for the full system with varying depths in the detection
stage. The importance of this parameter is evident. As k is
lowered, the number of detections rise, but at a large cost in
false positives. The final system uses k = 15, since it seems
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Fig. 4. Receiver-Operating-Characteristic for the full system with varying
k, cascade depths in the detection stage.

to give an acceptable trade-off between true positives and
false positives.

The choice of k has an impact on the speed of the system,
since more detection windows means slower performance.
The full (but non-optimized) system has been run with
several numbers of stages and timed, to get a sense for the
speed effects it might have. The results are seen in table II.
While the detection speed here are not overwhelmingly fast,
it is worth to note that the test images are of a relatively high
resolution and a production system could easily be run with
smaller images.

Another important parameter is the padding, p: The
amount with which the ROIs returned by the detection stage
is enlarged with. The HOG-SVM detector works better if
more background is included than what the Haar-cascade
uses, so there is no question that the ROIs must be enlarged.
Experiments showed that a padding of 3 performed best.
When the padding rises, the pedestrian in the ROI becomes
a lot smaller relative to the ROI, than the pedestrians in the
training set. Because HOG-SVM is not scale invariant, that
will alter the output of the detector and some testing was
required to make it work properly. The padding value itself
is used to calculate the padding in pixels to apply to the ROI.
The width in pixels is calculated as:

ppixels =
wROI

wt
· p (2)

where p is the padding value, wROI is the width of the found
ROI, wt is the width of the training images, and ppixels is
the padding measured in pixels. The padding is applied on
all four sides of the image.

After introducing part-based verification to the system,
experiments were made to determine whether the simple
majority voting or the confidence classification worked the
best. These tests were done with the best settings, as deter-
mined earlier in this section. The results are shown in fig.
5. In absolute numbers, the detection rate is decent, though
not spectacular. The important part is the difference between
the old two-stage approach with only full-body verification
and the new approach. While the voting based approach is

Fig. 5. Receiver-Operating-Characteristic for the final system. The majority
voting approach is not performing better than the full-body approach, but
the regression classification approach is consistently better.

TABLE II
CHANGES IN PROCESSING SPEED FOR DIFFERENT VALUES OF k

Number of images 100

Mean image width 711.88 pixel

Mean image height 818.72 pixel

k Mean time per frame

12 2.5 s

13 1.84 s

14 1.57 s

15 1.46 s

16 1.39 s

17 1.22 s

not any better then the old full-body verification, the part-
based version with regression output classification is better
all across the range of false positives per frame.

Examples of detections can be seen in fig. 6.

VI. FUTURE WORK

The algorithm has a series of parameters that can be
adjusted to enhance performance. In this work, a few tests
and comparisons has been carried out, in order to give the
best performance. However, a more formal investigation of
the optimal parameters would be interesting. One possibility
is to use a genetic algorithm or particle swarm optimization
to set the best parameters.

This work has mostly been concerned with lowering the
number of false positives in the classic combination of a Haar
cascade and HOG-SVM, so speed has not been a primary
concern. First and foremost, several optimizations, such as
using sparse HOG calculation, are presented in [6], and they
could be implemented with little impact on performance.

The system presented here deals only with single-frame
detection. A full pedestrian detection system would very
likely benefit from using tracking between frames to enhance
the performance.
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(a) (b) (c)

Fig. 6. Example outputs of the detector. Input images are images captured using one of LISA’s experimental cars. Red boxes indicate a detection, blue
are the candidates from the detection stage, and green are the candidates with added padding. In (a) the pedestrian is detected, while a couple of false
candidates from the detector are ignored. In (b) the pedestrians are not detected, since the detection stage does not find accurate enough candidate boxes.
In (c) the pedestrian is detected and no false windows are found in the detection stage.

VII. CONCLUDING REMARKS

In this paper, a part-based two-stage pedestrian detector
has been presented. It builds on previous work by Geismann
and Schneider [6], but extends it by introducing a part-based
verification system instead of just a full body verification.
The system works in two stages: A detection stage based on
an AdaBoost cascade on Haar-like features. Its purpose is
to find all pedestrian candidate patches in the input image.
All these Regions Of Interest are sent on to a verification
stage, where the Histogram Of Oriented Gradients (HOG) is
computed for the entire person, the lower body, and the upper
body. Each of the HOGs are then sent trough an SVM that
computes a confidence value for which class (pedestrian or
non-pedestrian) the part belongs to. These values are then
passed into a second SVM-classifier, which performs the
final verification. The system has been tested on the INRIA
dataset and the results show that when compared with the
original two-stage detector, it performs better across the full
range of false positives per frame.
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