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Modeling large-scale urban networks would be a complex task if
one wants to study and model dynamics of every single element

Control using such detailed modeling approach would be a
tedious task

⇒ Aggregate models
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Urban network partitioned into multiple regions, each represented by
an MFD
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Ji : set of neighboring regions of region i

Flow from region i to region j ∈ Ji is min. of 3 elements:

1 Demand from region i to region j , Di,j

2 Supply in region j , Sj
3 Capacity of boundary between region i & region j , Ci,j
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Fig. 2. The factors determining the flow, (a) Macroscopic Fundamental Diagram, (b) demand, and (c) supply.

all the demands from region i to every neighbouring region

j, the same fraction (8) will be applied. Hence, the outflow

from region i to region j ∈ Ji is formulated as:

qi,j(k) = φi(k) · D̃i,j(k) (9)

The flow can be separated per destination. So, similar to

reducing the overall flow (9), we can modulate the flow per

destination (5) as:

qi,j,d(k) = φi(k) · D̃i,j,d(k) (10)

Therefore, the accumulation in any region i towards destina-

tion d can now be updated as follows:

ni,d(k+1) = ni,d(k)+

Ts∑
λ∈Λi

κλLλ

( ∑

j∈Ji

qj,i,d(k)−
∑

j∈Ji

qi,j,d(k)
)
, (11)

with Ts the sample time. Hence the total accumulation in

region i will be:

ni(k + 1) =
∑

d∈D
ni,d(k + 1) (12)

In the next section, we use the presented model for predic-

tion of accumulations in the network in order to determine

optimal routes.

III. HIGH-LEVEL OPTIMAL ROUTE GUIDANCE

In this section, we develop a route guidance scheme

based on the high-level MFD-based model derived in the

previous section. In the proposed framework, we solve the

dynamic routing problem on a macroscopic level. This means

that instead of taking into account individual roads and

intersections, we deal with regional destinations and the way

that traffic flow should be splitted towards the neighboring

regions in order to avoid congestion in the intermediate

regions, to decrease the overall travel time and consequently,

to improve the arrival rates at the destinations. We assume

a two-level structure as depicted in Fig. 3. At the top level,

the optimal route guidance problem is solved based on the

aggregate model presented in the previous section. At the

lower level, the optimal variables (the splitting rates) that

are obtained from the high-level optimization problem are

taken as references, i.e. local controllers in the lower level

aim at realizing the optimal splitting rates for (destination

dependent) flows of vehicles that want to travel across

the regions. In the following, we elaborate on the type of

optimization problem that has to be solved in the highest

level in order to achieve the aforementioned goals.

A. Objective function

In order to formulate the routing problem, an objective

needs to be defined. The major aim in an urban network

could be maximizing the arrival rate, i.e. the number of

vehicles that complete their trips and reach their destinations,

or similarly minimizing the total travel delays. Over the

(discrete) simulation interval [0, · · · ,K − 1], the total delay

criterion JTD (veh·s) is formulated as:

JTD = Ts ·
∑

i∈R

K−1∑

k=0

(( ∑

λ∈Λi

κλLλ

)
· ni(k)

)
. (13)

Moreover, one can introduce a penalty term on the differ-

ences between average speeds of all regions as follows:

Jv(K − 1) =
∑

i,j∈R

(
V̄i(K − 1)− V̄j(K − 1)

)2
, (14)

with V̄i(K−1) the average speed in region i determined from

the MFD of that region at the end of simulation period (note

that one can calculate the differences between speeds of all

regions for all time steps, but it may increase the computation

time of the corresponding optimization problem. Therefore,

we try to normalize the speeds only at the end of the time

horizon). Basically, with the values of the accumulations

in each region, one can estimate an average speed for that

region. Assuming an exponential function for the MFD, the

average speed can be determined as follows:

V̄i(k) = Vfree,i · exp
(
− 1

2

(ni(k)
ncrit,i

)2)
, (15)

with Vfree,i the free-flow speed and ncrit,i the critical accu-

mulation corresponding to the maximum production. Essen-

tially when there is no congestion, the average speeds in the

regions are high. But in case of congestion in a region, the

average speed will decrease and consequently, the travel time

for vehicles inside that region will increase. By minimizing

(13), the overall travel delay in the network will decrease, but

it might be possible that the traffic is not distributed evenly

and in some regions the average speed will be high while in

others we observe low speeds. The objective function (14)

Optimal Dynamic Route Guidance: A Model Predictive Approach Using MFD 6/ 18



Macroscopic Modeling of Urban Networks
Multi-region MFD-based Model

Dynamic Route Guidance
Case Study

Concluding Remarks and Future Research

Supply function

Sj(k) =

{
Pj ,crit if nj(k) ≤ nj ,crit

Pj(nj(k)) if nj(k) > nj ,crit

Pj(nj(k)): production determined from MFD

Demand function

Di ,j(k) =
∑

d∈D

(
αi ,j ,d(k) · ni ,d(k)

ni (k)
· Pi

(
ni (k)

))

D: set of all destinations
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Update equations

ni ,d(k + 1) = ni ,d(k) +
Ts∑

λ∈Λi

κλLλ

(∑

j∈Ji
qj ,i ,d(k)−

∑

j∈Ji
qi ,j ,d(k)

)

Total accumulation in region i :

ni (k + 1) =
∑

d∈D
ni ,d(k + 1)
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High-level Optimal Routing Scheme
Objective Function
Model Predictive Control Framework

Regional destinations

Optimal splitting traffic towards neighboring regions

Aims:

avoid congestion in intermediate regions
decrease the overall travel time
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Minimizing total travel delay:

JTD = Ts ·
∑

i∈R

K−1∑

k=0

((∑

λ∈Λi

κλLλ
)
· ni (k)

)

Optimal Dynamic Route Guidance: A Model Predictive Approach Using MFD 11/ 18



Macroscopic Modeling of Urban Networks
Multi-region MFD-based Model

Dynamic Route Guidance
Case Study

Concluding Remarks and Future Research

High-level Optimal Routing Scheme
Objective Function
Model Predictive Control Framework

Local controllers/

Optimization

Prediction

J
α∗
i,j,d(kc)

OD Table

ni,d(k)α∗
i,j,d(kc)

Urban regions

(multi-region) model
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JMPC
TD = Ts ·

R∑

i=1

M·(kc+Np)−1∑

k=M·kc

((∑

λ∈Λi

κλLλ
)
· ni (k)

)

– Overall optimization problem:

min
α̃i,j,d (kc)

JMPC
TD

subject to:

model equations,

0 ≤ αi ,j ,d(k) ≤ 1,

αi ,j ,d(k) = αc
i ,j ,d(kc), if k ∈ {M · kc, . . . ,M · (kc + 1)− 1}
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Red circles: destinations
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For each region, the MFD is approximated by:

Pi = ni · Vfree · exp
(
− 1

2

( ni
ncrit

)2)

Table : Origin-destination demands∗ (veh/h)

Region 2 Region 8 Region 9 Region 14

Region 1 1000 1800 1750 3000
Region 4 1900 1400 1000 1400

Region 11 1700 1200 1300 1300
Region 16 2000 1000 1000 1800

*: noise corrupted in the simulation model (network)
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Set-up
Results

Determining splitting rates

Static shortest-path (in time), Floyd-Warshall algorithm
based on average speed of regions

Shortest-path algorithm, updated every 60 seconds

Dynamic, MPC algorithm using multi-region MFD model
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Fig. 5. Results for 4× 4 network, (a) Uncontrolled (fixed routes), (b) Shortest-path algorithm, (c) Optimal dynamic routing using MPC
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High-level scheme for optimal dynamic route guidance
using MFD-based multi-region model

Optimal splitting rates towards neighboring regions

Avoiding detailed modeling and hence decreasing
computational complexity of route guidance

Lower level control should be properly designed &
connected to the high-level scheme

Multi-level scheme needs to be validated using real
networks’ layouts and empirical data
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