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Abstract— Depending on driver intention and current motion

state of vehicle, an infinite set of possible future trajectories

exists. In this paper we present a stochastic filter which is able

to select a representative set of reasonable trajectories from this

solution set using additional information from a digital map.

This is achieved by representing the map’s traffic lanes by their

corresponding centerlines. Each detected vehicle is projected on

these centerlines, where the necessary information is modeled

as a multivariate random variable. With this stochastic model

of traffic lanes and the stochastic vector of vehicle detection we

define a new stochastic residual vector, which is used both in

the lane assignment and during the generation of the motion

predictions. For each traffic lane, which is assigned as relevant

for a detected vehicle, we generate a new motion hypothesis

by using an Extended Kalman Filter. To assess the plausibility

of each motion hypothesis we employ an adaptive multivariate

MCUSUM algorithm. The implemented stochastic filter is tested

by evaluating real data from the Ko-FAS Research Initiative.

While traditional motion prediction based on previous and

current motion states of a vehicle only provide plausible

prediction for a short term time horizon, we show that our

approach achieves a reasonable motion hypothesis for long

prediction intervals especially in complex scenarios as road

intersections.

I. INTRODUCTION

Modern Advanced Driver Assistance Systems (ADAS)
have to cope with highly complex traffic scenarios, like urban
intersections with many possible lanes. To handle such situa-
tions, ADAS need a comprehensive situation analysis which
consists of three main objectives [1]: the representation and
interpretation of the current traffic situation, the prediction
of the dynamic evolvement of the scene, and criticality
assessment. Especially the evolution of the current situation
in complex traffic scenarios like multi-lane intersections are
challenging.

Because vehicles operate on a constrained environment of
road networks, future trajectories are influenced by the layout
of the road. Assuming a compliant behavior of traffic partic-
ipants, knowledge of the road’s layout permits representative
long term motion predictions.

Several works from recent years which are dealing with
long term motion prediction utilize information about the
previous states of a vehicle to predict its future trajectory
[2]. Otter works consider the boundary conditions of the road
layout to infer the driver’s intent [3].
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However, most existing approaches use the information of
the road on which the vehicle is traveling to improve the state
estimation. The main idea of these proposals is to use the
map information as state constraints. The applied procedures
can be divided into several groups [4]. The first one is to
incorporate road information directly into the state estimation
process using variable structure interacting multiple mod-
els (VS-IMM) methods [5] or Multi-Hypothesis Tracking
(MHT) [6]. The second group projects unconstrained state
estimates of a Kalman filter step onto the constrained surface
[7]. Another method is to project a dynamic system onto
the state constraints and then apply the Kalman filter to the
projected system [8], [9]. The approach presented in this
paper treats state constraints as pseudo measurements in the
spirit of [4] and [10], which forms an additional group. The
advantage of this method is that the analytic model of a road
segment not only weakly constrains the position but also the
direction of motion. Furthermore, an estimate of centripetal
acceleration can be obtained given the road curvature and
the vehicle speed. This enables us to define the succeeding
control input function to estimate the future trajectories for
the dynamic system.

The main objective of this paper is to determine the set of
reasonable future trajectories for all detected vehicles in the
current traffic situation. This allows us to predict the dynamic
evolvement of the scene and in turn to react to potentially
hazardous situations as early as possible.

This paper is organized as follows: In Section II a descrip-
tive model of the current situation is introduced. To combine
the particular vehicle entities with additional map data the
structure of the map and the definition of the traffic lane
assignment is explained in Section III. Based on this, the
strategy for creating specific motion hypotheses is defined
in Section IV. Next in Section V, a new assessment of
the motion hypothesis is discussed. Finally the presented
algorithm is tested with some real data from the Ko-FAS
Research Initiative [11] in Section VI and the results are
summarized in Section VII.

II. SITUATION MODEL

A reasonable prediction how the current situation will
evolve in the next few seconds requires a comprehensive
knowledge of the situation at current time t0. Due to the
uncertainties of the data fusion layer and the stochastic
disturbances, the initial situation S can be formulated as
stochastic state vector model, as shown in [1]:

S(t0) = {X i(t0) | i ∈ [1, N ]} (1)
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where X i(t0), i ∈ [1, N ] denotes the stochastic representa-
tion of states (pose, velocity, shape, etc.) of all N objects in
the scene including the ego vehicle. The random vector X i

is modeled by a normal distribution

X i ∼ N (xi,Σi) (2)

with expectation vector xi and covariance matrix Σi.
The evolution of this initial situation is determined by the

future states of the individual vehicles. In this paper, we con-
duct motion prediction through a probabilistic model using
the Extended Kalman Filter (EKF) [12], which allows us to
incorporate knowledge of system dynamics and additional
information from an external source (e.g. sensors or digital
map). We use a time-discrete representation of prediction
time interval

TK = {t(k) = t0 + k∆t | k ∈ {0, 1, ...,K}} (3)

with K discrete, equidistant time steps.
Beyond sensor data, we employ additional information

extracted from a digital map assuming that an observed
vehicle is traveling on a known lane.

III. ASSIGNMENT OF LANES
Beside the information provided from the sensor fusion

layer the fundamental input data of the proposed approach
is a digital map which comprises all lanes on public roads.
To produce reasonable predictions of future motion states,
each lane has to be associated with the detected vehicle state.
In this section we present the design of the used map and
an efficient method to associate a vehicle with lanes in its
vicinity.

A. Design of the Map
To provide the necessary information for the motion

prediction of a detected vehicle each lane of the map is repre-
sented by its corresponding centerline (ιi). These centerlines
are composed of successive waypoints (νj), defined in WGS
84 coordinates [13] and additional data, e.g. successor lanes
and attributed traffic signs. The movement direction of a lane
is given by the sequential arrangement of the waypoints. In
order to simplify the computation of the motion prediction,
all available data from the digital map and sensor system is
transformed into the same cartesian coordinate system Λ0.
An example of a road segment with two lanes is shown in
Fig. 1.

Fig. 1. Road segment with centerlines ιi (red dash line) defined through
consecutive waypoints ν (rotated rectangles)

Given four successive waypoints ν0,1,2,3 the centerline
between point ν1 and ν2 can be interpolated by a cubic

optimized geometric Hermite (OGH) curve Q(u), u ∈ [0, 1],
[14]. Satisfying

�
Q� = ∂

∂u
Q
�

Q(u = 0) =ν1, Q(u = 1) =ν2,

Q�(u = 0) =α1T1, Q�(u = 1) =α2T2,
(4)

a cubic OGH curve is mathematically and geometrically
smooth, i.e. the strain energy is minimal and the curve
is cusp-, loop- and fold-free. This can be achieved by
optimizing the length of the endpoint tangent vectors T1,2

with the optimized coefficients α1,2. Therefore, the geometric
smoothness conditions
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3
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,

(5)
have to be fulfilled with

T0 = ν2 − ν1, T1 = ν2 − ν0, T2 = ν3 − ν1. (6)

Furthermore, the values of the optimized coefficients α1,2

must be positive. These coefficients are defined by

α1 = 6[(ν1−ν2)·T1](T
2
2)−3[(ν2−ν1)·T1](T1·T2)

4(T2
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2
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(T1·T2)2−4(T2
1)(T

2
2)

> 0.
(7)

Due to our definition of waypoints of a lane these constraints
are always satisfied. In this manner, the centerline can be
represented piecewise by a differentiable function of third
order

Q(u) = [2 (ν1 − ν2) + α1T1 + α2T2] · u3

+ [3 (ν2 − ν1)− 2α1T1 − α2T1] · u2

+ [α1T1] · u+ ν1.

(8)

In the next section an efficient method is introduced to assign
vehicles to individual lanes.

B. Active Lane Points
As noted before, single lanes can be formulated as piece-

wise mathematically and geometrically smooth functions. To
associate a given vehicle with such a lane model, the geomet-
ric position {xi(t0), yi(t0)} of the expectation vector xi(t0)
is projected perpendicular to the course of the centerline, as
shown in Fig. 2. In this paper the projected point on the
current lane is called Active Lane Point (ALP).

Both the process of determining the position of the way-
points and the interpolation of the center line is fraught with
uncertainties. To take these uncertainties into account the
ALP is modeled as a multivariate stochastic variable XALP

with a normal distribution function

XALP ∼ N (xALP ,ΣALP ) (9)

where xALP denotes the expectation vector at the projected
position on the centerline and ΣALP defines the covariance
matrix. As already mentioned, the map information will
be used to establish a prediction of the vehicle movement
along relevant lanes. For this reason, the stochastic variable
in ALP includes the same state variables as the motion
model contains for dynamic objects, like pose {x, y,ψ}



Fig. 2. Active Lane Point (ALP) on centerline with two dimensional
covariance (blue)

and permitted velocity v. The uncertainties of this map-
based informations is stored in the covariance matrix of
the probability density function (pdf), see also [4]. To use
only one representation for this uncertainties, the covariance
matrix is defined in the local ALP coordinate system ΛALP

and transformed into the global system Λ0 with

ΣΛ0
ALP

= T
Λ0
ΛALP

ΣΛALP
ALP

�
T
Λ0
ΛALP

�T

. (10)

The definition of the covariance matrix in the coordinate
system of the ALP has the advantage that the variances tan-
gential σ2

τ and normal σ2
η to the centerline may be considered

to be uncorrelated. The variances of the orientation σ2
ψ

and
the velocity σ2

v are constant in every coordinate system, so
the transformation matrix becomes

T
Λ0
ΛALP

=





cosψALP − sinψALP 0 0
sinψALP cosψALP 0 0

0 0 1 0
0 0 0 1



 ,

(11)
where ψALP denotes the rotation angle. This angle describes
the orientation of the centerline in the ALP and can be
calculated with the first deviation of the OHG function:

ψALP = arctan

�
Q�

y(uALP )

Q�
x(uALP )

�
. (12)

Since no traffic participant drives exactly on a centerline, the
deviation from detected vehicle and ALP state vector can be
defined by this pdf. In this case the pdf in the ALP represents
a probabilistic position model for objects on lanes within
which the error of the lane model is over approximated.

C. Traffic Lane Assignment
A main difficulty in map-based motion prediction is the

assignment of a detected vehicle to surrounding centerlines,
especially on roads with several lanes in each direction
or at intersections. To overcome this problem we define
the stochastic residual vector E lane between the random
variables of a detected object1 XObj and the ALP of a
particular lane XALP by

E lane = XALP −XObj . (13)

Because of non correlating data between sensor system and
ALP the covariance matrix of this normal distributed residual

1objects are detected vehicles from the sensor fusion layer

is given by
Σlane = ΣALP +ΣObj . (14)

In probability and statistics a common test to evaluate normal
distributed residuals is the χ2-test, which is based on the
squared Mahalanobis distance:

M2
lane = eTlane Σ

−1
lane

elane, (15)

where elane is a realization of the random variable E lane.
As a quadratic function of normally distributed random
variables, the squared Mahalanobis is χ2

f
-distributed. Here,

the degree of freedom f correlates with the number of state
variables.
The quality criterion of the χ2-test is defined by

Llane := Pr{χ2
f > M2

lane} =

� ∞

M2
lane

pχ2
f
(ξ)dξ, (16)

which can be used to determine a significance level Llane

of the given realization. If this level is below an a-priori
defined threshold (Llane < Lmin), elane is considered as an
unlikely realization of E lane and is discarded. In this paper a
high significance level is equivalent to a plausible hypothesis
that a vehicle is driving on a particular lane.

IV. MOTION HYPOTHESIS
Throughout this paper an appropriate motion hypothesis

will be generated for each lane which was classified as
relevant for a detected vehicle at time step k = t0. This
means, the significance level of the hypothesis, cf. Eqn. 16,
is higher than Lmin.

If a lane allows more than one maneuver possibility (e.g.
left turn, right turn and straight), each of them is covered by a
separate motion hypothesis. A motion hypothesis consists of
a sequence of K states of the vehicle xObj and the associated
covariance ΣObj . It defines the future trajectory

XObj = {XObj(k) ∼ N (xObj(k),ΣObj(k)) | k ∈ TK}.
(17)

As already mentioned, prediction is obtained by an Extended
Kalman Filter estimation process. Within the time interval
TK the future object trajectory can be obtained from the
EKF which consists of two alternating steps: The prediction
step subsequently utilizes a motion model to generate object
states at futur time steps, the update step incorporates lane
information to refine the generated object states.

The particular steps will be explained in the following
subsections. Fig. 3 shows the entire prediction process for
one motion hypothesis.

A. Prediction
For vehicles, the motion model is specified as a kinematic

bicycle model [15]. Therefore, the control input function is
given by wheel angle δk and longitudinal acceleration ak.
To estimate these control inputs two assumptions have been
made in the EKF algorithm:

1) Constant acceleration ak = a(t0), constrained by
permitted lane velocity and vehicle standstill, i.e.
vk ∈ [0, vmax].



Fig. 3. motion prediction process with extended Kalman filter including
the information of a lane

2) The vehicle follows curvature and orientation of the
lane. Accordingly the wheel angle δk is determined due
the curvature at the ALP (δcurve,k) and the difference
between the orientation of the object to the ALP
(δ∆ψ,k)

δk = δcurve,k + δ∆ψ,k. (18)

Taking these assumptions into account the state estimate
can be expressed by removing the system noise from state
transition function of the EKF:

x̂−
k+1 = f (x̂k,uk,0) . (19)

Here, f represents the non-linear bicycle model, x̂k is the
current estimation of the object state and uk = (δk ak)

T

is the control input of the bicycle model.
The a-priori estimate covariance matrix is given by

P−
k+1 = Fk+1PkF

T

k+1 +Wk+1QkW
T

k+1, (20)

where F and W denote the Jacobian matrices, which are
evaluated at current predicted states. We assume that the
process noise influences only the values of the control input,
so the covariance matrix Qk reduces to

Q =

�
σ2
δ

0
0 σ2

a

�
, (21)

which remains constant over the motion prediction process.

B. Update

The update step corrects the state prediction considering
a new measurement. Due to the fact that we want to predict
future object states for a long time interval, no additional
measurement is possible. To influence the predicted object
states with course information of the lane, the Active Lane
Point can be used as pseudo-measurement zk = xALP,k as
proposed in [4] and [10].

Since the ALP has the same attributes as the object state
the measurement residual is

r̃k = zk − Hx̂k (22)

where the observation matrix H is equal to identity matrix
I. As a consequence the residual covariance becomes

Σk = P
−
k
+ΣALP,k, (23)

and the near-optimal Kalman Gain of the EKF simplifies to

Kk = P
−
k
Σ−1

k
. (24)

With zk = xALP,k and H = I the updated state estimate is
determined by

x̂k = x̂−
k
+Kk

�
xALP,k − x̂−

k

�
, (25)

and the a-posteriori estimate covariance matrix is given by

Pk = (I−Kk) P
−
k
. (26)

Depending on the relative values of the variances in the
covariance matrices of XALP and XObj the updated state
estimate is affected more or less by the pseudo measurement.
If the chosen variances of the ALP in ΣALP is large in
relation to the information of a detected object in ΣObj , more
lanes are assessed as relevant. Simultaneously the motion
prediction is less influenced by the course of a lane.

V. ASSESSMENT OF MOTION HYPOTHESES
To assess the plausibility of a motion hypothesis we use

the development over time of the stochastic residual vector
E between object and ALP state of the corresponding cen-
terline. In this work we employ the MCUSUM (multivariate
cumulative sum) algorithm, which is a sequential analysis
technique for detecting small and moderate mean shift in
multidimensional process variables [16].

A. Standard MCUSUM
In the standard MCUSUM algorithm [16], the divergence

vector D of the MCUSUM is evaluated at time step k as:

Dk =

�
0 , if ck ≤ B�
1− B

ck

�
(Dk−1 + ek) , if ck > B

(27)

where ek is the realization of the stochastic residual vector
Ek and B is a predetermined statistical distance. Please
note that k denotes measurement time steps and no longer
prediction time steps. For MCUSUM we define k > 0 and
D0 = 0.
The distance ck is calculated by the current realization and
the divergence vector at previous time step k − 1

ck =
�
(Dk−1 + ek)

T Σ−1
lane

(Dk−1 + ek). (28)

In analogy to lane assignment shown in Section III, the test
statistic of MCUSUM is defined as the Mahalanobis distance
of the divergence vector

MD,k =
�

DT

k Σ−1 Dk (29)



(a) Maneuver 1 (b) Maneuver 2

Fig. 4. Two motion maneuvers to review the results of the assessment
methods

where the squared value can be evaluated again by the χ2-test
(16). Thus we get a history based significance level for each
centerline motion hypothesis, which produces better results
for object with large centerline offsets or for noisy signals
as will be shown in Section VI.

Due to the fact, that the MCUSUM originates from
statistical quality control, the algorithm recognizes efficiently
if measured data do not fit to an assumed hypothesis. But
if a detected object makes a lane change, the significance
level of the motion hypothesis on the new lane will be too
small, because the divergence vector is very high at the
beginning of the maneuver. For this reason, we need an
adaptive MCUSUM which considers the motion direction
of an object.

B. Adaptive MCUSUM
To resolve the mentioned issues the previous divergence

vector Dk−1 have to be reduced when the object moves to
the centerline. For this purpose, we introduce a new adaptive
MCUSUM by modifying the previous divergence vector with
the Mahalanobis distance of the current and previous residual
vector elane,k (cf. Eqn. (15))

D∗∗
k−1 =

��
Mlane,k−B
Mlane,k−1

�
D∗

k−1 , if Mlane,k , ck > B
0 , else

.

(30)
The new test statistic is given by

c∗k =
��

D∗∗
k−1 + ek

�T
Σ−1

lane

�
D∗∗

k−1 + ek
�
, (31)

Analogously to (27), the adapted divergence vector of the
current observation is given by:

D∗
k =

�
0 , if c∗

k
≤ B�

1− B
c∗k

� �
D∗∗

k−1 + ek
�
, if c∗

k
> B

(32)

Equal to normal MCUSUM algorithm, the assessment of
motion hypothesis is based on the significance level (16),
which is here determined by the squared Mahalanobis dis-
tance MD∗

,k of the adaptive divergence vector D∗
k. Fig.

5 represents the results of the assessment methods for two
simple motion maneuver as shown in Fig. 4. For the sake
of clarity we reduce the residual vector e to a scalar which
represents the perpendicular distance between vehicle and
centerline. In all examples the predetermined distance is set
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(a) Maneuver 1: vehicle moves over a distance of 4m with var-
ious lateral velocities across a lane (2m/s: solid, 1m/s: dash-dot,
0.5m/s: dashed). As one can see, the velocity of a vehicle has no effect
on the assessment of the significance level. Furthermore, the adaptive
MCUSUM (LD∗ ) produces smoother results as the significance level
from the stochastic residual vector (Llane) without generating large
divergence vectors like the standard MCUSUM (LD).
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(b) Maneuver 2: vehicle moves with a constant distance of 3m beside
the current lane, approaches the centerline to various small distances
and departs again from it. Distances d in the middle of the maneu-
ver: d1 = 0m (solid), d2 = 0.7m (dash-dot), d3 = 1.5m (dashed);
distance at the end is always 3m. In this case we can see that the
adaptive MCUSUM delivers stronger decision if a traffic lane is relevant
to a vehicle or not.

Fig. 5. Mahalanobis distance (M) and significance level (L) of normal
(D) and adaptive (D∗) MCUSUM for a traffic lane at two simple motion
maneuvers

to B = 0.5 and combined variance of the stochastic residual
is set to σ2

lane
= 1.5 with σ2

Obj
= 0.5 and σ2

ALP
= 1. As

shown in Fig. 5.a, both standard and adaptive MCUSUM
enables a more robust decision making to decide whether
a lane is relevant for the vehicle or not. Since the impact
of previous divergence vectors is reduced in the adaptive
MCUSUM, it responds faster and with higher significance
level than the standard algorithm, as illustrated in Fig. 5.b.

VI. EXPERIMENTAL RESULTS

This section presents some results of the long-term motion
prediction algorithm evaluating real data from an intersection
at Aschaffenburg, Germany, which is provided by the Ko-
FAS Research Initiative [11]. The perception of the environ-
ment is realized by sensors in vehicles, which are comple-
mented and supported by stationary sensor networks at the
intersection. The used information on the traffic environment
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(c) History of the significance level of particular lanes assigned to both
vehicles Obj1 and Obj2. The results are represented as follows: current
Mahalanobis distance as dash dot line, standard and adaptive MCUSUM as
dashed respectively solid line.

Fig. 6. Evaluation of the lane assignment for two detected vehicles at an
intersection. Figure (a) and (b) show plausible motion prediction for the
vehicles at two different times, which are determined by the red edges of
the corresponding future motion path. The curve of resulting significance
level over time is shown in (c).

provided from the sensor fusion layer is processed every 20
ms from the situation analysis layer. The digital map with the
individual lanes and centerlines is stored local in a database.

For the stochastic representation of the centerline at the
ALP we define the values of the uncorrelated variances to
be σ2

ALP,τ
= 0.3 and σ2

ALP,η
= 1.5 for position in ALP

coordinates, σ2
ALP,ψ

= 0.5 for orientation and σ2
ALP,v

= 0.1
for velocity. In this way, the covariance matrix of the
stochastic variable XALP in ALP-coordinates becomes

ΣΛALP
ALP

=





0.3 0 0 0
0 1.5 0 0
0 0 0.5 0
0 0 0 0.1



 . (33)

In order to enhance comparability between the particular
examples, we modeled the same diagonal covariance ma-
trix for all vehicle measurements with σ2

Obj,x
(t0) = 0.5

and σ2
Obj,y

(t0) = 0.5 for position, σ2
Obj,ψ

(t0) = 0.1 for
orientation and σ2

Obj,v
(t0) = 0.1 for velocity. This leads to

following covariance matrix

ΣΛ0
Obj

(t0) =





0.5 0 0 0
0 0.5 0 0
0 0 0.1 0
0 0 0 0.1



 . (34)

All motion hypotheses are generated assuming a constant
acceleration (ak = a(t0)) over the prediction time interval.

The parameters of the prediction time interval are set to
K = 25 and ∆t = 200 ms (cf. Eq. (3)), in this way we
obtain a maximum prediction time of t25 = 4.8 s. If the
deviation between the expectation vectors of the object state
and the ALP state is below the predetermined distance B =
0.5 the deviation is set to zero. In this manner we are able to
reproduce the behavior of a driver who drives with a constant
offset to centerline.

Fig. 6 shows the evaluation of the lane assignment for two
vehicles approaching from different sides of the intersection.
As one can see in Fig. 6.c the adaptive MCUSUM outper-
forms the standard MCUSUM, especially if a vehicle has a
large offset to the centerline. Compared to the significance
level determined by the current Mahalanobis distance, the
adaptive MCUSUM also enables more robust decision mak-
ing. Furthermore, if a lane allows more than one maneuver
each of them is covered by a separate motion hypothesis. The
significance level of these motion hypotheses are equal to
the value of the assigned lane, since no further distinction is
possible at this time. Due to the fact that the distance between
Obj1 and the centerline 1916 increases from 1.44m to 1.6m
the significance level of this lane decreases simultaneously.
At t = 3.1 s vehicle Obj1 passes the junction and will be
assigned to all successive lanes. For these lanes no history
data of the Mahalanobis distances are available so that the
significance level starts at 1. As the vehicle crosses the curve
in lane 1522 the orientation of Obj1 and ALP does not match,
which leads to a short term reduction of the significance
level of this lane. Vehicle Obj2 arrives from lane 1932 to
the intersection and departs from it on lane 1534. Since the
traffic lanes 1530 and 1534 differ from each other at a late
stage, motion hypotheses for both lanes will be generated. At
the moment when Obj2 starts to turn right, the significance
level of lane 1930 decreases immediately.

Fig. 7 illustrates the influence of the information from
the stochastic variable XALP on the stochastic estimation
process of the EKF. With increasing number of prediction
steps the stochastic properties of the estimated object states
converge from below to the assumed properties of the ALP,
which is shown in Fig. 7b. The convergence rate, however,
depends on the variances of the process noise. We performed
the motion prediction process with following three covari-
ance matrices of the process noise (cf. Eqn. (21)) to illustrate
the effect:

Q1 =

�
0.05 0
0 0.01

�
, Q2 = 10 ·Q1 , Q3 = 100 ·Q1 (35)

To compare the state-prediction covariance matrix with the
covariance matrix of the stochastic variable of the ALP we



(a) Single motion hypothesis for a vehicle
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(b) Frobenius norm of the state-prediction covariance matrices and residuum
between the predicted expectation vectors of vehicle and ALP
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(c) Covariance matrix of the predicted object positions at each prediction
step represeted as two-dimensional error ellipses with confidence interval
of 0.99.

Fig. 7. Evolution of the state-prediction covariance matrix for a single
motion hypothesis with different Gaussian process noises (Q1,Q2 and Q3).
Fig. (a) shows the vehicle on the intersection with one motion prediction,
determined by the red edges of the corresponding future motion path.
Fig. (b) represents the Frobenius norm of the state-prediction covariance
matrices the residuum of the expectation vectors.

employ the Frobenius matrix norm, which is invariant under
a unitary transformation. For this reason the Frobenius norm
of ΣALP is constant, as shown in Fig. 7.b.

In this manner larger values of process noise lead to
an increased convergence rate. This applies to both the
covariance matrix and the expectation vector, even if the
covariance matrix of the object state is larger than the one
of the stochastic representation of the ALP (See Fig. 7 with
Σ∗

Obj = 3 ·ΣObj).

VII. CONCLUSIONS
This paper presents a stochastic filter which is able to

generate a representative set of reasonable future trajectories
out of the infinite amount of all possible future trajectories
for vehicles in traffic environments. This is achieved by
incorporating additional information from a digital map into
the motion prediction process.

A main benefit of the approach is the assessment of the
several motion hypotheses of a particular traffic participants
by introducing a new adaptive MCUSUM algorithm. By
considering the development over time of the stochastic
residual vector between object and ALP state, the adaptive
MCUSUM enables more robust decision about whether or
not a traffic lane is relevant for a vehicle. Furthermore, it
could be demonstrated that with an increasing number of
prediction steps, the stochastic properties of the estimated
object states converge to the stochastic representation of the
centerline information. Convergence rate depends strongly
on the modeled process noise.

The presented method predicts the lateral dynamics of
detected vehicles. In case of interactions with other traffic
participants and surrounding infrastructure we believe that a
prediction of transverse dynamics should be possible, too.
Our future work will focus on this important issue.
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