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Estimating traffic control strategies with inverse optimal control 

Sudeep Gowrishankar1 and Daniel B. Work2 

Ahstract- This article formulates the problem of estimat­
ing the traffic control strategy of a single intersection traf­
fic signal controller from observed data. Building on previ­
ous results in the literature on optimal traffic signal con­
trol and convex inverse optimal control problems, a method 
is proposed to efficiently solve the inverse optimal traffic 
signal control problem to recover the control objective of 
the observed traffic controller. The resulting program is 
tested in a numerical experiment with synthetically generated 
data. Supporting source code is available for download at 
https:llgithub.comlsgowris2IInverseOptimaIControl. 

I. INTRODUCTION 

A. Motivation 

Urban traffic estimation and forecasting is a challenging 

problem, especially when knowledge of the traffic signal 

control policy is unknown to the estimator. Often, signal 

control strategies are known by the local authorities, but 

the information is difficult to obtain at larger scales. In 

other cases, the control strategies are based on proprietary 

algorithms, and thus cannot be obtained explicitly, even from 

the managing agencies. 

During extreme congestion events such as sporting events 

and natural disasters, the traffic signal control is performed 

manually by traffic management police officers. Some rea­

sons for manual control of traffic include the failure of traffic 

lights during disasters due to power outages, and the fact 

that the controller itself may not be optimized for extreme 

congestion events due to their rare occurrence. In each of the 

above situations, it is important to be able to quickly learn 

the control strategy of the controller (whether human or not) 

so that traffic prediction and estimation systems can integrate 

information on how the flow is regulated. 

Therefore, in this article, we propose a method to address 

the following problem. Is it possible to learn the control 

objective of a traffic signal, by observing the queue lengths at 

the intersection and the corresponding control actions? This 

work is motivated by the development of TrafficTurk [19], an 

Android mobile application that allows for low--cost, real­

time, and rapidly deployable temporary traffic sensing. This 

sensing platform is being developed to enable accurate real­

time traffic estimation and prediction of urban traffic during 

extreme congestion events. Inspired by the 18th century 

fake chess playing machine known as the mechanical turk 
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[18], and the classical turning movement counters used by 

transportation engineers for decades, TrafficTurk provides an 

intuitive interface on a smartphone that turns the phone into 

a turning movement counter. Because the phone provides 

constant connectivity to the internet, TrafficTurk allows for 

real-time data collection and analysis. This work is intended 

to eventually support such a system. 

B. Related work 

The problem of estimating properties of the traffic signal 

from sensor data has been examined by several authors. For 

example, [5] developed a method to estimate queue lengths 

at signalized intersections using travel times through the 

intersection, collected from mobile GPS sensors. Hofleitner 

et al. presented an unsupervised classification algorithm to 

infer the existence of a traffic signal on a road segment 

using sparse probe vehicle data [10]. Another related project 

is SignalGuru [14], which is a Green Light Optimal Speed 

Advisory (GLOSA) system that uses the camera and com­

munication capabilities of windshield mounted smartphones 

to advise drivers about the optimal driving speeds in order 

avoid stopping at intersections. The system builds a database 

of fixed time signals, while adaptive signals are predicted 

with a support vector machine using a week long log of the 

adaptive signals. Our work differs from SignalGuru, both in 

the sensing (Traffic Turk measures vehicle maneuvers, from 

which the signal phase timing must be inferred [9], and 

not directly the traffic signal), and in the control objective 

estimation approach. The SMART-SIGNAL [15] system is 

another initiative that aims to collect high-resolution data 

from signalized intersections and use it to infer useful 

knowledge of the traffic system. This system communicates 

valuable traffic information which is often only available at 

the roadside signal controller, and may significantly improve 

the information available to traffic estimation systems in the 

future. 

This work formalizes the problem of estimating the control 

strategies as an inverse optimal control (IOC) problem. 

Unlike optimal control, which computes a control policy that 

maximizes some performance objective under constraints 

[4], the inverse optimal control problem aims to estimate 

the unknown objective function given realizations of the 

system trajectory, which are assumed to be optimal. This 

is a useful concept in our problem, since we can use it 

to find an objective function under which the true system 

policy is optimal, thus recovering an optimal control program 

whose solution mimics the true system evolution. The inverse 

optimal control problem was studied as early as [12], and 

recently in the machine learning cOlmnunity as a related 
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problem of inverse reinforcement learning (IRL). For exam­

ple, Ng and Russell [16], Abbeel and Ng [2] have proposed 

methods that span applications including learning the control 

strategy for helicopter acrobatics and bipedal robots. In 

the realm of transportation systems, inverse reinforcement 

learning has been studied in relation to autonomous parking 

lot navigation [1], navigation and driving behaviors [21], 

helicopter flight [7], and hybrid vehicle fuel efficiency [20] 

among others. 

However, as [3] points out, many approaches to inverse 

optimal control include the repeated solving of an optimal 

control problem within the inverse reinforcement learning 

framework and tend to be computationally intensive. Ke­

shavarz et al. [13] propose a method to significantly reduce 

the computational requirements by posing the inverse op­

timal control problem as a convex optimization problem. 

Aghasadeghi et al. [3] extend the idea in [13] to solve an 

inverse optimal control problem for a hybrid system with 

impacts, which also inspired the approach taken in this paper. 

In particular, optimal control approaches to traffic have 

been widely studied and part of our work is derived from 

the work of De Schutter [17] who models a single traffic in­

tersection and solves the optimal control problem associated 

with it. We also use the idea proposed by Keshavarz et al. in 

[13] when solving the inverse optimal control problem for a 

traffic controller due to its computational efficiency. 

C. Outline and contributions 

The main contribution of this paper is the development 

of a computationally efficient method to solve the inverse 

optimal control problem for a traffic controller at an in­

tersection via convex programming. More specifically, our 

method only requires solving a single convex optimization 

problem, instead of repeatedly solving several optimal con­

trol problems, common in many other methods. We first 

review the relevant components of the single intersection 

optimal control problem in Section II. In Section III, we 

build the objective function in terms of a basis of features 

with unknown weights and derive necessary and sufficient 

conditions for optimality of the optimal control problem. We 

then use the optimality conditions as constraints in the setup 

of the inverse optimal control problem. Finally, in Section IV, 

numerical experiments are performed on a single intersection 

to test the performance of the proposed method. 

II. INT ERSECTION TRAFFIC MODEL AND OPTIMAL 

SIGNAL CONTROL 

We review a model of traffic flow at a single intersection, 

and describe an optimal control problem to compute switch­

ing times of the traffic signal controller, originally proposed 

in [17]. The model and the optimal control problem are 

essential elements needed to build the inverse optimal control 

problem in Section III. A detailed analysis of the model and 

optimal control extensions can be found in [17]; we repeat 

only the relevant details here for completeness. 

A. Continuous time dynamics of traffic flow at an intersec­

tion 

Consider a model of a single intersection with m links 

indexed by i, managed by a traffic signal controller. The 

queue lengths qi (t) evolve in continuous time t, and k 
denotes the number of phase switches observed since the 

initial time to. The queue lengths qi(t) on each incoming 

link i at time t evolve according the following first order 

linear hybrid system: 

dqi(t) 
= 
{ai,k - /Li,k 

dt 0 

if qi(t) 2: 0 

otherwise, 
(1) 

where ai,k 2: 0 denotes the arrival rate on link i during phase 

k, and /Li,k 2: 0 denotes the saturation rate on link i during 

phase k. We assume the saturation rate is zero when the light 

is red for link i during phase k. 
In the model (1), the queue length function qi (t) is 

piecewise affine within a phase k. If tk denotes the switching 

time when the kth phase ends, the lengths of the queues at 

the switching times can be computed as 

qi(tk+1) = max {((ai,k+l - /Li,k+l)Ok+l + qi(tk)) , O} , 
(2) 

where Ok = tk - tk-1 be the duration of the kth phase. To 

simplify our notation moving forward, let ai,k = ai,k - /Li,k 
denote the net flow into link i during phase k. The variable 

qi k = qi (tk) denotes the queue length at time tk on link i, , 
T and qk = [q1,k, ... , qm,k] is the vector of queue lengths at 

time tk. 
B. Optimal signal control via switching time control 

With the model of the intersection defined, the finite 

horizon optimal control problem of minimizing some ob­

jective function J over the m x (n + I) state variables 

q = [qO T, ... , q;z:J T and the n control variables 0 = 

[01,·· . , On]T can be written as the following extended linear 

complementarity problem (ELCP): 

minimizeq,o : 

J(q,O) 
subject to: 

(ai,k+10k+1 + qi,k - qi,k+d x 

(qi,k+1) = 0 

qi,O = qio 
Ok 2: Omin 
Ok :s; Omax 
L�=l Ok = tf - to· 

Vi E {I ... m} , , , 
VkE{O, ··· , n-I} 

Vi E {I ... m} , , , 
Vk E {I, ··· ,n} 

Vi E {I ... m} , , , 
VkE{O, ··· , n-I} 

Vi E {I, ··· ,m} 
Vk E {I, ··· , n} 
Vk E {I, ··· , n} 

(3) 

where t E [to, t f] is given in terms of the initial time to 
and the final time t f. The parameters Omin and omax are the 
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upper and lower bounds of the phase duration, and prevent 

the signal from switching too quickly or not at all. Note that 

(3) is nonlinear due to the following constraint: 
(7) 

(qi,k+l - D:i,k+l0k+l - qi,k) qi,k+l = 0, 
Vi E {I ... m} Vk E {O ... n -I} (4) Expanding (7) yields: 

, " " 

which requires that either (qi,k+l - D:i,k+l0k+l + qi,k) or 

qi(tk+l) is equal to zero. 

As identified in [17], problem (3) can be relaxed to a linear 

constraint set by dropping the complementarity constraints, 

yielding: 

minimizeq,8 : 

subject to: 

qi,O = qio 
Ok ?: Omin 
Ok :s: Omax 
L�=1 Ok = t f -to 

J(q,O) 

Vi E {I ... m} , , , 
VkE{0, .. ·, n-1} 

Vi E {I ... m} , , , 
Vk E {I, ,,, , n} 

Vi E {I, ,,, , m} 
Vk E {I, ,,, , n} 
Vk E {I, ,,, , n} 

(5) 

Note that in (5), the constraint set is linear, and therefore 

it can be written as: 

where 

and 

minimizexEx : J(x) 

x = {x E jR(n+l)m+n I Ax < b A x = b } _ , eq eq , 

for suitable A, Aeq , b, and beq. 
An important result from [17] links problem (5) and (3). 

Specifically, if J (q, 0) is a strictly increasing function of 

the queue lengths q, [17] showed the optimal solution of 

(5) is also optimal for (3). Thus, for a restricted class of 

objective functions, the ELCP optimal control problem (3) 

can be solved with a tight convex relaxation. 

C. Objective functions 

Many convex objective functions can be considered for (3) 

and (5). For example, the sum of the squared queue length 

at switching times can be can be written as 

m n 
J1(x) = J1(q) = L L q;,k' 

i=1 k=O 
(6) 

Because (6) is strictly increasing in q, the solution to (5) 

with objective (6) is also optimal for (3). 

Noting the average phase duration over a finite interval 

(5 = tf �to is a constant, the variance of the phase duration 

can be written as: 

1 (� 2 -2) 
var (0) = 

n _ 1 
� Ok - nO , 
k=1 

which has the same minimizer as 

n 
(8) 

Since (8) is not a strictly increasing function of q, the solution 

to (5) with objective (8) (equivalently (7» will not in general 

be optimal for (3). 

For the purpose of inverse optimal control, we can com­

bine (6) and (8) for multi-objective optimization as 

(9) 

where W = [Wl,W2]T E W, where W = 

{w E jR2 1 Lj Wj = 1, WI > o}, are the normalized 

weights. Since WI > 0, the solution to (5) with objective 

(9) is also optimal for (3). 

Although many other features could be considered in the 

optimal control problem, we illustrate our examples on these 

particular features for two reasons. The first reason is that the 

features describe plausible objectives that a traffic controller 

would optimize over. The first feature (6) minimizes the 

queue lengths observed at the intersection at the switching 

times. It would be reasonable to assume that optimization 

over such an objective is feasible and useful for a traffic 

controller. The second feature minimizes the variance of the 

phase lengths and is useful to describe a traffic controller 

whose policy is to create phases of the same length. Because 

the features are convex, the corresponding optimal control 

problem can be solved efficiently. 

III. RECOV ERING SWITCHING CONTROL OBJECTIV ES VIA 

INV ERSE OPTIMAL CONTROL 

A. Inverse optimal control problem definition 

The inverse optimal traffic signal problem can be stated 

as follows. Given an observation of the system trajectory 

x* 
= [ �: ], find the weights w* E W such that 

(lO) 

In other words, the system trajectory should be optimal for 

(lO) under some weights w, which are to be estimated. 

Since the system trajectory x* is assumed to be optimal, 

it must satisfy the Karush-Kuhn-Tucker (KKT) conditions 

for optimality. The conditions are given by: 
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L�=I W/,V Jj (x) + AT A + A�v 
Aeqx - beq 

Ax- b 
AT(Ax - b) 

A 

0 

0 

< 0 (11) 

0 
> 0, 

where A and v are the Lagrange multipliers associated with 

the inequality and equality constraints respectively. 

If Omin < Omax, the KKT conditions (11) are also sufficient 

conditions for (10) because Slater's constraint qualification 

holds [6]. This follows from the fact that an interior point 

[ � ] :i; = 
� 

can be easily constructed by selecting some 

Omin < 5k < Omax for all k, such that the phase durations 

5 are strictly feasible. Then, for each link i, initialize the 

queue lengths according to the initial data (ko = qio ' Now, 

the strictly feasible queue lengths can be computed according 

to {ii,k+1 = max { Cl:i,k+15k+1 + {ii,k, o} +E, for some E > O. 
Because there are no upper bounds on the queue lengths, the 

evolution of the queues given by ij is strictly feasible when 

computed in this way. 

B. Convex inverse optimal control problem 

Given the necessary and sufficient conditions for optimal­

ity, we can now use them to solve the inverse optimal control 

problem. Following the generalized inverse optimal control 

approach proposed in [13], we treat the KKT conditions 

for optimality as constraints to the inverse optimal control 

problem. This approach guarantees that the weights returned 

by the following optimal control problem are indeed the 

weights that satisfy the optimal control problem. Moreover, 

the optimization is itself a convex program, which can 

be solved without repeatedly solving the optimal control 

problem (10), common to many approaches. 

The approximately optimal [13] inverse optimal control 

program is: 

minimizer,A,v,w : 

subject to : 

L�=I wj'v Jj (x*) + AT A + A�v = rl 

AT(Ax* - b) = r2 
A ?: O 
W ?: 0 

L�=I W j = 1 
WI ?: '13 

(12) 

In (12) above, the decision variables are the weights w, 

the Lagrange variables A and v, and the residuals r. The 

objective minimizes the 2-norm of the residuals, and takes 

the value zero when the KKT conditions are exactly satisfied. 

In general, the conditions need not be satisfied, especially if 

there are errors in the model used within the inverse optimal 

control problem (e.g. the objective basis functionals do not 

span the space of the true control objective, the incoming 

Link 1 Link I 

Phase 1 Phase 2 

Fig. 1: Phases for two intersecting one-way streets 

and outgoing flows have some error, etc.). Instead, the KKT 

conditions are allowed to be approximately satisfied, which 

yields an approximately optimal inverse optimal control 

problem [13]. Also note that the weight associated with 

the queue length is not allowed to be exactly equal to zero 

(WI ?: '13) in order to maintain the strictly increasing property 

of the objective function with respect to the queue length, 

where 1 > > '13 > 0 is a small nonnegative number. 

IV. NUMERICAL EX PERIMENTS 

This section tests the performance of the inverse optimal 

control method to estimate the control objective (12) through 

numerical experiments. A single instance of the problem is 

examined, when the estimator has perfect knowledge of the 

true system dynamics. In practice, the arrival rates may have 

errors, therefore one instance of the problem with errors in 

the arrival rates is also tested. 

A. Experimental setup 

Consider an intersection of two one-way streets (Figure 1). 

The intersection has two traffic signal phases. The first phase 

lets vehicles on link 2 pass the intersection while stopping 

vehicles on link 1. Similarly, the second phase lets vehicles 

on link 1 pass the intersection while stopping vehicles on 

link 2. The saturation rates for both links are taken to be 

1600 veh/hr/lane and since we consider two lanes on each 

link, we choose the total departure rate per link to be 3200 

veh/hr when the light is green on that link. The true signal 

is observed over a period of 20 min (i.e. to = 0, t f = 20 

min). The minimum phase length is taken to be Omin = 45 
seconds and the maximum phase length to be omax = 3 mins. 

The number of phases n is set at 15. Using the parameters 

in Table I, we generate synthetic (numerical) observations 

x
true from the true system by solving (10) under the weights 

wyue. The observations consist of the queue lengths at the 

switching times, as well as the switching times, so that 

the phase durations can be computed. Then, we solve the 

inverse optimal control problem to recover a set of estimated 

weights wj"t. The estimated weights are then used to solve 

the optimal control problem once more in order to generate 

the an estimated trajectory xest. 
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B. Error metrics 

Several performance metrics are defined to assess the 

accuracy of the inverse optimal control solver. The absolute 

percent error on the true objective is computed in the 

following way: 

1",2 wtrueJ. (xtrue) _ ",2 wtrueJ. (xest) 1 100 �J=1 J J �J=1 J J 
eobj = x 2 "' . wtrue J. (xtrue) 

�J=l J J 
(13) 

where wirue and w�rue are the assumed weights of the 

features in the objective function of the true system, xtrue 
is the true system trajectory resulting from solving the 

optimal control problem described in (10), and xest is the 

estimator's trajectory. Therefore, L�=1 
wyue Jj (xtrue) and 

L�=l wyue Jj (xest) represent the objective values of the 

true system trajectory and the estimated system's trajectory 

with respect to the control objective of the true system. 

Therefore, this metric measures the difference in perfor­

mance between the true system and estimator based on the 

control objective of the true system. 

The second metric measures the error of the phase lengths 

under the estimated control objective compared to the phase 

lengths under the true control objective. The error in the 

phase lengths is computed as follows: 

(14) 

where btrue and best are vectors of phase lengths of the true 

system and the phase lengths under the estimated control 

objective respectively. 

Similarly, the errors in the queue lengths can be computed 

as: 

(15) 

where qtrue and qest are vectors with the queue lengths 

generated by the true system and queue lengths under the 

estimated control objective. 

C. Estimation with error-free model dynamics 

In order to generate synthetic data, we solve the optimal 

control problem (5) with objective L�=lWjJj (x), with 

WI = 0.9, W2 = 0.1 and J1 and h as defined above in 

(6) and (8). The arrival rates for all phases are al,k = 1645 
vehlhr and a2,k = 123 vehlhr on link I and 2 respectively 

and were drawn from the uniform distribution U[O, 2000]. 
The experiment starts in phase 1 (Figure 1) and alternates 

between phases throughout the experiment. 

The output is a sequence of phase lengths and queue 

lengths at different switching times. This observed trajectory 

is considered the true system trajectory which will be used 

for inversion. Since we model the objective function of the 

optimal control problem as a convex function, the optimal 

control solver converges quickly to the global optimum. The 

control policy generated by the optimal control solver is then 

provided to the estimator along with the model dynamics. 

The model dynamics that are assumed by the estimator 

while solving the inverse optimal control problem are crucial 

in getting accurate results. We first test the case when the 

5 
0 
5 
0 
5 

Parameter Link 1 and Link 2 
m 2 
n 15 
Omin 45 seconds 
Omax 3 min {o veh/hr if red light 
J.1i,k 3200 veh/hr if green light tf 20 min 
qi,O 10 veh 

TABLE I: Summary of true system parameters 

Queue length as a function of time 

-- True system 
- - -Agent �N 8 

<3� 
�� 6 
_ 0  
o v 

lD � 4 

Queue length as a function of time 

� 
.o� EO' 
�.s 2 5 

0 , 
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Time (mins) 
15 20 

Queue length as a function of time 
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Time (mins) 
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5 

0 

5 

� 
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0 
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10 
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15 20 

Fig. 2: Queue length evolution on link 1 (left) and link 2 

(right) (a) true system (solid red) and estimator (dashed blue) 

when the true arrival rates are exactly known to the estimator 

(b) true system (solid red) and estimator (dashed blue) when 

the true arrival rates contain errors of 10%. 

estimator has a model with exactly the same parameters as 

the true system. Since the synthetic data is generated from the 

same model of traffic (more specifically, the data comes from 

solving an optimal control problem with the same constraint 

set and objective function) that is used in the inversion, this 

numerical setting is referred to as an inverse crime [8], [11]. 

Regardless, it allows a best case performance of the method 

and can be used to assess the ill-posedness of the inverse 

optimal control problem. 

The IOC optimization problem (12) is solved, and the 

queue lengths (solid and dashed lines) and switching times 

(boxes and circles) of the true system and the estimator are 

shown in Figure 2a. The error in the value of the objective 

function recovered by the estimator is eobj = 0%. Figure 2a 

shows that the queue length evolution and switching times 

of the true system and estimator were almost identical when 

the model dynamics are known exactly to the estimator. The 

corresponding error metrics are eo = 0 seconds, and eq = 0 
veh. 

The inverse optimal control problem solves in approx­

imately 25 seconds on when run in Matlab on a 64-bit 
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Windows 7 laptop with a dual-core 2.50GHz processor and 

4.00GB of RAM. The optimal control problem is solved 

using quadprog and the inverse optimal control problem is 

solved with fmincon to simplify the coding requirements in 

our implementation, although any convex solver could be 

used. 

D. Estimation with arrival rate errors 

In practice, the arrival rate must be measured or estimated, 

for example by averaging the vehicle arrivals over a period of 

time. As a result, the arrival rates used in the inverse optimal 

control solver will contain errors compared to the rates in 

the true system. To synthetically create this situation, we 

introduce errors in the arrival rates that are provided to the 

estimator. Note that we assume the departure rate to remain 

the same and that we can accurately estimate this value. 

In this experiment, we introduce a 10% error into the 

arrival rates assumed by the estimator and observe the 

trajectories produced by the true system and estimator. The 

parameters for the experiment are the same as in the first 

experiment with exception of the arrival rates which are again 

drawn from the uniform distribution U[O, 2000]. The arrival 

rates for the true system were defined to be ai,k and now, 

suppose we define the arrival rate assumed by the estimator 

as aT,sf , then al,k = 1600 veh/hr, a2,k = 800 veh/hr for the 

true system and a� sk = 1440 vehlhr, a'2 sk = 720 vehlhr for 

the estimator.
' , 

The queue lengths and switching times produced by the 

true system and estimator are shown in Figure 2b. The 

absolute percent error in the value of the objective function 

recovered by the estimator was eobj = 7.06%, the error in 

the queue lengths was eq = 102 veh, and the error in the 

phase lengths was eo = 307 seconds. It should be noted that 

even though the error in the weights is relatively large, the 

errors in queue lengths and phase lengths are smaller, given 

that approximately 1066 vehicles passed the intersection over 

the 20 min simulation. 

The same experiment was repeated over a longer time 

horizon of 40 mins in order to test whether the performance 

of the estimator improves when more data is available to 

it. The error in the queue lengths and the error in the phase 

lengths decreased to eq = 91 veh and eo = 208 seconds. The 

error in the value of the objective function of the estimator 

also decreased to eobj = 6.04%. 

V. CONCLUSIONS AND FUTURE WORK 

Traffic controllers are an integral part of any modern urban 

traffic system and understanding their control strategies is 

essential to predicting future states of traffic from observed 

data. However, it is generally challenging to procure the 

control strategies of traffic controllers in large scales when 

it is available, and in other cases it is impossible, due to 

proprietary algorithms or human-based traffic controllers. 

The work in this paper is a first attempt at recovering control 

strategies through inverse optimal control. The next steps to 

be taken include testing on intersections with more phases, 

and to create a rich set of basis functions for the objective 

function. The eventual goal is to test the performance of 

the inverse optimal control formulation experimentally on 

fixed-time and adaptive signals using data obtained from 

Traffic Tu rk. The possibility of coordination amongst traffic 

signals might also be explored. 
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