
Cooperation with Disagreement Correction
in the Presence of Communication Failures ∗

Oscar Morales-Ponce †, Elad M. Schiller ‡, and Paolo Falcone §

Abstract

Vehicle-to-vehicle communication is a fundamental requirement for maintain-
ing safety standards in high-performance cooperative vehicular systems. The ve-
hicles periodically exchange critical information among nearby vehicles and de-
termine their maneuvers according to the information quality and the established
strategies. However, wireless communication is failure prone. Thus, participants
can be unaware that other participants have not received the needed information on
time. This can result in conflicting (unsafe) trajectories. We present a determin-
istic solution that allows all participants to use a fallback strategy in the presence
of communication delays. We base our solution on a timed distributed protocol.
In the presence of message omission and delay failures, the protocol disagreement
period is bounded by a constant (in the order of milliseconds) that may depend on
the message delay in the absence of these failures. We demonstrate correctness
and perform experiments to corroborate its efficiency. We explain how vehicular
platooning can use the proposed solution for providing high performance while
meeting the safety standards in the presence of communication failures. We be-
lieve that this work facilitates the implementation of cooperative driving systems
that have to deal with inherent (communication) uncertainties.

1 Introduction
The vision of automated driving systems holds a promise to change the transporta-
tion reality. Current deployments that focus on autonomous solutions pose a variety
of sensors and actuators for safe driving on the road, e.g., Volvo drive me project in
Gothenburg and Google car in California. These autonomous solutions are based on
∗This paper appears as a technical report [26] and as an extended abstract [23]. This work was par-

tially supported by the European Union’s Seventh Programme for research, technological development and
demonstration, through project KARYON, under grant agreement No. 288195.

†This work was done during the postdoctoral stay of Oscar Morales-Ponce at Chalmers University of
Technology, Göteborg, Sweden, e-mail:oscarmponce@gmail.com

‡Elad M. Schiller is with the Department of Computer Science and Engineering, Chalmers University of
Technology, e-mail:elad@chalmers.se

§Paolo Falcone is with the department of Signals and Systems, Chalmers University of Technology,
Göteborg, Sweden, e-mail:falcone@chalmers.se

1

ar
X

iv
:1

40
8.

70
35

v2
 [

cs
.D

C
]

 2
6

Fe
b

20
15

Control
Algorithm (s)

Vehicle

Communication Protocol
IEEE802.11p

Communication Protocol
IEEE802.11p

s s

Timed Protocol for
Cooperation with

Disagreement Correction

Control
Algorithm (s)

Vehicle

s s

Communication Protocol
IEEE802.11p

Communication Protocol
IEEE802.11p

s s

Figure 1: The local cooperative driving architecture without and with the proposed
cooperation protocol.

the vehicles’ ability to observe obstacles in their line-of-sight. Vehicle-to-vehicle com-
munication has the potential to improve the system confidence on the sensory infor-
mation and support advanced vehicular coordination. E.g., when changing lanes and
crossing intersections, as well as improving the road capacity by reducing the inter-
vehicle distances. However, communication failures can result in hazardous situations
due to coordination based on inconsistent information shared by the participating vehi-
cles.

Consider an architecture, which Figure 1 (left) depicts, for implementing cooper-
ative driving systems. The Communication Protocol implements the mechanisms for
exchanging information with other vehicles. The Control Algorithm plans the vehi-
cle motion according to the sensory information from on-board and remote sources.
Note that the local Control Algorithms depend on the (in general vectorial) variable s
(service level). Thus, s is a common piece of information that all vehicles share in
order to establish correct cooperation. For instance, in vehicular platooning, s might
include the maximum acceleration levels imposed to all vehicles by the limited brak-
ing capabilities of one of them [18]. Clearly, message loss when a new value of s is
established may lead to an inconsistent value in one or more vehicles, and thus, result
in an unsafe operation of the entire cooperative system. It is then necessary to have an
additional layer, shown in Figure 1 right, between the Communication Layer and the
Control Algorithm. We propose to base this additional layer on a Timed Protocol for
Cooperation with Disagreement Correction that resolves disagreements on variable s
among the system vehicles.

Specifically, we address the following research question: How can cooperative sys-
tems be used to attain the highest performance without compromising safety in the
presence of communication failures? We consider applications in which the individual
vehicles estimate their ability to cooperate according to the sensory information qual-
ity and communicate their maximum supported cooperative level [5, 7]. The vehicular
system then decides on its cooperative service level according only to the received

2

information. However, communication failures can cause the arrival of the needed in-
formation not to occur by the deadline. This can bring the vehicles to operate at distinct
levels. It is a critical issue to guarantee that the uncertainty period along vehicles occurs
only in short time periods. Therefore, we address Problem 1.

Problem 1 (Minimum Longest Uncertainty Period.). Is there an upper-bound on the
longest period in which the cooperative system may have inconsistent operation service
level?

We note that we cannot solve Problem 1 using distributed (uniform) consensus al-
gorithms. In the uniform consensus problem, every component (vehicle) proposes a
value and the objective is to select exactly on of these proposed values. It is well-
known that this problem is not deterministically solvable in unreliable synchronous
networks and any r-communication rounds algorithm has probability of disagreement
of at least 1

r+1 [22] (Theorem 5.1 and Theorem 5.5). Therefore, when the communi-
cation failures are too frequent and severe, the uncertainty period cannot be bounded
since the components (vehicles) can disagree for an unbounded number of protocol
executions. This work presents a communication protocol that guarantees the shortest
possible uncertainty period, i.e., a constant time, in the presence of communication
failures.

Our solution is based on a communication protocol that collects values from all
system components. Once this proposed set s is delivered to all the components, the
protocol employs a deterministic function to decide on a single value from s that all
system components are to use. The protocol identifies the periods in which there is
a clear risk for disagreement due to temporary communication failures, i.e., a period
in which s was not delivered by the due time to the entire system. Once such risk
is identified, the protocol triggers a correction strategy against the risk of having dis-
agreement for more than a constant number of rounds. Namely, after the occurrence
of communication failures that jeopardize safety, all system components will rapidly
start a period to reestablish their confidence by returning to the default value. Once
the network returns to be stable again, and no communication failures occur, within a
constant time, the protocol behaves as if no communication failures has ever occurred.

The correctness proof and its validation show that the proposed solution provides
a trade-off between the uncertainty period (in the order of milliseconds) and the oc-
currence of communication failures. In other words, for shorter round length (and
consequently so it the uncertainty period), the vehicles experience more frequently a
low service level. However, for a longer round length, the vehicles experience less
frequently a low service level. However, the longer the round length is, the longer the
time that vehicles spend on disagreements and therefore, the risk of having accidents
increases.

This paper also discusses a safety-critical application that facilitates cooperation
using the proposed protocol. We assume a baseline adaptive cruise control (ACC) that
does not require communication. Then, we extend it to a cooperative one that attains
higher vehicle performance, but relies on higher confidence level about the position
and velocity of nearby vehicles. We explain how the protocol can provide a timed
and distributed mechanism for facilitating decisions about when the vehicles should

3

plan their trajectories according to the baseline application and when according to the
extended one that fully utilizes cooperative functionality.

1.1 Related work
The distributed (uniform) consensus problem considers the selection of a single value
from a set of values proposed by members of, say, a vehicular system. The solution
is required to terminate within a bounded time by which all system components have
decided on a common value. The use of the exact (uniform) vs. approximate consensus
approaches is explain here [19], where they recommend the use of exact (uniform)
consensus due to the simplicity of the system design from the application programmer
perspective. The exact consensus approach, in contrast to the approximate one, rests
on a foundation of clearly defined requirements and is amenable to formal methods and
analytical validation.

A number of impossibility results consider distributed consensus in general (see [13–
15]). In [22], the author shows that the presence of communication failures makes im-
possible to deterministically reach consensus (Theorem 5.1) and any r-round algorithm
has probability of disagreement of at least 1

r+1 (Theorem 5.5). This implies that there
are no guarantees that vehicles can reach consensus on bounded time since vehicle-to-
vehicle communications are prone to failures. Moreover, when the communication fail-
ures are too frequent and severe, vehicles can fail to reach consensus for an unbounded
number of consecutive times. We therefore abandon consensus-based decision algo-
rithms, and prefer to focus on solutions that offer early fall-back strategies against the
risk of having disagreement for more than a constant number of rounds.

The existing literature on distributed (uniform) consensus algorithms with real-
time requirements does consider processor failures. However, it often assumes timed
and reliable communication. For example, in [17] the authors give an algorithm that
reaches agreement in the worst case in time that is sublinear in the number of processors
and maximum message delay. In [1], the authors provide a time optimal consensus
algorithm that reaches consensus in time O(D(f +1)) in the worst case where D is the
maximum message delay and f the maximum number of processors that can crash. In
this paper, we do not assume reliable communication. Thus, message drops can occur
independently among processors at any time.

Group communication systems [8] treat a group of participants as a single commu-
nication endpoint. The group membership service [10–12] monitors the set of recently
live and connected participating system components whereas the multicast service de-
livers messages to that group under some delivery guarantees, such as delivery ac-
knowledgment. In this paper we assume the existence of a membership service and a
best-effort (single round solution) dissemination (multicast) protocol that has no deliv-
ery acknowledgment.

There exists literature on adaptive cruise control [29, 30] as well as vehicle pla-
tooning [27, 28]. In [20], the author considers vehicle platooning and lane merging,
and bases his construction on distributed high level communication primitives. We
consider a different failure model for which there is no deterministic implementation
for these communication primitives.

4

The studied problem is motivated by the KARYON project [3,5,6]. The KARYON
project aims to provide a predictable and safe coordination of intelligent vehicles that
interact in inherently uncertain environments. It proposes the use of a safety kernel
that enforces the service level that the vehicle can safely operate. A cooperative ser-
vice level can ensure that vehicles follow the same performance level. In this paper,
we study a communication protocol that implements the KARYON’s cooperative ser-
vice level evaluator. In [7], we present the architecture that considers the interactions
between the safety kernel, a local dynamic map and the cooperative service level eval-
uator. Unlike the earlier abstract presentation of the cooperative service level evaluator,
this paper provides in detail, the design and analysis of the communication protocol.

1.2 Our contribution
We study an elegant solution for cooperative vehicular systems that have to deal with
communication uncertainties. We base the solution on a communication protocol that,
we believe, can be well understood by designers of safety-critical, automated and
cyber-physical systems. We explain how the designers of fault-tolerant cooperative
applications can use this solution to deal with communication failures when uniformly
deciding on a shared value, such as s.

We consider cooperative applications that must periodically decide on a shared val-
ues s. Since the consensus problem cannot be deterministically solved in the presence
of communication failures, the system is doomed to disagreed on the value of s (in the
presence communication failures that are frequent and severe). We bound the period in
which the vehicles can be unaware of such disagreements with respect to s. We prove
and validate that this bound is no more than one communication round (in a vehicular
system that deploys a single-hop network of wireless ad hoc communication). We also
study the percentage of time during which the system avoids disagreement on s using
ns-3 simulations.

We exemplify how the proposed solution helps to guarantee safety. We consider
vehicles that operate in a cooperative operational mode as long as they are aware that
all the nearby vehicles are also in the same mode (with at most one communication
round period of disagreement). However, if at least one vehicle is suspecting that
another vehicle is not, all vehicles switch, within one communication round period, to
a baseline operational mode so that the safety standards are met.

1.3 Document structure
We list our assumptions and define the problem statement (Section 2), before providing
the timed protocol for cooperation with disagreement correction (Section 3) and its
correctness proof (Section 4). As protocol validation study, we consider computer
simulation (Section 5). We discuss cooperative vehicular application (Section 6) and
an example before the conclusions (Section 7).

5

2 System Settings
We consider a message passing system that includes a set members of n communicat-
ing prone-resilient vehicles. We refer to the vehicles with id i as pi. We assume that
all vehicles have access to a common global clock with a sub-microsecond offsets by
calling the function clock(). This could be implemented, for example, using global
positioning systems (GPS) [2]. Hence, we assume that the maximum time difference
along vehicles is at most syncBound. We consider that the system runs on top of a
timed and fault-tolerant, yet unreliable, dissemination protocol, such as [4, 16], that
uses gossipSendi(m) to broadcast message m from vehicle pi ∈ members to all vehi-
cles in members. We assume that end-to-end message delay is at most messageDelay
time. Thus, messages are either delivered within messageDelay time or omitted. The
constant messageDelay depends on distinct factors such as the MAC protocol that is
used, vehicle velocity, interference, etc. For example, this bound can be set to 100ms
or less using, for example, dedicated short-range communications (DSRC) [9].

Vehicle p j receives m from i by raising the event gossipReceive j(i,m). We con-
sider a fully connected network topology. However, the network can arbitrarily decide
to omit messages, but not to delay them for more than messageDelay time. These as-
sumptions allow the protocol to run in a synchronous round based fashion. We consider
rounds of time roundLength where roundLength≥ messageDelay+2syncBound.

Every vehicle pi executes a program that is a sequence of (atomic) steps. An input
event can be either the receipt of a message or a periodic timer going off triggering pi
to start a new iteration of the do forever loop.

We define the uncertainty period as the period that vehicles can disagree. We say
that there was a communication failure at round r if there exists a vehicle that has not
received the messages from all vehicles during round r.

2.1 The task
The system’s task is to satisfy requirements 1 to 3, which consider Definition 1.

Definition 1 (Stable Communication Period). A stable communication period X [r1,r2]
is the period of r2− r1 rounds in which the vehicles do not experience communication
failures, i.e., all vehicle receive all messages during these periods. Otherwise, it is
called an unstable communication period, denoted by Y [r′1,r

′
2].

We say that a stable communication period X [r1,r2] is maximal when rounds r1−1
and r2 + 1 are unstable communication periods. Analogously, we define a maximal
unstable communication period Y [r′1,r

′
2], see Figure 3. Thus, in any run, the commu-

nication may go through maximal stable and unstable periods (and then perhaps back
to stable) for an unbounded number of times. Requirements 1 to 3 deal with what the
system output at every vehicle should be when it goes between the different periods.

Requirement 1 (Certainty Period). During a stable period no two vehicles use differ-
ent values. Moreover, within a bounded prefix of every stable period, there is a suffix
during which no uses the default return value.

6

Y [r1, r2]

r1 r2 r3

X[r2 + 1, r3]

Figure 2: Maximal unstable communication period Y [x1,x2] followed by a maximal
stable communication period X [x2 +1,x3].

Requirement 2 (Disagreement Correction). Every unstable period has a suffix named
the disagreement correction period during which no two vehicles use different values.
During this period all vehicles use the default return value.

Requirement 3 (Bounded Uncertainty Period). The suffix of a stable period during
which some vehicles may use different values is called the uncertainty period. We
require it to be bounded.

We show that any system run of the proposed solution fulfills requirements 1 to 3.
Specifically, we demonstrate Theorem 1 (Section 3).

Theorem 1. The proposed protocol (Algorithm 1) fulfills requirements 1, 2 and 3,
where the uncertainty period is bounded by one round. Moreover, if vehicles do no
experience communication failures, the disagreement correction holds for at most one
round.

3 The Disagreement Correction Protocol
We present the communication protocol in which the participants exchange messages
until a deadline. These messages can include information, for example, about nearby
vehicles as well as the confidences that each vehicle has about its information. Once
everybody receives the needed information from each other, the participants can locally
and deterministically decide on their actions. In case of a communication failure, each
participant that experiences a failure imposes the default return value for one round.

Each vehicle pi ∈ members executes the protocol (that Algorithm 1 presents). It
uses a do forever loop for implementing a round base solution. It accesses the global
clock (line 24) and checks whether it is time for the vehicle to send information about
the current round (line 25). A vehicle starts sending messages at syncBound time
from the beginning of each round and syncBound +messageDelay before of the end
of each round using the gossipSend() interface (Line 26). Recall that syncBound is
the maximum time difference over the vehicles and messageDelay is the longest time
that a message can live in the network. Next, it tests whether the current round num-
ber myRound points to the current round in time (line 28). A new round starts when
myClock÷ roundLength is greater than myRound.

At the beginning of every round, the protocol first keeps a copy of the collected data
and the received information, and updates the round counter, as well as nullifying data
and ack (line 29). Then, it tests whether it has received all the needed information for
the previous round (line 30). Suppose that a communication failure occurred in the pre-
vious round, the protocol sets the data to be sent to the default return value ⊥ (line 31).

7

It also writes to controlLoop() interface the received information as well as the default
return value ⊥ (line 32). However, in the case that all messages of the previous round
have arrived on time, the system reads the application information using readState()
interface. It also writes to controlLoop() interface the received information as well as
the value that the deterministic function decide() returns (line 35).

The proposed protocol interfaces with the gossip (dissemination) protocol by send-
ing messages (gossipSend()) and receiving them (gossipReceive()) periodically. The
protocol locally stores the arriving information from p j ∈ members on each round in
data[k] and waits for the round end before it finishes accumulating all arriving infor-
mation. More specifically, for each message that is reported with the same round, the
protocol stores the data from pk and sets the acknowledgment variable to true, if the
message comes directly from p j, (k = j), or transitively from p j without considering
its own values (ack j[k] and k 6= i).

The correctness proof shows that, in the presence of a single communication failure,
there could be at most one disagree round in which different system components use
different values. Moreover, the influence of that single failure will last for at most two
rounds, which is the shortest period possible. Note that Algorithm 1 handles well any
sequence of communication failures.

4 Correctness
We prove that Algorithm 1 follows requirements 1 to 3.

Lemma 1. Let Y [r1,r2] be any maximal unstable communication period followed by
a maximal stable communication period X [r2 + 1,r3]. The following three statements
hold.

(1) Bounded Uncertainty Period. Vehicles may have disagreements at round r1 +
1.

(2) Disagreement Correction. All vehicles use the default return value during
[r1 +2,r2 +1].

(3) Certainty Period. Vehicles use the same value during [r1 +2,r3 +1].

Proof. Let si(r) be the set of messages that vehicle pi receives from all the vehicles
p j ∈ P, either directly or indirectly, and that p j has sent during round r. Observe
that each vehicle decides the value to be used on round r + 1 based on the received
information at round r (lines 32 and 35). We claim that sk(r) = si(r) for ∀pk, p` ∈ P
and ∀r ∈ [x2 + 1,x3]. Note that this implies that no two vehicles use different values
when processing round r, because vehicle pi determines its output value according to
the deterministic function decide(si).

Claim 1. sk(r) = s`(r) for ∀pk, p` ∈ P where r ∈ [x2 +1,x3].

Claim Proof. First we show that each vehicle maintains consistent its own information
over each round. Observe that lines between 29 and 35 are executed once during round
myRound since myRound is set to clock()÷ roundLength and clock() always returns
larger values. Therefore, each vehicle pi loads its message on the register data[i] once
during myRound. Thus, assume that vehicle vi overwrites its data[i] when receiving a

8

message from vehicle v j. Since the condition ensures that it loads data[k] only if either
i 6= k or k = j, we conclude that i = j = k. Thus, data[i] is consistent on pi during
round myRound.

We say that a message mk is sent transitively, if pi receives mk from p j where j 6= k.
We show that the message transitivity maintains the consistency of the messages during
a stable communication period. We argue by contradiction. Assume that there are two
messages, mi ∈ sk and m′i ∈ s` such that mi 6= m′i. Consider the first time that mi,m′i
were sent. Observe that pi sent the two messages. A contradiction since pi maintains
consistent its own information over each round.

The claim follows by showing that at the end of the current round myRound, it
holds that sk(myRound) = s`(myRound). Indeed, since messages of each round are
sent (syncBound +maximumDelay) time units before the end of myRound and after
syncBound time units after the beginning of myRound, vehicles receive messages only
from the current round. Recall that syncBound is the maximum difference time among
vehicle clocks and maximumDelay is the maximum time that a message can live in the
network.

(1) Bounded Uncertainty Period. Consider round r1. Since Y [r1,r2] is an unstable
communication period, there exists a vehicle pi that did not receive a message from all
vehicles, i.e., ⊥ is in ack. Observe that vehicle p j is unaware that pi had experienced
a communication failure during round r1. Let us assume that p j did not experience
any communication failure. Therefore, p j uses the deterministic value that decide()
returns on round r1 + 1. However, pi imposes the default return value (line 32) since
it had experienced a communication failure. Thus, during round r1 + 1, pi sends the
default return value by setting data[i] to (⊥) and uses it (lines 31 and 32, respectively).
Therefore, as long as no vehicle misses pi’s message, the first default return value of pi
arrives along round r1 +1. Thus, during round r1 +1, p j uses a distinct value than pi.

(2) Disagreement Correction. We show that all vehicles use the default return
value in round r ∈ [r1 + 2,r2 + 1]. It is sufficient to show that there exists at least
one default return value in s j(r) in each round r ∈ [r1 + 1,r2]. Assume that at round
r ∈ [r1,r2], some vehicle pk experienced a communication failure. Therefore, at round
r + 1 all other vehicles either receive the default value of pk or receive no message
from pk. Thus, all vehicles use the same value (default return value) in each round
r ∈ [r1 + 2,r2 + 1] (lines 31 and 35). This is due to the definition of the function
decide() (line 14) and the fact that each vehicle writes the default return value if it
experiences a communication failure.

(3) Certainty Period. We show that during [r1+2,r3+1] all vehicles use the same
values. Indeed, from the point (2), every vehicle uses the default return value in every
round r ∈ [r1 + 2,r2 + 1]. It remains to show that they use the same value in each
round r ∈ [r2 +2,r3 +1]. From the claim, si(r) = sk(r) for each pair pi, pk ∈ P during
[r1,r3] since all vehicles received the information from each other vehicle. The lemma
follows since vehicles decide the value to be used on round r+1 based on the received
information at round r (lines 32 and 35) using the deterministic function decide().

Theorem 1. It follows directly from Lemma 1.

9

5 Evaluation
We consider a cooperative system that has two service levels where the lowest one is
the default service level to which the system falls-back to in the presence of communi-
cation failures. For example, this can be a vehicular system in which the cooperative
service level is the highest, and the autonomous service level is the lowest (default)
one. Since we focus on communication failures, the experiments assume that every
system component can always support the highest service level, and thus read input
(readState) always returns the highest service level. We use computer simulation to
validate the protocol as well as its efficiency. For the efficiency, we consider the re-
liability performance measure which we define as the percentage of communication
rounds during which the protocol allows the system to run at its highest service level.
First, we validate that the disagreement period is of at most one round and next the
reliability of the protocol.

We simulate the protocol using ns-3. 1 We choose IEEE 802.11p as the communica-
tion channel with a log-distance path loss model and Nakagami fading channel model.
Since DSRC technologies support end-to-end message delay of less than 100ms [9],
we fix the message delay to 100ms. We consider a synchrony bound of 5ms, say, using
GPS [2] or a distributed clock-synchronization protocol. We implement a straightfor-
ward gossip protocol in which every node retransmits message every 50ms.

We validate that the disagreement period is of at most one round. We plot in Fig-
ure 3 the decision that 4 vehicles took independently during 25 rounds using the proto-
col under frequent communication failures. We set the round length to 160ms so that
messages can be transmitted twice in each round. Observe that at round 20 vehicles 1
and 2 reduce the service level due to a communication failure, but vehicles 3 and 4 still
continue in the highest level of service. However, at round 21, they lower their service
level. Although vehicles do not operate on distinct service levels for more than one
round, the service level of some vehicles may be oscillating. We can reduce this effect
by increasing the round length. However, the uncertainty period also increases.

Note the trade-off between the upper bound on the disagreement period, which is
one communication round, and the success rate of the gossip protocol, which decreases
as the round length becomes shorter. The type of gossip protocol as well as the number
of system components also influences this success rate. We use computer simulation
to study how these trade-offs work together and present the reliability.

We consider three round lengths between 160ms and 360ms with intervals of 100ms
so that vehicles can transmit 2,4 and 6 messages in each round, respectively. We vari-
ate the number of vehicles between two and eight. The reliability of the system is
plotted in Figure 4. We run each experiment for 360 simulation seconds. During the
simulations, we observe a packet drop average of 0.1436347. The packet drop rate
per number of vehicles is presented in Table 1. Further, the percentage of time that all
vehicles agree on the highest service level is greater than 98% with round lengths of at
least 260ms with at least four vehicle. Observe that the reliability is higher with more
vehicles than with less. This is because of the transitivity property.

1http://www.nsnam.org/

10

15 20 25 30 35 40

Time

D
ec

is
io

n

15 20 25 30 35 40

Time

D
ec

is
io

n

15 20 25 30 35 40

Time

D
ec

is
io

n

15 20 25 30 35 40

Time

D
ec

is
io

n

V 1

V 2

V 3

V 4

lo
w

hi
gh

lo
w

hi
gh

lo
w

hi
gh

lo
w

hi
gh

Level of Service Over the Time

Figure 3: Vehicle behavior under frequent communication failures. The plot shows the
decision that four vehicles took among two service levels during 25 rounds using the
protocol.

Number of Vehicles Packet Drop Rate
2 0.1605357
3 0.1436347
4 0.159418
5 0.141237
6 0.1426173
7 0.138037
8 0.1713623

Table 1: Packet Drop Rate.

6 Discussion
Autonomous vehicles have great capabilities to safely respond to unexpected events
and keep short headways. However, keeping short inter-vehicle distances without con-
sidering the nearby vehicles can result in hazardous situations. For example, rear-end
crash as well as near-crash events usually involve an action of the lead vehicle [21].
Cooperative vehicular systems have the potential to mitigate these events and improve
the vehicle performance by exchanging information periodically as well as their con-
fidence level (validity) about their own information. However, due to communication

11

 0.66 0.68 0.72

 0.76

 0.8

 0.82

 0.84

 0.88

 0.9

 0.92
 0.94

 0.98

160

260

360

2 3 4 5 6 7 8

Figure 4: The percentage of time that all vehicles agree on the highest service level
(number of vehicles vs the round length in milliseconds).

failures, vehicles may have inconsistent information and, therefore, low confidence
level at the system level (even thought the individual vehicles may have high confi-
dence). We present a cooperative vehicular application that exchanges periodically in-
formation and uses Algorithm 1 for dealing with communication failures. Our design
demonstrates that, even though the presence of communication failures can lead to dis-
agreement about what should be the joint validity value for a particular communication
round, this can only happen for a period of at most one round, and thus tolerated by the
vehicular control algorithm. We exemplify our approach using the adaptive cruise con-
trol (ACC) and vehicle platooning applications because their deployment environments
requires dealing with communication uncertainties. In such cooperative systems, the
vehicles has to jointly decide which application to use, ACC or platooning, according
to the system service level s, which Algorithm 1 decides on its value.

We do not aim at designing new vehicular systems, but rather to exemplify how
the proposed solution helps to guarantee the safety in existing cooperative vehicular
applications, which operate in environments that include communication uncertainties.
In our approach, while the vehicles are aware that nearby vehicles have a high level of
certainty, they perform a fully cooperative operational mode to improve their perfor-
mance. However, when this cannot be determined beyond any doubt, they switch to
the autonomous operational mode to maintain high safety levels.

Adaptive Cruise Control (ACC) and Vehicular Platooning adjust the vehicle veloc-
ity so that they keep a predefined and safe headway. ACC sets the headway according
to the vehicles in its direct line-of-sight. In other words, this application relies merely

12

on on-board sensors. Vehicular platooning applications (or cooperative adaptive cruise
control applications), however, do exchange information among vehicles and jointly
aim at reducing air friction and energy consumption. They achieve such cooperative
objectives by keeping shorter inter-vehicle distance than the autonomous ACC appli-
cation. We show how to use the protocol solution for cooperative vehicle platooning
with ACC as a base-line application.

In platooning, the vehicles exchange vectorial variables, s, which contain the vehi-
cles’ location, velocity and the highest level service that they can support. The service
level provides the currently known bounds on the information error (see table 2), as
well as operational parameters, such as headway and acceleration bounds, where un-
bounded error means that the vehicle cannot determine it, say, due to a faulty compo-
nent. Note that even thought our example considers merely three service levels, the
extension to a scheme with more levels is straightforward. We assume that vehicles
have the capability to determine the errors with high confidence level. We also assume
that vehicles can determine the relative position of the vehicle ahead using on-board
sensors within an estimated (bounded) error.

Level of Service Loc. Err. (Pε) Velocity Error (Sε)
High Pε ≤ L Sε ≤ S

Medium Unbounded Pε Sε ≤ S
Low Unbounded Pε Unbounded Sε

Table 2: L and S are constant values known by all participants.

Level of Service Headway Acc Bound
High H1 A1

Medium H2 A2
Low H3 A3

Table 3: H(·) are constant values and A(·) are constant acceleration bounds such that
H1 < H2 < H3 and A1 ⊂ A2 ⊂ A3.

Algorithm 2 executes an instance of the protocol (that Algorithm 1 presents) and
implement the interface functions readState, controlLoop and decide. The function
readState returns the pi’s local service level (see Table 2) as well as the operational in-
formation (localization, heading, velocity, etc.). The function decide returns the mini-
mum local service level in the data structure s so that all vehicles can meet the required
constrains. The main functionality is implemented in controlLoop function. It uses the
information of all the vehicle in data to determine the velocity and acceleration for the
next round according to the cooperative service level using the parameters in Table 3.
Note that in the baseline application, ACC, vehicles can base their decision on sensory
information from onboard sources. We assume that each operation mode is proven to
be safe provided that the information meets the requirements, i.e., the errors are within
the bounds that are given in Table 3. For the worst case scenario, the behavior of the
platoon can be influenced by vehicles that are not part of the platoon. This is because
some events can cause cascade effects if they occur during the communication failures.

13

We observe that the period during which the system switches from the highest service
level to the lowest is a critical time.

The safety provision in Algorithm 2 depends directly on the mechanical constraints
and the parameters’ election. From the previous section, it is reasonable to consider
rounds of length at least 260 milliseconds. Thus, the headway can be determined from
the round length and the error bounds on the information. We observe that Algorithm 2
can reduce the collision risk by enforcing the vehicles to operate in a common ser-
vice level that has been proven to be safe according to the information quality that is
associated with that level.

Example
As an illustrative example of the propose solution, we consider three vehicles in the
following worst case scenarios of two implementations: (1) a vehicular platooning ap-
plication that does use the proposed solution for for its back-off strategy in the presence
of communication failures, and (2) an implementation of vehicular platooning that does
run Algorithm 2.

t

v1v2v3

Time

Road

t+ ε

t+ δ

H2

H2

Hazardous
sitation

Figure 5: Vehicles in Platoon that do not include the proposed protocol.

Let v1,v2,v3 be the vehicles such that v1 is leading the platoon followed by v2
and v3 as depicted in Figure 5. Assume that vehicles are driving on platooning with
operational parameters given by the medium service level in Table 3. Therefore, they
keep a headway of H2. Suppose that at time t, v2 starts loosing the messages from v3
for δ time. Further, assume that at time t + ε , v2 losses the messages from v1 for δ− ε

time and at the same time v1 requires to decelerate due to an obstacle, for example a
pedestrian. Let us assume that ε and δ are at least two times the round length.

Platooning with back-off strategy that does not include the proposed solutions.
Since v2 does not receive the messages from v3 during [t, t +δ], it is unaware whether
v3 continues operating on platooning. Thus, v2 continues operating on platooning and
assumes that it is the last vehicle in it. At time t +ε, v2 starts loosing messages from v1
and consequently switches to the back-off strategy in the next round. However, since v1
requires to brake, v2 uses the acceleration bounds in A3. But v3 continues operating on
platooning during [t, t+δ], since it is unaware that v2 is not receiving messages from v1
and v3. By definition, the system is not safe during [t + ε, t +δ], since the platoon has

14

only been proved to be safe when the headway is at most H2 and acceleration bounds
are in A2.

Platooning using Algorithm 2. From the algorithm property that the uncertainty
does not hold for more than one round, v1 and v3 will be aware that at least one vehicle
has a communication failure in the next round. Therefore, all switch to the lowest
service level and start opening space to keep a headway of H3. Thus, at time t + ε they
have larger inter-vehicle distances which reduce the cascade effects. Observe that for
an ε less than two round lengths, the problem also occurs in this approach. Indeed,
every cooperative vehicular application that relies on communication suffers from this
problem. However, we believe that our approach minimizes the effects.

H2

t

v1v2v3

Time

Road

t+ ε

t+ δ

H3

Figure 6: Vehicles in Platoon that include the proposed protocol.

7 Conclusion
We have proposed an efficient protocol that can be used in safety-critical cooperative
vehicular applications that have to deal with communication uncertainties. The proto-
col guarantees that all vehicles will not be exposed, for more than a constant time, to
risks that are due to communication failures. We demonstrate correctness, evaluate per-
formance and validate our results via ns-3 simulations. We also showed how vehicular
platooning can use the protocol for maintaining system safety.

The proposed solution can be also extended to other cooperative vehicular applica-
tions, such as intersection crossing, coordinated lane change, as we demonstrated using
the Gulliver test-bed [24, 25] during the KARYON project [6]. 2 Moreover, we have
considered the simplest multi-hop communication primitive, i.e., gossip with constant
retransmissions. However, that communication primitive can be substitute with a gos-
sip protocol that facilitate a greater degree of fault-tolerance and better performance.
This work opens the door for the algorithmic design and safety analysis of many coop-
erative applications that use different high-level communication primitives.

2Demonstration videos are available via www.gulliver-testbed.net/documents

15

www.gulliver-testbed.net/documents

References
[1] Marcos Kawazoe Aguilera, Gérard Le Lann, and Sam Toueg. On the impact

of fast failure detectors on real-time fault-tolerant systems. In Dahlia Malkhi,
editor, DISC, volume 2508 of Lecture Notes in Computer Science, pages 354–
370. Springer, 2002.

[2] David W Allan and Marc Abbott Weiss. Accurate time and frequency transfer
during common-view of a GPS satellite. Electronic Industries Association, 1980.

[3] Christian Berger, Oscar Morales Ponce, Thomas Petig, and Elad Michael Schiller.
Driving with confidence: Local dynamic maps that provide los for the gulliver
test-bed. In Andrea Bondavalli, Andrea Ceccarelli, and Frank Ortmeier, editors,
Computer Safety, Reliability, and Security - SAFECOMP 2014 Workshops: AS-
CoMS, DECSoS, DEVVARTS, ISSE, ReSA4CI, SASSUR. Florence, Italy, Septem-
ber 8-9, 2014. Proceedings, volume 8696 of Lecture Notes in Computer Science,
pages 36–45. Springer, 2014.

[4] Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Random-
ized gossip algorithms. IEEE Transactions on Information Theory, 52(6):2508–
2530, 2006.

[5] Antonio Casimiro, Jörg Kaiser, Johan Karlsson, Elad Michael Schiller, Philippas
Tsigas, Pedro Costa, José Parizi, Rolf Johansson, and Renato Librino. Brief an-
nouncement: Karyon: Towards safety kernels for cooperative vehicular systems.
In Andréa W. Richa and Christian Scheideler, editors, SSS, volume 7596 of LNCS,
pages 232–235. Springer, 2012.

[6] Antonio Casimiro, Oscar Morales Ponce, Thomas Petig, and Elad Michael
Schiller. Vehicular coordination via a safety kernel in the gulliver test-bed. In 34th
International Conference on Distributed Computing Systems Workshops (ICDCS
2014 Workshops), Madrid, Spain, June 30 - July 3, 2014, pages 167–176. IEEE,
2014.

[7] António Casimiro, José Rufino, Ricardo C. Pinto, Eric Vial, Elad M. Schiller,
Oscar Morales-Ponce, and Thomas Petig. A kernel-based architecture for safe
cooperative vehicular functions. In 9th IEEE International Symposium on Indus-
trial Embedded Systems (SIES’14), 2014.

[8] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication
specifications: a comprehensive study. ACM Comput. Surv., 33(4):427–469,
2001.

[9] CAMP Vehicle Safety Communications Consortium et al. Vehicle safety com-
munications project: task 3 final report: identify intelligent vehicle safety ap-
plications enabled by dsrc. National Highway Traffic Safety Administration, US
Department of Transportation, Washington DC, 2005.

[10] Shlomi Dolev and Elad Schiller. Communication adaptive self-stabilizing group
membership service. IEEE Trans. Parallel Distrib. Syst., 14(7):709–720, 2003.

16

[11] Shlomi Dolev and Elad Schiller. Self-stabilizing group communication in directed
networks. Acta Inf., 40(9):609–636, 2004.

[12] Shlomi Dolev, Elad Schiller, and Jennifer L. Welch. Random walk for self-
stabilizing group communication in ad hoc networks. IEEE Trans. Mob. Comput.,
5(7):893–905, 2006.

[13] Alan Fekete, Nancy A. Lynch, Yishay Mansour, and John Spinelli. The impos-
sibility of implementing reliable communication in the face of crashes. J. ACM,
40(5):1087–1107, 1993.

[14] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility
proofs for distributed consensus problems. Distributed Computing, 1(1):26–39,
1986.

[15] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[16] Chryssis Georgiou, Seth Gilbert, and Dariusz R. Kowalski. Meeting the deadline:
on the complexity of fault-tolerant continuous gossip. Distributed Computing,
24(5):223–244, 2011.

[17] Jean-François Hermant and Gérard Le Lann. Fast asynchronous uniform con-
sensus in real-time distributed systems. IEEE Trans. Computers, 51(8):931–944,
2002.

[18] R. Kianfar, P. Falcone, and J. Fredriksson. Safety verification of automated driv-
ing systems. Intelligent Transportation Systems Magazine, IEEE, 5(4):73–86,
winter 2013.

[19] Jaynarayan H. Lala, Richard E. Harper, and Linda S. Alger. A design approach
for utrareliable real-time systems. IEEE Computer, 24(5):12–22, 1991.

[20] Gérard Le Lann. Cohorts and groups for safe and efficient autonomous driving
on highways. In Onur Altintas, Wai Chen, and Geert J. Heijenk, editors, VNC,
pages 1–8. IEEE, 2011.

[21] SE Lee, E Llaneras, S Klauer, and J Sudweeks. Analyses of rear-end crashes and
near-crashes in the 100-car naturalistic driving study to support rear-signaling
countermeasure development. DOT HS, 810:846, 2007.

[22] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[23] Oscar Morales-Ponce, Elad M. Schiller, and Paolo Falcone. Cooperation with
disagreement correction in the presence of communication failures. In Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Conference on,
pages 1105–1110, Oct 2014.

17

[24] Mitra Pahlavan, Marina Papatriantafilou, and Elad Michael Schiller. Gulliver:
a test-bed for developing, demonstrating and prototyping vehicular systems. In
José D. P. Rolim, Jun Luo, and Sotiris E. Nikoletseas, editors, Proceedings of the
9th ACM International Workshop on Mobility Management & Wireless Access,
MOBIWAC 2011, October 31- November 4, 2011, Miami Beach, FL, USA, pages
1–8. ACM, 2011.

[25] Mitra Pahlavan, Marina Papatriantafilou, and Elad Michael Schiller. Gulliver: A
test-bed for developing, demonstrating and prototyping vehicular systems. In Pro-
ceedings of the 75th IEEE Vehicular Technology Conference, VTC Spring 2012,
Yokohama, Japan, May 6-9, 2012, pages 1–2. IEEE, 2012.

[26] Oscar Morales Ponce, Elad Michael Schiller, and Paolo Falcone. Cooperation
with disagreement correction in the presence of communication failures. CoRR,
abs/1408.7035, 2014.

[27] Steven E Shladover. Longitudinal control of automotive vehicles in close-
formation platoons. Advanced automotive technologies, 1989, 1989.

[28] Steven E Shladover, Charles A Desoer, J Karl Hedrick, Masayoshi Tomizuka,
Jean Walrand, W-B Zhang, Donn H McMahon, Huei Peng, Shahab Sheik-
holeslam, and Nick McKeown. Automated vehicle control developments in the
path program. Vehicular Technology, IEEE Transactions on, 40(1):114–130,
1991.

[29] Srdjan S Stankovic, Milorad J Stanojevic, and Dragoslav D Siljak. Decentralized
overlapping control of a platoon of vehicles. Control Systems Technology, IEEE
Transactions on, 8(5):816–832, 2000.

[30] Youping Zhang, B Kosmatopoulos, Petros A Ioannou, and CC Chien. Using front
and back information for tight vehicle following maneuvers. Vehicular Technol-
ogy, IEEE Transactions on, 48(1):319–328, 1999.

18

Algorithm 1 Timed Protocol for Cooperation with Disagreement Correction (code for
pi)
1: Constant: members = {p1, p2, ..., pn}: The system vehicles.
2: Constant: ⊥: Denotes a void (initialized) entry, as well as the default return value.
3: Constant: syncBound: The maximum time difference among vehicle clocks.
4: Constant: maximumDelay: The maximum time that a message time can live in the network.

5: Constant: roundLength > 2syncBound +maximumDelay: The length of a round.
6: Variable: myRound← 0: Current communication round.
7: Variable: myClock← 0: Current clock.
8: Variable: data[n] = {. . .}: Application data where data[k] is the data received at round

myRound from member pk.
9: Variable: ack[n] = { f alse, . . .}: Acknowledge for data reception where ack[k] is true if pi

has received (directly or indirectly) the message from pk of the current round.
10: Interface gossipSend(): Disseminate information to the system members.
11: Interface gossipReceive(): Dispatch arriving messages.
12: Interface readState(): Return a datum to be sent.
13: Interface controlLoop(): Write decided output.
14: Interface decide(s) Deterministically determines an item from s. We assume that whenever
⊥ ∈ s, then ⊥= decide(s).

15: Upon gossipReceive(j,< round j,data j,ack j >)
16: if (myRound = round j) then
17: for all pk ∈ members do
18: if (ack j[k] and i 6= k) or (k = j) then
19: (data[k],ack[k])← (data j[k], true)
20: end if
21: end for
22: end if
23: loop
24: myClock← clock()
25: if myClock ∈ [roundLength · myRound + syncBound,roundLength · (myRound + 1)−

(syncBound +maximumDelay)] then
26: gossipSend(i,< myRound,data,ack >)
27: end if
28: if myRound < myClock÷ roundLength then
29: (s,r,myRound,data,ack[k]) ← (data,ack,myClock ÷ roundLength,{⊥, . . .},k = i :

∀pk ∈ members)
30: if f alse ∈ {r[k] : pk ∈ members} then
31: data[i]←⊥
32: controlLoop(s,⊥)
33: else
34: data[i]← readState()
35: controlLoop(s,decide(s))
36: end if
37: end if
38: end loop

19

Algorithm 2 Cooperative vehicle platooning with ACC as a base-line application (code
for vehicle pi ∈ members).

1: Executes the protocol that Algorithm 1 presents.
2: function decide(s)
3: return min∀ j∈s(s[j].localLoS)

4: function readState()
5: Let V and localLoS be the operation information and maximum local service level that it

supports, respectively, of pi
6: return (localLoS,V)

7: function controlLoop(data,LoS)
8: if pi is the platoon leader then
9: Use data and acceleration bounds provided in Table 2 according to LoS to maintain the

cruise velocity if possible
10: else
11: Use data and acceleration bounds provided in Table 2 according to LoS to maintain the

headway given in Table 3.
12: end if

20

	1 Introduction
	1.1 Related work
	1.2 Our contribution
	1.3 Document structure

	2 System Settings
	2.1 The task

	3 The Disagreement Correction Protocol
	4 Correctness
	5 Evaluation
	6 Discussion
	7 Conclusion

