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Abstract— Short term forecasting algorithms are widely 

used for prediction of vehicular traffic flows for adaptive traffic 

management. However, despite the increasing interest in the 

promotion of cycling in cities, little research has been carried 

out into the use of traffic forecasting algorithms for bicycle 

traffic. Structural time series models allow the various 

components of a time series such as level, seasonal and 

regression effects to be modelled separately to allow analysis of 

previous trends and forecasting. In this paper, a case study at a 

segregated bicycle lane in Dublin, Ireland was performed to 

test the forecasting accuracy of structural time series models 

applied to continuous observations of cyclist traffic volumes. It 

has been shown that the proposed models can produce accurate 

peak period forecasts of cyclist traffic volumes at both 1 hour 

and fifteen minute resolution and that the percentage errors 

are lower for hourly forecasts. The inclusion of weather metrics 

as explanatory variables had varying effects on the forecasting 

accuracies of the models. These results directly aid the design of 

traffic signal control systems accommodating cyclists. 

I. INTRODUCTION 

Continuous short term forecasting of traffic conditions is 

essential for enhancement of traffic management systems 

through the use of Intelligent Transport System (ITS) 

technologies. In the last several decades, much research 

interest has focused on the development of algorithms for 

forecasting of motor vehicle traffic (Vlahogianni et al., 

2004). However, very little research attention has been given 

to the development of forecasting algorithms for non-

motorized modes of transport such as cycling and their 

integration with current ITS technologies. Encouraging 

cycling in cities is being increasingly recognized as an 

effective way of mitigating both the external costs of 

motorized transport such as air pollution and traffic 

congestion (Bickel et al., 2006, Woodcock et al., 2013) and 

the detrimental health effects of sedentary lifestyles 

(Deenihan and Caulfield, 2014, Kahlmeier et al., 2010, 

Rutter et al., 2013). However, current dynamic traffic 

management systems are unable to make operational 

modifications based on observed cyclist traffic and this 

poses a potential limitation to the capacity of a transport 

network to accommodate cyclists safely and efficiently. In 

recent years, more cities are beginning to collect cyclist 

count data using technologies such as selective inductive 

loop detectors and pneumatic tubes (City of Sydney, 2014, 
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Leblanc, 2009, Ryan et al., 2014) and this presents an 

opportunity for ITS engineers to integrate intelligent 

management of cyclist traffic into existing traffic 

management systems. However, as the dynamics of bicycle 

traffic are clearly different to those of motor vehicle traffic, 

considerable research is required in order to identify optimal 

forecasting algorithms.  
Univariate traffic flow models may be developed by 

using theoretical techniques based on traffic process theory or 
by using empirical techniques which employ statistical and/or 
heuristic methods. The empirical techniques can be further 
classified into non-parametric and parametric approaches. 
The non-parametric techniques, which include artificial 
neural networks and non-parametric regression, do not make 
any assumptions regarding the functional form of the 
dependent and independent variables and are data intensive 
(Ghosh et al., 2009, Szeto et al., 2009). The parametric 
techniques include time series models such as Box-Jenkins 
models and exponential smoothing models. Structural time 
series models are a relatively new class of time series models 
which are solved in state space form and have been shown to 
be effective in short term forecasting of urban traffic 
conditions (Ghosh et al., 2009). A further advantage of 
models in state space form is the meaningful depiction of the 
characteristics of the system underlying the observations such 
as trend and seasonality. This current study proposes the use 
of structural time series modelling for short term forecasting 
of bicycle traffic conditions. 

II. THEORETICAL BACKGROUND 

A. State Space Models 

Structural time series models are a class of time series 

models whereby observations are modelled as a linear 

combination of a vector of state variables perturbed by 

random disturbances (Petris et al., 2009). These state 

variables represent components of a dynamic system which 

have direct physical interpretation such as trend, seasonal 

and/or slope components. In the Basic Structural Model, 

(BSM) described by Harvey (1989), the state of the system 

is described by three components—local level, local trend 

and seasonal index. A BSM with seasonal period, s can be 

written in the form: 

 

                                                (1) 

 

                                                 (2) 

 

                                                               (3) 

 

𝑦𝑡 = 𝜇𝑡 + 𝜈𝑡 + 𝛾𝑡 + 𝜀𝑡  

𝜇𝑡 = 𝜇𝑡−1 + 𝜈𝑡−1 + 𝜉𝑡  

𝜈𝑡 = 𝜈𝑡−1 + 𝜁𝑡  
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                                                       (4) 

 

where yt is the modeled time series, εt is the observation 

disturbance variance, µt, νt and γt denote the local level, local 

slope and seasonal index respectively and ξt, ζt and ωt are 

their respective disturbance variances. If any of these 

disturbance variances are zero, the component is 

deterministic—otherwise they vary stochastically. For the 

purpose of traffic flow modeling, it can be assumed that 

there is no slope component (Ghosh et al., 2009) and so, (1) 

reduces to: 

 

                                                           (5) 

 

 

If the observations in a time series are thought to be 

dependent on external factors; explanatory variables may 

also be included in the BSM: 

                                    (6) 

 

where βj is a regression coefficient, xj,t is an exogenous 

variable and k is the total number of exogenous variables 

 

B. Filtering and Smoothing 

In state space modelling, the Kalman filter (Kalman, 1960) 

is used to recursively update the current estimates and 

predictions of the state variables and the observations as new 

data are observed. Since the BSM is a Gaussian Linear 

Model, all of the relevant distributions are Gaussian and so, 

only the means and covariances are required. The filtering 

values of the state variables at time t and their covariance 

matrix are derived from the conditional distribution of the 

state variables at time t given y1, y2…..yt. The one-step ahead 

forecasts of the state variables and observations at time t and 

their covariance matrices are derived from the respective 

predictive distributions of the state variables and the 

observations at time t given y1, y2…..yt-1.The Kalman 

smoother is used to retrospectively update the estimates of 

the state variables at time t given all available observations. 

The smoothed values of the state variables at time t and their 

covariance matrix are derived from the conditional 

distributions of the state variables at time t given y1, 

y2…..yt…..yT where T>t (Petris et al., 2009). Further 

forecasts beyond the final observation at time T may be 

obtained simply by continuing the Kalman filtering process 

and treating all observations for t>T as missing values which 

are easily dealt with in state space analysis (Durbin and 

Koopman, 2001). 

III. METHODOLOGY 

Data Collection 

  In this study, a univariate BSM is proposed for short 

term forecasting of cyclist traffic volumes. Cyclist counts 

from selective inductive loop detectors on a segregated 

cycle lane in Dublin city were used for model development 

and testing. The detectors are located in the South section 

of Dublin City Centre, along a busy section of the canal 

route into the city. Cyclist volumes were recorded in both 

directions: “In” or towards the city center and “Out” or 

away from the city center. Hourly cyclist volumes were 

recorded in both directions between Monday, October 3
rd

, 

2011, 00:00 and Thursday, August 30
th

, 2012, 23:00. 

Hourly measurements of rainfall (mm), mean wind speed 

(km/hr) and temperature (°C) from a nearby weather 

station were available for the same period and so these 

could be included in models as explanatory variables 

(World Climate, 2012). Fifteen minute cyclist volumes 

were recorded between Wednesday, September 14
th

, 2011, 

12:30 and Thursday April 18
th

, 2012, 23:45. In each case, 

weekends were excluded from the analysis as different 

dynamics and significantly lower cyclist volumes were 

observed in comparison to weekdays. Exclusion of 

weekend data is typical in traffic modelling (Dunne and 

Ghosh, 2012, Ghosh et al., 2007). The observations for the 

final 24 hours of each series were used for evaluation of 

the accuracy of the models. The original observations of 

each series for a single day, January 9
th

, 2012 are shown in 

Fig. 1 in order to clearly display the diurnal pattern. In the 

“Out” direction, the daily peak corresponds to the evening 

rush hour between 16:00 and 19:00 whereas in the “In” 

direction the peak is during the morning rush hour between 

07:00 and 10:00. The mean (μ) and coefficient of variation 

(CV) for the four time series are shown in Table 1, for both 

peak and off-peak observations. The ratio of mean cyclist 

volumes during peak hours to mean cyclist volumes during  

 
Figure 1. Original observations for Jan 9th, 2012 
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TABLE I.   DESCRIPTION OF PEAK AND OFF-PEAK CYCLIST VOLUMES  

 

 

Direction μpeak CVpeak μoff-peak CVoff-peak 

15 min 
Out 33.6 0.5 5.5 1.0 

In 48.6 0.7 6.2 1.0 

Hourly 
Out 139.5 0.4 22.8 0.9 

In 203.5 0.6 25.6 0.8 

 

off-peak hours is about 6 in the Out direction and about 8 in 

the “In” direction. This shows that the morning peaks are 

more pronounced than the evening peaks. It can also be seen 

that the CVs are significantly higher during off-peak periods 

for both directions. 

 

B. Analysis 

All analysis was carried out using R (R Core Team, 2013) 

and the dlm package (Petris, 2010). Maximum likelihood 

estimation was used to estimate the hyperparameters 

(disturbance variances) of each model based on the data. 

This was carried out by using the optim function of the R 

base package to minimize the negative loglikelihood of the 

state space model as a function of the hyper-parameters, 

given the observed time series (Petris et al., 2009). Once the 

model equations had been specified, Kalman filtering and 

smoothing were used to recursively update the conditional 

and predictive distributions of the states and observations. 

IV. APPLICATION OF THE PROPOSED BST MODEL 

A. BSM without Explanatory Variables 

 

All four time series of cyclist volume observations were 

modelled using BSMs. Initial efforts at model building 

included various combinations of level, slope and seasonal 

index components. It was found that for all four time series, 

the slope components varied only slightly around near zero 

values and so the slope components were omitted from later 

models. The model chosen for all four series in this part of 

the study is specified by (2), (4) and (5).Table 2 shows the 

maximum likelihood estimates for the hyper-parameters of 

the four models. The seasonal disturbance variance was zero 

for the “Out” direction in the fifteen minute interval series 

and so this seasonal component was deterministic. All other 

components included in the four models were stochastic. An 

advantage of state space models is that they allow 

retrospective analysis of the behavior of the system 

underlying the observations. In Fig. 2, the smoothed trend, 

seasonal and irregular components of the two time series of 

cyclist volumes in the “Out” direction are shown in separate 

sub-plots for one week from Monday, 31
st
 October, 2011, 

00:00 to Mon 7th November, 2011, 00:00. The first day, 

October 31
st
, was a public holiday in Ireland and so bicycle 

traffic was unusually low and this is reflected by a sharp dip 

in the smoothed level component. For the final 24 hours of 

each series, one-step-ahead forecasts were made for each 

time step and compared to the actual observations. The 

MAPE, RMSE and MAD for the predictions are shown in 

Table 3 for the full 24 hours, the peak hours only and the 

TABLE II.   HYPER-PARAMETERS OF BSM MODELS  

 

 

Direction σε σζ σω 

15 min 
Out 8.22 2.99 0.00 

In 8.26 10.54 0.04 

Hourly 
Out 6.63 133.13 1.32 

In 32.35 235.97 12.11 

 

off-peak hours only.  The MAPE values during the peak 

hours are comparable to those found with structural time 

series modeling of motor vehicle traffic volumes (Ghosh et 

al., 2009). For the off-peak hours, the absolute errors are 

considerably lower but the MAPEs are higher. This is 

because there were a high proportion of near-zero 

observations with relatively high variance in the off-peak 

periods, as evidenced by the higher CV of the off-peak 

observations. Since MAPE normalizes the errors by the 

actual observations; small errors on near-zero values can 

cause the MAPE to increase dramatically. For this reason, 

high MAPEs during the off-peak periods should not be 

considered to be of substantial importance. The peak period 

MAPEs were lower for the hourly series than for the fifteen 

minute series, suggesting a trade-off between resolution and 

accuracy. The peak period MAP and RMSE of the Hourly 

“In” series are notably higher than those of the hourly “Out” 

series but this is simply because the morning peak was more 

concentrated than the evening peak and so the value being 

predicted was greater. Multi-step forecasts were also 

performed for the same periods with all predictions made 

from 00:00 (midnight). This means that, for the peak 

periods, the forecasts were 7-10 hours ahead for the In series 

and 16-19 hours ahead for the “Out” series. The mean and 

95% confidence intervals for the full 24 hours of each 

prediction are shown in Fig. 3 along with the actual 

observations for the same day. In all four cases, the mean of 

the predictive density predicts the shape of the actual 

observations well. The 95% confidence intervals widen as 

the forecasting period increases. This is mainly due to 

increasing uncertainty regarding the level components as the 

modelled observation and seasonal disturbance variances 

were all considerably lower than those of the level 

disturbances. The error measures for the multi-step forecasts 

are also shown in Table 3. Similarly to the 1-step forecasts, 

the MAPEs were reasonably low for the peak periods but 

higher for the off-peak periods. When compared to the 1-

step forecasts, there were no significant changes in the 

MAPEs of the peak periods due to the longer forecasting 

periods —for the fifteen minute “In” series, the peak MAPE 

actually decreased. The peak period MAPEs of the hourly 

series were lower than those of the fifteen minute series, 

particularly in the Out direction. 

 

 

B. BSM with Explanatory Variables 

 

Hourly measurements of rainfall (mm), mean wind speed 

(km/hr) and temperature (°C) from a weather station close to 



  

 
Figure 2. Smoothed level, seasonal and irregular components for the fifteen minute cyclist volume series ((a), (c) and (e)) and the hourly cyclist volume 

series ((b), (d) and (f)) in the “Out” direction from Monday, 31st October, 00:00 to Monday, 7th November, 00:00 
 

the location of the cyclist counters were added to the BSM 

models for the hourly series as explanatory variables, both 

individually and all together. The models were specified by 

(2), (4) and (6).The explanatory variables were lagged by 

one hour as this was deemed to be the most important time 

difference in terms of impact on the decision of whether or 

not to make a trip by bicycle. The smoothed values of the 

regression coefficients, β, for both directions are shown in 

Table 4. Although the directions of the estimated impacts of 

the weather variables make qualitative sense, the 95% 

confidence intervals indicate that these impacts are not 

statistically significant with the exception of the impact of 

temperature on cyclist volumes in the “Out” direction. This 

does not necessarily indicate that the weather variables 

considered do not affect cyclist traffic volumes as the local 

level component would also respond to any external factors 

which cause a gradual change in the level of the series. It is 

also possible that a larger dataset would provide enough 

statistical power to uncover significant associations between 

these weather variables and cyclist volumes. Peak period 

predictions from midnight were also made for each model 

and the MAPEs, RMSEs and MADs are shown in Table 4. 

Inclusion of the explanatory variables had varying effects on 

the peak forecasting accuracy of the models. When rain was 

included as an explanatory variable in the models, all 

measures of error either improved or stayed the same for 
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TABLE III.   1-STEP FORECASTING ERRORS OF BSMS WITHOUT EXPLANATORY VARIABLES  
 

1-Step Ahead Forecasts 

Cyclist 

Volume 
Series 

Direction 

MAPE (%) RMSE (cyclists/hour) MAD (cyclists/hour) 

Peak Hours 
Off-
Peak 

Hours 

24 

hours 
Peak Hours 

Off-
Peak 

Hours 

24 

hours 
Peak Hours 

Off-
Peak 

Hours 

24 

hours 

15 Min 
Out 15.5 (evening) 48.6 43.7 30.5 (evening) 11.0 14.9 23.5 (evening) 7.2 9.3 

In 17.8 (morning) 42.9 39.0 26.4 (morning) 10.9 13.8 22.2 (morning) 7.5 9.4 

Hourly 
Out 10.3 (evening) 37.6 34.2 16.0 (evening) 9.5 10.5 15.5 (evening) 6.6 7.7 

In 10.8 (morning) 36.6 33.2 37.1 (morning) 10.2 16.2 29.4 (morning) 7.6 10.3 

Multi-Step Ahead Forecasts 

Cyclist 
Volume 

Series 

Direction 

MAPE (%) RMSE (cyclists/hour) MAD (cyclists/hour) 

Peak Hours 

Off-

Peak 

Hours 

24 

hours 
Peak Hours 

Off-

Peak 

Hours 

24 

hours 
Peak Hours 

Off-

Peak 

Hours 

24 

hours 

15 Min 
Out 19.2  (evening) 45.6 41.7 32.8 (evening) 9.6 14.7 25.8 (evening) 6.6 9.0 

In 14.3 (morning) 33.9 30.9 23.7 (morning) 9.0 11.9 19.3 (morning) 6.2 7.8 

Hourly 
Out 10.5 (evening) 28.9 26.6 17.5 (evening) 9.2 10.6 14.9 (evening) 6.2 7.3 

In 13.2 (morning) 68.6 61.4 43.7 (morning) 10.9 18.5 35.2 (morning) 9.1 12.4 

 

 
Figure 3. 24-hour multi-step ahead forecasts for the fifteen minute cyclist volume series (a) Out and (b) In, and the hourly series, (c) Out and (d) In.
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TABLE IV.  REGRESSION COEFFICIENTS AND 1-STEP AHEAD AND MULTI-STEP AHEAD PEAK PERIOD FORECAST ERRORS FOR BSMS INCLUDING 

EXPLANATORY VARIABLES. 

 

Direction 
Explanatory 

Variables 
β [95% CI] 

MAPE (%) RMSE MAD 

1-Step Multi-step 1-Step Multi-step 1-Step Multi-step 

Out 

None - 10.3 10.5 16.0 17.5 15.5 14.9 

Rain -0.24 [-1, 0.52] 10.3 10.5 16.0 17.5 15.5 14.8 

Temperature 0.53 [0.13, 0.93] 10.1 10.6 15.8 17.5 15.4 15.0 

Wind -0.12 [-0.3, 0.06] 10.5 10.7 16.2 17.8 15.8 15.1 

Rain 
Temperature 

Wind 

-0.09 [-0.87, 0.69] 
0.55 [0.15, 0.95] 

-0.08 [-0.26, 0.1] 

10.2 10.5 16.0 17.4 15.5 14.8 

In 

None - 10.8 13.2 37.1 43.7 29.4 35.2 

Rain -0.43 [-1.61, 0.75] 10.7 13.1 37.1 43.5 29.4 35.0 

Temperature 0.53 [-0.05, 1.11] 10.7 13.6 37.5 44.6 29.5 36.2 

Wind -0.05 [-0.31, 0.21] 10.7 13.3 37.0 43.9 29.3 35.5 

Rain 

Temperature 

Wind 

-0.29 [-1.47, 0.89] 

0.55 [-0.05, 1.15] 

-0.08 [-0.34, 0.18] 

10.9 13.6 37.2 44.4 29.6 36.0 

 

both directions. When wind speed was included, all 

measures of error worsened for the Out direction but, for the 

In direction, the 1-step forecast error measures improved. 

The inclusion of the temperature variable affected some 

error measures positively and some negatively in both series, 

with no clear pattern. When all three variables were 

included, all measures of error improved or stayed the same 

for the “Out” direction but worsened for the “In” direction. 

These results indicate that the effectiveness of using weather 

metrics as explanatory variables in BSMs to improve 

forecasting accuracy of cyclist volumes depends highly on 

the choice of variables, the specific study area and the 

pertinent measure of accuracy. Further research will be 

required in order to determine whether different 

combinations of variables, lag periods and study location 

may result in more consistent improvements in predictive 

accuracy. 

V. CONCLUSION 

This study has shown that structural time series modelling 

may be an effective tool for retrospective analysis of bicycle 

traffic on segregated cycle paths and for forecasting of 

bicycle traffic during morning and evening rush hour 

periods. Peak period 1-step and multi-step forecasts were 

performed with good accuracy showing that such models 

may be employed in urban traffic environments to make 

short term predictions of cyclist traffic volumes. Further 

studies are required in order to test the prediction accuracy 

across different locations with varying traffic conditions. 

The particular explanatory variables explored in this study 

were not found to consistently improve prediction accuracy 

but future work may use a similar framework to test the 

usefulness of other variables which may be expected to 

influence cyclist volumes on cycle paths. The potential for 

accurate short term predictions during peak traffic periods 

may be exploited in order to improve real-time optimization 

of traffic signal control systems in order to provide enhanced 

safety and priority to cyclists and to steer the network 

equilibrium towards conditions which make cycling the most 

attractive mode of transport. The BSM representation may 

also provide a framework for descriptive modelling of the 

process of interaction between signal control and route 

choice over time. 
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