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ABSTRACT— New big data (sources) in the public transport 

industry enable to deal with major challenges such as elevating 

efficiency, increasing passenger ridership and satisfaction and 

facilitate the information flow between service providers and 

service users. This paper presents two actual cases from the 

Netherlands and Sweden in which automated data sources were 

utilized to support the planning and operational processes. The 

cases illustrate the benefits of using smartcard and vehicle 

positioning data. Due to the data (processing), valuable insights 

were gained helping to make the right choices and improve the 

public transport system. 
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I. INTRODUCTION  

The public transport industry is facing several challenges. It is 

a conservative industry in the age of rapid change and 

information. Passengers require higher quality of the services 

and at the same time there is more attention to cost efficiency 

and subsidies allocation. Concerning quality improvements, 

robustness and service reliability gain more attention [1,2].  

Public transport systems are increasingly equipped with 

automated data collection systems that can be instrumental in 

addressing these challenges. For instance, the design and 

refinement of cost-effective measures can be supported by 

measuring, computing and projecting the expected impacts on 

costs and passengers. Furthermore, the availability of data 

sources such as mobile phone data [3] can provide insights into 

passenger demand of all modes, thereby enabling the 

identification of potential public transport connections. 

Automated Vehicle Location (AVL) data, has already been 

available for a long time (e.g. [4,5]) and recently much more 

passenger data (Automated Passenger Counting (APC) data) 

has become available as well [6]. These data sources support 

public transport design and decision making, in addition to 

efficient and high quality operations.  

 Data could be used to gain better understanding of 

passenger needs and behavior, system performance and real-

time conditions. Moreover, data enable planners to investigate  

 

and quantify the costs of service deficiencies and the 

potential benefits of alternative solutions, for instance the 

extension of a turning facility [7] or timetable synchronization 

[8]. These costs and benefits are relevant for decision making 

and may be incorporated in cost-benefit analyses [9].  

The aim of this paper is to provide an overview of the 

potential public transport data sources and illustrate their value 

through Dutch and Swedish cases. The following section starts 

with a short introduction of data sources. Section III describes 

the role of data in the planning process and in Section IV our 

cases are presented. Finally, conclusions and further research 

opportunities are given in Section V.  

II. BIG DATA IN PUBLIC TRANSPORT 

A. Data sources 

A single bus equipped with AVL transmits its positioning 

every 15 seconds, amounting to approximately 3000 

positioning records per day. The daily number of smartcard 

transactions are in the millions in large metropolitan areas. 

Not to mention social media data, such as user data of Twitter, 

Facebook and Flickr, which may yield new insights on public 

transport usage [10]. Furthermore, video cameras (e.g. 

surveillance systems in stations and on-board vehicles), Wi-Fi 

and Bluetooth trackers may provide knowledge of pedestrian 

flows in stations, at platforms and in-vehicle [11]. Sensors 

connected to different types of assets, signals and switches for 

instances, enable optimization of maintenance schemes. In this 

paper, we focus on the traditional and basic data sources in 

public transport, namely passengers (APC) and vehicles 

(AVL) data. These data sources are most prevalent. 

Nevertheless, their applications are typically limited to 

performance measurement. Recent developments created a 

huge leap in the availability and applicability of this kind of 

data, as will be demonstrated in Sections III and IV of this 

paper, following the description of these data sources. 

B. Automated vehicle location systems 

Automated Vehicle Location Systems (AVL) were originally 

installed for monitoring safety in railway operations. 

However, AVL emerged as the primary vehicular-data and are 



often used for analyzing public transport performance in terms 

of commercial speed and service reliability (e.g. [12,13]). 

AVL systems are either time-based or event-based – implying 

that vehicles either transmit information on their positioning 

with fixed time intervals or when a change occurs (e.g. 

driving, stopping, doors open), respectively. Management 

report programs (several tools are available, see for instance 

[14]), transfer the board computer data into information (e.g. 

graphs and tables), showing for example schedule adherence 

and speed. Although, traditionally, this type of monitoring is 

performed off-line, recent developments also enable real-time 

loops for monitoring services. Accurate real-time vehicle 

location data has become available for public transport 

operators with the wide availability of GPS and mobile phone 

devices. Control center operations facilitate real-time 

interventions based on instantaneous information flow and 

real-time predictions. 

C. Automated passenger counts and fare validation 

For analysis, design and optimization of public transport, 

actual and future demand are essential. The number of 

passenger (-kilometers) in the network, per line and per stop 

are crucial. In addition to traditional counting, smart cards can 

(partly) provide a richer data source albeit they require path 

inference. In recent years, counting have become available for 

different service, temporal and user group segments. 

The major advantages of smart card data for transport 

service providers were identified by [15] as 

 Large volumes of personal travel data. 

 Market analysis of travel patterns of individual card 

holders and user groups 

 Having access to continuous trip data covering longer 

periods of time. 

Depending on the exact characteristics of the system, more 

insights may be gained. The number of areas where smart 

cards are applied and analyzed increases rapidly. Prominent 

examples are London (Oyster card) and Hong Kong (Octopus 

card), but many more examples are presented in literature (e.g. 

Seoul [16], Beijing [17], Santiago de Chile [18], Shenzen [19] 

and Brisbane [20]). An overview by [6] describes a range of 

smart card data applications, varying from strategic and 

tactical planning optimization to operational improvements. 

Most applications aim at assessing OD-patterns [18,21], route 

choice behavior [22] and transfer analysis [23]. 

III. FROM DATA TO APPLICATIONS 

Big data can foster innovation in both planning and operation 

of public transport services. The abundance and diversity of 

data that is collected in the daily operations of public transport 

systems calls for a data utilization framework in order to 

support its utilization. The public transport planning process 

consists of strategic, tactical, operations and control decisions 

(see Figure 1 for the planning process including feedback 

[24]). Big data is instrumental throughout this process. The 

following sections describe the role of big data in off-line 

(long term) and real-time (short term) applications. 

 

 
Fig. 1. Planning and operations of public transport [24] 

A. Offline applications: Strategic and tactical planning  

Strategic planning is concerned with the long-term planning of 

overall network and service design, including stop positioning, 

line topology and the design of respective capacities. 

Thereafter, tactical planning specifies the mid-term service 

frequencies, timetable development, and vehicle and crew 

scheduling. These offline applications require large amounts 

of data which are conventionally obtained from large and 

costly travel habit and stated preference surveys. The 

availability of large amounts of APC and AFC data facilitates 

the development of methods and algorithms to directly 

construct, instead of estimate, travel demand based on 

observed travel patterns and trip inference algorithms [17,18, 

25,26].  

The growing availability of data sources paves the way to 

unravelling travel patterns based on automatically collected 

mobility data. For example, smartcard data was used for 

analyzing temporal and spatial variations of destination 

choices in London and Shenzhen [19, 27] and identifying 

transfer and activity locations in Brisbane [20]. Moreover, 

several recent studies used public transport flows at the urban 

area level to shed light on the underlying urban structure [e.g. 

28]. 

The analysis of big data can also support continuous 

evaluation of service performance, such as the analysis of 

seasonal effects and system-wide demand variations [29]. 

Similarly, analyzing data from passenger satisfaction survey 

can reveal how satisfaction and its determinants evolve over 

the study period, as demonstrated by [30] which analyzed 

more than half a million records that were collected between 

2001-2013 in Sweden. 

The tactical planning of timetables and resource allocation 

require large-scale and detailed datasets. A report by the 

Transit Cooperative Research Program in the US [4] provides 

a review of offline applications of AVL and APC data for 

public transport service management. The analysis of within-

day and day-to-day variations is essential for planning a robust 

timetable. Data clustering techniques can support the design of 

the minimal number of distinctive timetables required for 

operations [31]. 



B. Online applications: Operations and control 

Operations and control involve the deployment of real-time 

strategies to improve service performance. Real-time 

strategies include the dissemination of travel information, 

control (e.g. holding, stop skipping), fleet management (e.g. 

short turning, deadheading) and priority measures (e.g. traffic 

signal priority, dynamic lanes). The deployment of such 

strategies require instantaneous access to large amounts of 

online data and tools to assess and implement alternative 

measures in real-time. These applications often involve 

generating predictions on future system conditions.   

Predicting the progress of public transport vehicles 

requires the collection, integration and processing of 

instantaneous and historical data, which are then used as an 

input to prediction algorithms [32]. Information concerning 

current traffic conditions could be generated by analyzing 

traffic data (such as traffic camera counts, loop detectors, plate 

recognition or floating car data [33]), public transport 

vehicular data or integrating these two sources. Various 

machine learning techniques have been applied, due to their 

capability to utilize large amounts of data, to reveal complex 

patterns and to address noise in data streams.  

Real-time operations and control decisions are especially 

critical in case of service disruptions. Offline analysis of 

smartcard data can be used to analyze passenger behavior 

during severe disruptions [34]. Such a model can be used for 

predicting the consequences of information provision or 

supply adjustments to mitigate the impact of disruptions 

within a short decision horizon.   

Fleet management and real-time control strategies can vary 

greatly in the amount of data that needs to be processed as part 

of the decision making process. Methods that are more 

technology-enabled and are more data-hungry typically 

perform better (e.g. [35]). Ultimately, prediction schemes and 

tools to evaluate the performance under alternative scenarios 

will be integrated in a decision support system which 

evaluates and implements monitoring, real-time scheduling, 

disruption management and information provision schemes, as 

was for example developed in [36] for a bus rapid transit 

corridor. 

IV. APPLICATIONS 

The previous section described the wide range and ample 

potential of big data in planning and managing public 

transport systems. Previous studies demonstrated the benefits 

of specific applications. In the following, we present two 

series of integrative applications that were implemented in the 

planning practices of public transport authorities and 

operators.  

A. Passenger behaviour estimation and ridership prediction 

In the Netherlands, public transport operators started to 

develop a smart card system in 2001. The system was 

introduced in Rotterdam only in 2005 and in 2012 the full 

country was equipped [37]. The Dutch smart card uses NFC 

(near filed communication)-chip technology and passengers 

have to check in and check out when using different vehicles 

and operators. All public transport, including national train 

services, is accessible with the same smart card. Thus, 

valuable information is measured about origin-destination 

patterns (on station/stop level) of all public transport users. In 

the Netherlands, card validation devices are either located on 

the platform (for trains and metros) or located inside the 

vehicle (for buses and trams). The most detailed information is 

available in the latter case, where each trip leg in a journey - a 

journey may consist of multiple trip legs separated by 

interchanges - is tracked, whereas when the smart card devices 

are located on the platforms, information is only available of 

the first and the last station, making route search through the 

public transport network necessary for the analyst (e.g. [22]). 

The complete passenger journey can be therefore traceable.  

Our first case of applying data focuses on predicting 

ridership by applying smartcard of HTM, the tram operator in 

The Hague (about 500,000 inhabitants, 3rd largest city of the 

Netherlands). The city of The Hague has 12 tram/light rail 

lines with a total network length of about 335km. Checking-in 

and out is done in the vehicle. We applied the smartcard data 

in two ways: 

- Inferring passenger behavior (revealed preference) 

- Constructing a reference network load as a basis for 

what-if predictions 

The first example consists of determining the optimal set of 
parameters used in public transport forecast models. Transit 
assignment models distribute passenger flows over the public 
transport network by superimposing passengers’ route choice 
decisions. Route choice models are conventionally estimated 
based on stated preference surveys. By using revealed travel 
data, we investigated which values of different model 
parameters are most adequate for predicting passenger loads 
and lead to best model calibration results. Moreover, 
passengers’ preferences may differ in case of disruptions from 
normal operations.  

Route choice model estimation were applied for 
investigating the consequences of a planned disturbance (e.g. 
due to construction works). For large maintenance works on a 
tram line in The Hague, we examined the effect on demand and 
route choice using smartcard data by comparing the number of 
trips made on the HTM tram network as a whole and for each 
line separately between the undisrupted and disrupted 
scenarios. After correcting for structural differences between 
these periods which cannot be attributed to the maintenance 
works, we determined the empirical mode and route choice 
effects which could be attributed to the specific disruption. We 
tested a variety of parameter sets to obtain model predictions as 
close as possible to the realized travel patterns.  

Results showed that a 25% higher value of the elasticity 
parameter (more negative) was required for a better fit between 
realized and predicted mode and route choice in case of the 
disturbed situation compared to structural changes. This shows 
that passengers are more sensitive to changes in supplied 
quality (expressed in generalized travel costs) during planned 
disruptions, compared to the structural undisrupted situation. 
This might be explained because of lack of knowledge or 
additional disutility associated with temporary services. 



The second part involved the construction of a simple 
prediction model based on smart card data and an existing 
modelling software, Omnitrans. This model enables for 
analysis of what-if analyses by using transport planning 
software. Detailed insights into this approach are presented in 
[38]. The smart card data is converted to passengers per line 
and origin-destination matrix between stops. This matrix is 
assigned to the network (in the existing transport model) to 
reproduce the measured passenger flows (see Figure 2). Once 
the assignment can reproduce the passenger flows simple what-
if analysis can be examined. With the introduction of an 
elasticity method on the demand matrix, simple modal-split 
calculations are possible. 
 Figure 3 shows the outcomes (in terms of change in 
passenger load) of an example of a specific timetable 
adjustment: a frequency increase of two public transport lines. 
The main contribution of this method is that we can calculate 
the network impacts in detail. In addition to the affected line, 
we can also see how other lines are affected. Figure 3 shows 
the expected ridership growth after this adjustment on these 
two lines (green) as well as a decrease in ridership on a parallel 
line (red).  

 

Fig. 2. Example of passenger flows in The Hague based on smart card data 

 

Fig. 3. Example of whatif results: the impact of a frequency increase of two 

PT lines on ridership (green = increase; red= decrease)  

The tool turned out to be very valuable for the operator to gain 

insights into small changes and calculate both the costs and 

benefits of such a measure at the network level. However, the 

approach has some limitations and shortcomings. First of all, 

the elasticity method is only valid for short-term predictions 

and only unimodal (public transport) results are provided. We 

recommend further research on region-specific elasticity 

values. With the availability of smart cards, valuable revealed 

preference research is possible by performing before-after 

analysis following service changes.  

B. Real-time information provision and control strategies 

The entire bus fleet in Stockholm is equipped with an AVL 

system. The system is used for several purposes including 

radio communication, real-time monitoring and control of 

vehicles, fleet management strategies and the generation of 

real-time passenger information. Moreover, the real-time 

vehicle location probes are automatically processed for 

computing service performance indicators such as punctuality 

and efficiency. In addition, 10-15% of the bus fleet is 

equipped with APC devices which are circulated to sample 

from all services. The introduction of a new fare collection 

system based on an entry-only smartcard validation, enables 

the spatial and temporal analysis of travel demand generation.  

 The backbone of the bus network in Stockholm inner-

city consists of four trunk lines. A series of big data 

applications were performed for these lines with the objective 

of improving service reliability by 

- Developing and evaluating operational and control 
strategies  

- Developing and evaluating algorithms for generating 
real-time passenger information 

Service reliability was first evaluated at the stop, line and 
system levels using detailed AVL data. In particular, the 
analysis of service regularity – variation in headways between 
consecutive bus arrivals – require data from each individual 
vehicle. The AVL data was integrated with APC data in order 
to investigate the relation between regularity and crowding. As 
illustrated in Figure 4, passenger loads vary greatly as a result 
of irregular headways, leading to a poor capacity utilization 
and on-board congestion.  

 
Fig. 4. Passenger loads on consecutive bus trips on the westbound direction 

of trunk  line 1 in Stockholm and their respective headways 



 Communication and monitoring systems enable the 

design and implementation of real-time control strategies 

which are based on actual conditions as well as anticipated 

downstream conditions. A strategy based on the headways 

between consecutive vehicles was tested and refined in a 

simulation model based on local empirical data [39] and was 

then implemented in a series of field experiments in 

Stockholm.  

 Each of the field experiments was evaluated by 

considering its impact on total passenger travel time. The 

computation of waiting and in-vehicle times require detailed 

and comprehensive data on vehicle arrival times and 

passenger flows. The AVL and APC data were processed in 

order to estimate travel time and headway distributions, and 

origin-destination matrixes, respectively. The overall headway 

distribution is presented in Figure 5 for all observed headway 

throughout the line for the entire day time (7:00-19:00). The 

range of acceptable headways – up to 50% difference from the 

planned headway of 5 minutes – is marked. Headway 

variability decreased significantly and the service became 

much more regular in 2014 where headway-based control was 

in place. Headway distribution became narrower during the 

field experiment period with a large decrease in cases of 

extremely short or extremely long headways. The number of 

headways close to the planned headway increased.  

 

Fig. 5. Headway distribution on line 4 in Stockholm, 7:00-19:00 

 The origin-destination matrix was estimated for each 

line using the iterative proportional fitting method. The total 

passenger travel times savings were obtained by comparing 

for each origin-destination the waiting time and in-vehicle 

times in the before and after periods and assessing their 

monetary values. The full-scale implementation of the new 

real-time control scheme was supported by the introduction of 

new incentive schemes that rely on AVL data analytics [40]. 

 Real-time control schemes require online predictions on 

downstream service conditions. Furthermore, real-time 

passenger information rely on such predictions. Passengers’ 

perception of service reliability depends not only on service 

provision but also on information provision reliability. The 

accuracy and reliability of the current system was evaluated 

by analyzing big data concerning vehicle trajectories and the 

corresponding predictions that were generated by the 

prediction scheme [41]. A cross-network sampling of bus 

arrival information was compared with vehicle positioning 

data and enabled the analysis of the added-value of real-time 

information provision as compared with static information and 

identify its shortcomings.  

 The analysis of big data facilitates the development of 

more elaborate prediction schemes which takes into 

consideration the current traffic, fleet and travel demand 

conditions. By mining historical data and integrating 

information from downstream traffic conditions and the 

schedule, a hybrid scheme was developed and yielded better 

predictions [42]. It should be stressed that in addition to 

passenger information provision, better online predictions are 

also instrumental in selecting and deploying real-time 

operations and control strategies. 

V. CONCLUSIONS 

The abundance of data in the public transport industry 

facilitates addressing the major challenges such as enhancing 

efficiency, increasing passenger ridership and satisfaction. 

This paper presents two actual cases from the Netherlands and 

Sweden in which data sources were successfully applied 

throughout the planning and operational processes. The cases 

showed the benefits of both smartcard and vehicle data (APC 

and AVL). Big data analytics resulted with valuable insights 

and supported improvements in the public transport system. 

AVL and APC data were designed to support fleet monitoring 

and revenue distribution, which could hinder gaining new 

information and knowledge from Big data analytics. 

 In addition to the value of using individual data sources 

as demonstrated by the applications, the combination of data 

sources might provide synergic advantages. For instance, 

combining passenger and vehicle data enables gaining insights 

into passenger reliability. New data sources like mobile 

phones and Wi-Fi/Bluetooth tracking can also shed light on 

individual travel patterns. Mobile phone data (showing 

traveler flows of all modes) may reveal modal shares thereby 

illustrating weak spots in the public transport network. Wi-

Fi/Bluetooth data shows passenger flows in a micro level, for 

example within an interchange hub. All these data sources 

may be combined in an urban mobility lab. The authors are 

currently constructing such a lab in Amsterdam with the 

objective to collect and process multimodal data aiming at 

understanding and modelling traveler behavior.  
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