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Adaptive estimation of vehicle dynamics through
RLS and Kalman filter approaches

Kun Jiang, Alessandro Corrêa Victorino, Ali Charara

Abstract—This article presents a new methodology for esti-
mation of vehicle’s vertical forces in order to enhance road
safety. Direct measurement of vertical forces requires a complex
and expensive experimental set-up, which is not acceptable for
ordinary passenger cars. The main contribution of this article
is providing a reliable estimator of vertical tire forces by using
currently available low-cost sensors. The first advantage of the
proposed method is that we modified the vehicle model to take
into account the roll and pitch dynamics, which makes our
estimator stay robust during sharp turning or at inclined road.
The other advantage is that we proposed a process to identify
the vehicle parameters, instead of regarding them as known
constants. This could enable our estimator to stay reliable even
when the parameters are wrongly configured. The parameter
identification process is based on recursive least squares (RLS)
algorithm. The state observers are based on Kalman filter. The
estimation process is applied and compared to real experimental
data obtained in real conditions. Experimental results validate
and prove the feasibility of this approach.

I. INTRODUCTION

Nowadays many driver safety assistance and stability con-
trol systems, such as lane departure warning system (LDWS),
adaptive cruise control (ACC), electronic stability program
(ESP), are installed on modern vehicles, in order to prevent
dangerous situations. A robust estimation of vehicle dynamics
states and parameters (such as roll angle and wheel ground
forces) is quite essential in this area.

The wheel ground forces, also called as vertical load, have
a strong interaction with lateral and longitudinal dynamics[2]-
[4]. A dramatic variation in the vertical load will probably
cause a rollover situation, and will also cause a shift in tire’s
lateral and longitudinal forces[12]. Monitoring the vertical
load at each tire in real time is meaningful for vehicle’s
security. Due to technical and economic reasons, a force
sensor that measures directly vertical load is not available in
a standard vehicle and is difficult to be installed. Therefore,
the motivation of our research is to develop a virtual sensor
which uses low-cost sensors and provides reliable estimation
of vertical loads.

The difficulties in estimation of vertical forces relies in two
aspects, modeling and parameter configuration. In [8], the au-
thor presented a 14 DOF (Degree Of Freedom) vehicle model
where the roll dynamics are used to calculate vertical tire
forces. The Full-car model introduced too many parameters to
be configured. In the work of [5][6], a simplified suspension
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model is proposed to consider the roll dynamics. However, the
vehicle parameters such as weight, roll stiffness are given as
a known constant. In [6], an EKF (Extended Kalman Filter)
estimator is developed to adapt to the non-linear model. In
[8], the DEKF (Dual Extended Kalman Filter) is introduced
for estimating lateral forces. During the process, the variation
of tire cornering stiffness is also estimated in real time.

Figure 1. a) Full-car automotive suspension model; b) Quarter-car automotive
suspension model

The main contribution of this study consists of two parts.
We proposed a new non-linear suspension model to calculate
the vertical load at each tire. And we developed an adaptive
estimation algorithm based on Recursive Least Square (RLS)
algorithm and Kalman Filter (KF) to estimate the vehicle states
and configure the vehicle parameters at the same time. The
advantage of this method is to enable an accurate estimation of
vertical load in presence of different road angles and unknown
vehicle parameters.

To evaluate the performance of our observers, the simulation
software PROSPER/CALLAS is used. The estimator is also
tested with the data acquired from the experimental vehicle
DYNA, a Peugeot 308 [5].

Section 2 presents the vehicle models. Section 3 describes
the structure of the observer. Then, experiment is described in
Section 4. Finally, concluding remarks and future perspectives
are given in Section 5.

II. VEHICLE MODELING
When pitch and roll dynamics are considered as negligible,

the vehicle can be regarded as a rigid body, then the lateral load
transfer can be calculated by a very simple model, represented
by Equation (1).

∆Fzlat =
mvaymh

E
(1)

where mv is the total vehicle mass, aym is the measured
lateral acceleration, E is the vehicle width, h is the height
of COG (center of gravity), lateral load transfer is defined as
∆Fzlat = Fz11 − Fz12 + Fz21 − Fz22, as a corresponding item,
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the longitudinal transfer of load is defined as ∆Fzlon = Fz11 −
Fz12 + Fz21 − Fz22, where Fzij represents the vertical load at
each tire, Fz11 corresponds to the front left tire.

However, in real situation, such as in sharp turning, the
pitch and roll dynamics will cause a significant shift in load
transfer. To compensate these errors, we proposed to consider
suspension system in vehicle model.

A. Vehicle model with suspension system

Suspension systems affect the handling and the ride quality
of cars, so they are currently of great interest to both academia
and industry. A full car suspension model is introduced in [10].

The full car suspension model shown in Figure 1-a) has 7
Degree-Of-Freedom (DOF) and lots of parameters, which is
too complicated to be used as state update model in a Kalman
filter. In order to represent the vehicle vertical dynamics more
clearly, a simplified 2 DOF quarter-car model is proposed in
[14], shown in Figure 1-b).

The motion of suspension system represents vehicle’s roll
and pitch dynamics. Based on the geometry of the roll motion,
we can estimate the roll angle φv and pitch angle θv with the
suspension defections:

φv =
σ11 − σ12 + σ21 − σ22

2E
, θv =

σ11 + σ12 − σ21 − σ22

2(L1 + L2)
(2)

where σij is the relative motion of the body with respect to
the wheels, L1 is the distance between COG and front axle,
L2 is the distance between COG and rear axle

The location of roll and pitch axis could vary during the
driving. To simplify the model, we assume in the top view
both roll and pitch axis pass the COG. Supposing all the
vehicle mass is sprung, then the lateral load transfer could
be formulated as:

∆Fzlat =
Kφ ∗ φv

E
(3)

where Kφis the equivalent roll stiffness.
However, in a real vehicle, neither the sprung mass (vehicle

body) nor the non-sprung mass (wheels, axles) could be
ignored. As a result, the vehicle model we proposed is the
weighted sum of the two models in Equation (1) and (3). Then
the lateral load transfer can be calculated by Equation (4)

∆Fzlat = (α ∗mvaymh+ (1 − α) ∗Kφφv)
1

E
(4)

where α is the percentage of the torque caused by non-
sprung mass.

Similar to the lateral load transfer, the longitudinal load
transfer is also affected by both sprung mass and unsprung
mass, and it could be calculated by Equation (5).

∆Fzlon = m(
L2 − L1

L
)azm +

(α ·mvaxmh+ (1 − α) ·Kθθ)
L

(5)

where axm, aym, azmis the measured acceleration in each
direction.

The proposed model is illustrated in Figure 2. The advantage
is to take into account the roll and pitch dynamics.

Figure 2. Automotive suspension model considering pitch and roll dynamics

B. Identification of vehicle parameters

This section describes the mathematical models we used
to identify the value of vehicle parameters. In real driving
condition, the vehicle parameters can vary a lot, such as the
weight of a empty vehicle or a full loaded vehicle. For this
reason, we proposed to regard these parameters as unknown
and to be estimated. The parameters we will configure in
this article, shown in Table 1, are vehicle mass, roll stiffness
of suspension system, road angles and position of the COG,
which in this paper means L1.

Table I
PARAMETERS OF THE VEHICLE

parameters parameters
mv whole vehicle weight Kφ roll stiffness
φr bank angle of the road θr incline angle of the road
L1 position of COG Kθ pitch stiffness

1) Vehicle mass: Nowadays, many controlled suspensions
are equipped with relative position sensors to measure suspen-
sion deflections σij at each corner. At a passive suspension
with linear spring characteristics, and by neglecting the wheel
deflection, a variation of sprung mass at each corner4msij
changes the spring deflection σij → σij +4ij where

4msij =
ks4ij + Finternal

az
(6)

where 4ij is the spring deflection variation, Finternal is the
internal forces between each quarter of the body, which could
be introduced by the lateral and longitudinal accelerations. One
method to eliminate the term of internal force is to estimate
the mass when the vehicle is at rest, as Finternal = 0 [6].
Another method to eliminate the Finternal is to calculate the
total mass of the vehicle, because the sum of internal forces
will be zero.

mv = me +
∑
4msij = me +

ks
az

∑
4ij (7)

where me is the mass of empty vehicle,
2) Roll and pitch stiffness: The roll and pitch stiffness is

the key parameter to describe the roll and pitch dynamics of
vehicle, as shown in Equation (8).

Ixxφ̈v = −Cdamφ̇v −Kφφv +mvhaym
Iyy θ̈v = −Cdamθ̇v −Kθθv +mvhaxm

(8)

Where Ixx is the moment of inertia of the vehicle with
respect to the roll axis, Iyy is respect to the pitch axis and hs
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is the height of the sprung mass about the roll axis, Cdam is
the suspension damping coefficient.

In a dynamic driving situation, the relationship between aym
and φv is expressed by a transfer function:

φv(s) =
mvh

Ixxs2 + Cφs+Kφ
aym(s) (9)

As we can see in Equation (9), the roll angle is a retarded
response to the lateral acceleration, which explains the phase
lag between aym and φv .

However, in an approximate static driving situation, we
assumeφ̈v = φ̇v = 0 , then we have Kφφv = mvhsaym. The
roll stiffness could be configured by:

Kφ =
mvhaym

φv
(10)

3) The position of COG: The pitch moment balance equa-
tion with respect to pitch axis is expressed by Equation (11).

Fzf ∗ L1 − Fzr ∗ L2 = −mvhsaxm (11)

where the vertical load at front axle is defined as Fzf =
Fz11+Fz12, vertical load at rear axle is Fzr = Fz21+Fz22.

As we can see in (11), the position of gravity center
has a direct impact on the distribution of load. However, in
the literature the position of COG is seldom discussed and
normally supposed be a known constant. In this article we
proposed a novel method to identify this parameter (L1). Our
method is analyzing vehicle’s lateral dynamics. The position of
COG not only affects the vertical load, but also influences the
distribution of lateral forces. For design simplicity, the single-
track vehicle model (also called the bicycle model) is usually
used in estimator design, shown in Figure 3.

Figure 3. Bicycle model

The yaw moment balance equation with respect to COG is
expressed by Equation (12).

Izω̇ = L1(Fxf sinδf + Fyf cosδf )− L2Fyr +Mz (12)

where δf is steering angle, Iz is the inertial moment with
respect to yaw axis, external yaw moment Mz exits when the
braking forces of left and right wheels are different,

By assuming that δf is relatively small, the lateral and yaw
rate dynamics, are obtained as follows:

Izω̇ = L1Fyf − L2Fyr (13)

where lateral forces at front axle is defined as Fyf = Fy11+

Fy12, that at rear axle is Fyr = Fy21+Fy22, L is the distance
between two axles, L = L1 + L2. Then we have

L1 =
Izω̇ + LFyr
Fyf + Fyr

(14)

With Equation (14), the problem of finding COG position
transfers to the estimation of lateral forces.

For small tire slip angles, the lateral tire forces can be
linearly approximated as follows:

Fyf = −2Cf (β + ωL1/vx − δf )
Fyr = −2Cr(β − ωL2/vx)
Fyf + Fyr = mvaym

(15)

where β is vehicle’s slip angle, Cf and Cr are the cornering
stiffness at front and rear wheels.

The vehicle’s slip angle β is not discussed in this paper. To
eliminate the β in (15), we assume the cornering stiffness
of front and rear wheels are identical, Cf = Cr. With
the Equation (14) and (15), we can get our model for the
estimation of vehicle’s COG as shown in Equation (16).

L1 =
Izω̇ + L( 1

2
mvaym + CfωL/vx − Cf δf )

mvaym
(16)

4) Road angles: The measured accelerations contain the in-
formation of road angle. With Equation (17) we could estimate
the road angles φr, θr. During normal driving situation, the
lateral speed is very small compared to longitudinal speed. To
simplify our process of parameter identification, we estimate
the road angles only at static driving situation, then we can
assume the vy = v̇y ' 0.

axm = v̇x − vyψ̇ + θrg + σax
aym = v̇y + vxψ̇ + φrg + σay

(17)

III. OBSERVER DESIGN

The overall estimation process of the observer is divided
into 3 blocks as shown in Figure 4. The first block identifies
the vehicle’s mass, roll and pitch stiffness, and position of
COG. A recursive least squares (RLS) algorithm is utilized
based on the mathematical models presented in Section 2.
Then the identified vehicle parameters will be used to con-
figure the following blocks. The aim of the second block is
to calculate the longitudinal and lateral load transfer based on
the new suspension model we proposed. The estimated values
will be considered as an essential measure for the third block,
which is to estimate the vertical tire forces at each tire. The
observer of vertical dynamics state is based on Kalman Filter.
The strategy of using cascaded observers allows us to avoid the
observability problems, thus enabling the estimation process
to be carried out in a simple and practical way [6].
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Figure 4. Structure of our observer based on dual extended Kalman filter

A. First block: Parameter Estimation
The identification of vehicle mass is based on the linear

spring characteristics, which could be calculated directly by
Equation (7). For other parameters, to minimize the errors
caused by different sensor noises, we used the recursive
least squares (RLS) algorithm to formulate parameter models,
shown in Equation (18). The advantage of using RLS algo-
rithm, is the reduction of the parameter uncertainties without
changing the original state observer.

y(t) = ϕT (t)θ(t) (18)

where the estimated parameter θ(t), input regression ϕT (t),
and measured output y(t) are given as

θ(t) = [Kφ,Kθ, L1, φr, θr]
T

ϕT (t) = diag[φv, θv, mvaym, g, g]
y(t) = [mvhsaym, mvhsaxm,

Izω̇ + L( 12mvaym + CfωL/vx − Cfδf ),
axm − v̇x, aym − vxψ̇]

The recursive process of the RLS algorithm [15], in a
Kalman filter interpretation, is described as:

θ̂(t+ 1) = θ̂(t) +K(t+ 1) · ε(t+ 1|θ̂(t))
ε(t+ 1|θ̂(t)) = y(t+ 1)− ŷ(t+ 1|θ̂(t))

= y(t+ 1)− ϕT (t+ 1) � θ̂(t)
K(t+ 1) = P (t)ϕ(t+ 1)[λI + ϕT (t+ 1)P (t)ϕ(t+ 1)]−1

P (t+ 1) = 1
λ [I −K(t+ 1)ϕT (t+ 1)]P (t)

(19)
where I is the identity matrix,ε(t) is the prediction error,

andK(t) andP (t) are the Kalman gain and covariance matri-
ces, respectively, λ is the forgetting factor. The smaller λ is,
the less weight is assigned to the older data.

B. Second block: Estimation of load transfer

An Kalman filter is formulated based on the non-linear
vehicle model presented in Section 2, to estimate the load
transfer. To build a Kalman Filter, the vertical force system
has been represented by a set of discrete state-space equations:

xk = Axk−1 +Buk−1 + ωk
yk = Hxk + vk

(20)

Where A is the states update matrix, H is the mea-
surement matrix, ωk, vk are the noises of the models and
measurements. The state vector to be estimated is xk =

[φv, φ̇v, θv, θ̇v, 4Fzlat, 4Fzlon, ax, ay,]. The state update
model is represented by Equations (4) (8). The measurements
we used in this block are the accelerations and deflections
which are measurable values.

C. Third block: Estimation of observer parameters

As the load transfer is estimated in the second block and
used as a known measurement in this block. Then the vertical
force at each tire can be represented by a very simple linear
model represented by Equation (21).

The state vector and measurement matrix are given as:

X1 =
[
Fz11 Fz12 Fz21 Fz22

]T

Y1 =
[
mvazm,

1
24Fzlon,

1
24Fzlon,4Fzlat

L2
L ,4Fzlat

L1
L

]T
H1 =


1 1 1 1
1 0 −1 0
0 1 0 −1
1 −1 0 0
0 0 1 −1


(21)

IV. EXPERIMENTAL VALIDATION

The algorithm developed here is implemented in MATLAB
to realize the off-line estimation. Simulated data generated
by vehicle simulation software Callas is used to evaluate our
estimator. Our simulation test is conducted at a banked road,
the bank angle is set as 30%. Then the data acquired from an
experimental car DYNA, shown in Figure 5, is used to test the
reliability of our estimator in real conditions.

Figure 5. Experimental vehicle DYNA, equipped with different sensors

A. Simulation of Chicane test with wrong configuration of
vehicle parameters

A particular situation of the test is that the vehicle pa-
rameters are wrongly configured and should be estimated.
Figure 6 presents the final results of our estimated vertical
load transfer. In Figure 6, the red lines represent simulation
reference data, and the other lines the estimated values. The
initial configured value of vehicle mass and roll stiffness is
two times bigger than the real value. Without correction of
the parameters, the estimation result of load transfer is far
from the the reference data, shown by green lines in Figure 6.
In contrast, the estimator with parameter estimation block, the
observer of vertical load stays reliable, shown by blue lines.
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Figure 6. Estimation of load transfer at banked road with wrong configuration.
“wrong config” represents the estimated values with wrong configuration,
“RLS” refers to the proposed auto-configuration estimator.

B. Experiments in real condition

In order to evaluate our estimator in real driving condition,
our experimental car DYNA is arranged to have a sharp
turning at inclined road. Figure 7 shows the trajectory, altitude,
steering wheel angle and speed during the test.

Figure 7. Driving conditions during real car experiment

Experimental results of roll angle obtained from inertial
sensors and suspension deflections are compared in Figure 8.
The integration method will accumulate considerable errors, as
shown by the black line. In contrast, the suspension deflections
method shows more accurate results without integration errors.

Figure 8. Estimation of roll angle in real conditions. “Suspension” cor-
responds to the estimated values , “DYNA” refers to the measured data,
“Inertial” refers to the integration of roll rate.

The estimated roll and pitch angle will be analyzed in our
state model to have a better understanding of driving condition.

With this advantage, the new estimator could provide more
accurate and reliable estimation of vertical load. The observed
load transfer from the estimators with and without considering
roll/pitch angle are compared in Figure 9.

Figure 9. Estimation of load transfer in real conditions. “DYNA” refers to
the measured data, “with suspension” corresponds to the estimated values
considering roll dynamics , “without suspension” represents the estimation
that ignored roll dynamics.

In Figure 9, we can see that in the peak regions, the
estimation results with suspension models, represented by blue
line, is closer to the reference data. In the peak regions,
the vehicle is through a sharp turning which leads to a
considerable roll movement. The estimator we proposed could
provide a good estimation of load transfer in this situation, as
it considered roll dynamics. Then we can continue to estimate
the vertical force at each tire, as shown in Figure 10.

Figure 10. Comparison of estimated tire vertical forces with real data
measured by our experimental car. “Estimated” corresponds to the estimated
values.

The above experimental results are obtained under the con-
dition that all vehicle parameters are correct. In real condition,
the preset parameters can’t be accurate. The advantage of our
estimator is the estimation of vehicle parameters during driv-
ing. Figure 11 shows the comparison between measured value
and estimated value of vehicle’s total weight in real condition.
As explained in Section 2, the deflection of suspension could
effectively represent the variation of vehicle’s total vertical
force and total mass.
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Figure 11. Comparison of estimated total vehicle weight with real data.
“suspension” corresponds to the estimated weight by suspension deflection.

Another parameter to be estimated is the position of COG,
which influence both the vertical and lateral dynamics. In our
process of estimating lateral forces, we didn’t use sideslip an-
gle, instead we estimated the lateral force transfer ( Fyf−Fyr)
and total lateral force (Fyf + Fyr), shown in Figure 12.

Figure 12. Comparison of estimated lateral forces distribution with directly
measured data (DYNA). (a) presents the lateral force transfer ( Fyf −Fyr),
(b) presents the total lateral force.

Then we can estimate the lateral force at front and rear
axle respectively. The estimated position of COG is shown in
Figure 13.

Figure 13. Estimated position of COG

With all the results above, we can confirm that the estimator
proposed here could have a good estimation of vehicle parame-
ters. When the parameter is wrongly configured, the parameter
estimation block can make the estimator stay accurate and
reliable.

V. CONCLUSIONS AND PROSPECTS

This paper has presented a new algorithm to estimate
vertical road/tire forces. We introduced suspension system into
vehicle model to consider the roll and pitch dynamics. We also
combined vertical dynamics and lateral dynamics to estimate
vehicle parameters. A reliable estimator of vertical dynamics
state is developed based on EKF and RLS algorithm. The
parameter estimation block makes the observer more robust.
Simulated and experimental results are presented to evaluate
the performance of the new observer. Several critical tests
are performed to compare and validate the new algorithm.
The observer gives accurate estimating results even when the
vehicle parameters are initially unknown and when the road
geometry is varying.

In the future study, we will focus on developing an inte-
grated estimator to observe dynamics states in real time in
three directions (vertical, lateral and longitudinal).

REFERENCES

[1] K.Jiang, A.Pavelescu, A.C.Victorino & A.Charara. ”Estimation of vehi-
cle’s vertical and lateral tire forces considering road angle and road
irregularity”. In 17th IEEE conference of Intelligent Transportation
Systems (ITSC), (2014) :342-347.

[2] M.Gadola, D.Chindamo, et al. "Development and validation of a Kalman
filter-based model for vehicle slip angle estimation " Vehicle System
Dynamics 52.1(2014): 68-84.

[3] Xu Li, Xiang Song, Chingyao Chan. "Reliable vehicle sideslip angle
fusion estimation using low-cost sensors ."Measurement 51 (2014): 241-
258.

[4] M.Ouahi, J.Stéphant and D.Meiezl. "Simultaneous observation of the
wheels’ torques and the vehicle dynamic state." Vehcicle System Dy-
namics 51.5 (2013):737-766.

[5] B. Wang, A. C. Victorino and A. Charara, “State observers applied to
vehicle lateral dynamics estimation: a comparison between Extended
Kalman filter and Particle filter”, 39th Annual Conference of the IEEE
Industrial Electronics Society, Austria, Nov, 2013.

[6] D.Moustapha, A.C.Victorino, A. Charara et al. "An estimation process
for vehicle wheel-ground contact normal forces." 17th IFAC World
Congress, Milano, Italy (2008)

[7] SORNIOTTI, Aldo et D’ALFIO, Nicolò. Vehicle dynamics simulation
to develop an active roll control system. SAE Technical Paper, 2007.

[8] Shim, Taehyun, and Chinar Ghike. "Understanding the limitations of
different vehicle models for roll dynamics studies." Vehicle system
dynamics 45.3 (2007): 191-216.

[9] T.A.Wenzel, K.J.Burnham, M.V.Blundell, R.A.Williams. "Dual extended
Kalman filter for vehicle state and parameter estimation" Vehicle System
Dynamics 44.2(2006)153-171.

[10] Rajamani, R. (2006). Vehicle dynamics and control, Springer.
[11] Ryu, Jihan, and J. Christian Gerdes. "Estimation of vehicle roll and road

bank angle." American Control Conference, 2004. Proceedings of the
2004. Vol. 3. IEEE, 2004.

[12] Aleksander, H., Brown, T. & Martens, J. (2004). Detection of vehicle
rollover, Proceedings of the SAE World congress, Michigan, USA.

[13] A. Hac, T. Brown and J. Martens. Detection of vehicle rollover. Vehicle
Dynamics & Simulation, 2004.

[14] D. L. Milliken, E. M. Kasprak, L. Daniel Metz and W. F. Milliken. Race
car vehicle dynamics. SAE International, 2003.

[15] Nam, Kanghyun, et al. "Estimation of sideslip and roll angles of electric
vehicles using lateral tire force sensors through RLS and Kalman filter
approaches." Industrial Electronics, IEEE Transactions on 60.3 (2013):
988-1000.


