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Abstract—Proper modeling of dynamic environments is a
core task in the field of intelligent vehicles. The most common
approaches involve the modeling of moving objects, through
Detection And Tracking of Moving Objects (DATMO) methods.
An alternative to a classic object model framework is the
occupancy grid filtering domain. Instead of segmenting the scene
into objects and track them, the environment is represented
as a regular grid of occupancy, in which spatial occupancy is
tracked at a sub-object level. In this paper, we present the
Conditional Monte Carlo Dense Occupancy Tracker, a generic
spatial occupancy tracker, which infers dynamics of the scene
through an hybrid representation of the environment, consisting
of static occupancy, dynamic occupancy, empty spaces and un-
known areas. This differentiation enables the use of state specific
models (classic occupancy grid for motion-less components, set
of moving particles for dynamic occupancy) as well as proper
confidence estimation and management of data-less areas. The
approach leads to a compact model that drastically improves the
accuracy of the results and the global efficiency in comparison
to previous methods.

I. INTRODUCTION AND RELATED WORKS

For most robotics or intelligent vehicles, the ability for
the autonomous agent to accurately perceive and model in
a pertinent form its surrounding environment is a core task.
Whether it be for navigation, collision awareness, intention
planning or mapping, this perception step is a challenging
requirement, in term of accuracy, complexity and uncertainty
management. As for human sensitive aptitude, the quality of
the environment modeling rely on sensor measurement, but
in particular on interpretation schemes. Indeed, sensor errors,
occlusions, data contradictions, heavily complex settings are to
be dealt with. Probabilistic methods were designed to formally
introduce in the models the uncertainties and prior knowledge.

When confronted to moving objects, many issues are
raised, the field of dynamic environment modeling still being
active [1]. A classic way to address this problem is to adopt
an object-based representation, which leads to multiple targets
object tracking literature [2], [3]. Another common approach
is the field of occupancy grids [4], [5], which works on spatial
occupancy without higher level segmentation. This approach
presents significant advantages. The model is by design spa-
tially dense, and properly represents information about free
space, which is an important data in mobile robotics and
intelligent vehicles. Furthermore the delicate data segmentation
and recognition step required in object-based representation
can be avoided.

The field of occupancy grid based interpretation of the
environment is a developed study domain, overlapping various
applications, such as intelligent environment management, au-
tomatic autonomous navigation or extended vehicle perception.

The aim is to produce a compact, regularly subdivided, prob-
abilistic estimation of the spatial occupancy, without requiring
the concept of objects. When applied to dynamic environments,
it is usually necessary to enrich this representation by estimat-
ing velocity information for each cell.

In case of methods specifically designed for specific sen-
sors, it is possible to derive velocity information from the
sensors measurements. For instance, in Pfeiffer et al. [6],
the authors integrate both occupancy and velocity information
from both stereo-vision and optical flow in a medium level
representation called dynamic stixel. This approach, between
grid level and object level representation, shows particular
advantages for traffic application. But it is specifically designed
for stereo-vision.

In many practical cases, in which are not a priori known
the type surroundings or the used sensors, a more generic
approach is necessary. The occupancy grid is well designed
for this purpose, but this structure implies the inference of
cell dynamics. The Bayesian Occupancy Filter [7] is a generic
Bayesian framework which updates a dynamic occupancy grid
by filtering the occupancy and velocity in each cell in parallel.
The observation model is incorporated as an instantaneous
occupancy grid generated by mapping the sensor data over
a grid using a probabilistic sensor model [8]. A Bayesian
filtering methodology, based on a prediction/correction loop
is used to filter the grid and estimate a velocity probability
distribution for each cell, in the form of a neighbourhood tran-
sition histogram. This particular motion discretization design
is convenient to model the cells evolution over the grid, but it
leads to high computational costs and aliasing issues.

The BOFUM [9] proposes to use prior map knowledge to
accelerate the convergence of the BOF, and then potentially
reduce the required data dimensions. The practical application
of this algorithm is limited by the availability of such maps
and the necessity of a very precise localization in them.

To reduce the motion field dimensions, the histogram in
each cell being mainly empty, a sampling of the motion
distribution can be used. To this end, an importance sampling
method has been proposed [10]. This allows to highly reduce
the dimension of the dynamics representation. However, by
drawing a fixed number of discrete velocity vectors per cell
the aliasing problem is not addressed, and the computation
resources are not optimally distributed.

A more adaptive method can still drastically decrease the
motion representation dimension. As most cells, like empty
or static ones, do not necessitate elaborated representation,
important processing resources can be saved by taking this
information into consideration. In the process presented by
Danescu et al. [11], the idea to use a variable number of
samples per cell, according to the occupancy estimated, is



implemented. The scene is represented by a set of moving
particles having non-discretized positions and values, which
corrects most of aliasing problems. The number of particles
per cell corresponds to the occupancy of the cell, which leads
to a very compact model. Nevertheless, a huge number of
particles are still stated to represent static objects. Furthermore
this approach would deserve a generic Bayesian formalization.

An hybrid approach is presented in [12], which proposes
an interaction between grid-based and object-based represen-
tation. In this work, the data is mapped into a grid which in-
tegrates the information of static/dynamic classification, while
the velocity is estimated at the object level, taking advantage
of both geometric and dynamic model of the objects. This is
properly designed for on road applications but not as general
as a generic grid filter.

The Hybrid-Sampling Bayesian Occupancy Filter
(HSBOF)[13] modifies most of BOF structures and analyses
the scene through a static-dynamic duality. The static part is
an occupancy grid structure, and the dynamic field is modeled
by moving particles. Both sections are jointly generated
and evaluated, their distribution over cells being adjusted. It
permits a way more efficient calculation, allowing to focus
the velocity computation on the dynamic components of the
environment. This approach leads to a way more compact
model and a drastic improvement of the system accuracy,
particularly in term of velocities. However, many particles are
still allocated to irrelevant areas, as no specific representation
models dataless areas. Moreover if the filtered low level
representation can directly be used for various applications,
for example mapping process, short term risk assessment [14],
[15], etc. the retrospective object analysis by dynamic grid
segmentation can be computationally expensive.

This paper presents the Conditional Monte Carlo Dense
Occupancy Tracker (CMCDOT), an evolution of the HSBOF
which answers these critics. The main idea is to introduce
formal states in the filtering process, representing static occu-
pancy, dynamic occupancy, empty space and unknown areas.
This new formalism leads to a more compact presentation
of the overall algorithm (in term of transitions, initialisation,
etc.). The unknown state enables specific processings, and to
focus even more the particle set on relevant dynamic areas.
Moreover, a fast dynamic occupancy clustering algorithm is
directly incorporated in the global process.

II. CMCDOT FORMALISATION

The objective of the Bayesian Occupancy Filter (BOF)
techniques (original BOF, HSBOF, CMCDOT) is to estimate
the spatial occupancy and its dynamics of an environment,
observed using various types of sensors. To do so, the space
is divided in spatial cells, and to each cell are associated ran-
dom variables, whose probability distributions are recursively
estimated and used as basis of the scene interpretation. The
formal probabilistic model used in the HSBOF and the original
BOF could be considered similar : despite differences in the
joint distribution decomposition and parametric expressions,
the main improvements were not in the model equations, but in
the static/dynamic distinction, the differentiated representation
and equation solving. In the CMCDOT, an important change
is introduced in the formulas : instead of directly filtering

the occupancy, hidden states representing what is present in
a cell are added. The occupancy distribution can then be
inferred from those hidden states. Besides presenting a neater
distinction between static and dynamic parts, the main interest
of this modification is to introduce a specific processing of
dataless areas, excluding them from the velocity estimation
and disabling their temporal persistence.

The formalism used in the description comes from the
Bayesian programming framework [16]. Given the set of
random variables, the expression of their joint probability
decomposition, the wanted distribution can easily be expressed,
as presented in the following.

A. Variable definition

C : Index that identify each 2D cell.
C−1 : Index that identify each antecedent of a cell.
S : State of the cell at current time. Possible states

are s for ”occupied by a static object”, d for
”occupied by a dynamic object”, e for ”empty”
and u for ”unknown”

S−1 : State of the antecedent of the cell at previous time.
O : Occupancy of the cell at current time. Its possible

values are {occ, emp}.
V : Velocity of the cell at current time. Its possible

values are in R2.
V −1 : Velocity of the antecedent cell at previous time.
Z : Sensor measurement.

B. Joint distribution

C-1 C

S-1 V-1 S V O

Z

Fig. 1. Bayesian network representing the variable dependencies. The
occupancy O is directly inferred from the state S.

P (CC−1SS−1V V −1Z) = P (C−1)
P (S−1V −1|C−1)
P (SV |S−1V −1)
P (C|C−1V )
P (Z|S, V, C)

(1)

The variable dependencies are pictured as a Bayesian net-
work on fig 1. Each expression can be interpreted as follows:

• P (C−1) is the distribution over all possible an-
tecedents of the cell. It is chosen to be uniform as
the cell is considered reachable from all the possible
antecedents with equal probability.

• P (S−1V −1|C−1) is the conditional joint distribution
over the state and velocity of the antecedents. This
distribution is updated at each time step.

• P (SV |S−1V −1) is the prediction model. The states
and velocity are inseparable, as the state definition is
directly connected to the velocity: velocity in static



parts is zero, while free and undefined parts have
no velocity associated. The prediction step is further
explained in part III/B.

• P (C|C−1V ) is the distribution that explains if the cell
c is reachable from the antecedent [C−1 = c−1] with
the velocity [V = v]. This distribution is a Dirac with
value equal to one if and only if c−1

X + vXδt ∈ c.
• P (Z|S, V, C) is the distribution over the sensor mea-

surement values. The model used is a classic sensor
model for static, dynamic and free states, while the
unknown state model depicts the dataless areas. Fur-
ther explanations are in part III/C.

C. Problem expression

The aim of the Bayesian filtering process is to estimate the
occupancy and velocity with respect to the current observation
for every cell: P (OV |ZC). In the system, the filtering is
applied on the hidden states, the occupancy can then be
deducted. By using a discretization of the antecedent cells and
of the velocities, the filtering equation can be written:

P (SV |ZC) =

∑
C−1S−1V −1

P (CC−1SS−1V V −1Z)∑
C−1SS−1V V −1

P (CC−1SS−1V V −1Z)
(2)

In the end, the distribution can be expressed as:

P (SV |ZC) = λ
∑

C−1S−1V −1

P (C−1)P (S−1V −1|C−1)

P (SV |S−1V −1)P (C|C−1V )P (Z|S, V, C) (3)

Stating that :

P (O = occ|S = s) = 1 P (O = occ|S = d) = 1
P (O = occ|S = e) = 0 P (O = occ|S = u) = 0.5

Then the occupancy can be deducted:

P (OV |ZC) =
∑
S

P (O|S)P (SV |ZC) (4)

III. CMCDOT RESOLUTION

The filtering process mainly consists in two steps, predic-
tion and evaluation. The way those steps are handled differs
according to the type of the considered state. This adapted
management is at the core of the method performances.

A. State specific representation

The CMCDOT models the state distributions of cells in
a grid, each cell is potentially occupied by a static object
(s), occupied by a dynamic object (d), empty (e) or unde-
fined (u). The s state refers to motionless occupancy, which
includes strictly speaking static objects, but also background
data (buildings, etc.). The static part is represented in a classic
probabilistic grid. The d state refers to dynamic occupancy,

represented by a set of weighted particles which sample the
cell velocity. The e state corresponds to the free space, and
is described in a classic probabilistic grid. The u state is a
state used to signify the lack of information, and then the
lack of confidence in the credibility of the other states. It
is also represented in a classic probabilistic grid. The whole
representation is summarized in fig 2.

occupancy

velocity

Static Dynamic Empty Unknown

Fig. 2. Data representations in CMCDOT formulation. The environment is
divided into cells, to which are associated static, dynamic, empty and unknown
coefficients. The dynamic part is allotted to weighted particles which sample
the velocity space

B. Prediction

The first step of the CMCDOT model prediction consists
of the pure state prediction (from P (SV |S−1V −1)), charac-
terized to maintain focus on occupied areas while enabling fast
changes in empty and especially in unknown ones. How the
prediction is handled differs according to the considered state.

The static part model is highly conservative, a static
component is assumed to remain static, or in a restricted
portion to become dynamic (hypothetical set in motion of
previously stationary elements). The velocity distribution of
this newly generated dynamic part is supposed to be as a
predefined initialization distribution (a uniform distribution in
a 2D sphere, limited by a context dependant maximal velocity
value, is often used). The sampling of new particles may occur
in the re-sampling part, at the end of the update loop.

The dynamic state, embodied by moving particles, is also
considered highly conservative, it can partially turn into static
if the corresponding velocity is too weak. A Gaussian noise is
applied to the velocity samples, to simulate velocity variation
over time, and the location of the particles is updated in
accordance with the update frequency.

While the two states representing occupied areas are
durable, the empty state is seen to be way less persistent.
Actually, the assumption of an empty area to remain empty
is likely to be true, but with important uncertainty, as it
strongly depends on the global environment evolution. This
consideration is reflected on state transition coefficients, which
allow a significant depreciation into the unknown state, which
represents the lack of information.

Finally the unknown state is meant by definition to be
volatile, its propagation in time weak. The unknown part can
easily transform into free, static or dynamic state, with a
initialization velocity distribution not yet sampled. An example
of simplified transition matrix is given on fig 3.



Once the model is projected in time, the next step is to
express it in the new reference frame. Indeed, as in most
applications the perception device is mobile, the ego-motion
has to be integrated. The ego-motion estimation can come from
a sensor (odometry measurement, an Inertial measurement
unit, GPS...) or generated by a dedicated algorithm (a SLAM-
like method, using the CMCDOT outputs, has been developed,
but its description exceeds the subject of this paper). When
this displacement is known, the operation simply consists in
transformation of the particle vectors (translation and rotation
for positions, rotation for velocity) and interpolation of grids.
The areas in the grid corresponding to newly discovered
regions are set to undefined, while taken out areas can either
be simply forgotten (in many mobile robot applications, this
data storage is irrelevant) or used to generate a map based on
the static part. Fig 4 summarizes the prediction process.

S−1 = s S−1 = d S−1 = e S−1 = u
S = s 0.99 f(v) 0 0.05
S = d 0.01 1 - f(v) 0 0.05
S = e 0 0 0.90 0.10
S = u 0 0 0.10 0.80

Fig. 3. Example of transition coefficients from S−1 to S. The transition
from S−1 = d to d or s depends on the velocity, to integrate slow motion
parts in the static representation. f(v) = 1 when v = 0, and f(v) = 0 when
v is high (f is typically a Gaussian centered on 0)

Fig. 4. Prediction step pattern. From left to right : 1. previous time step
estimation. 2. state prediction and occupancy shifting according to motion
models. 3. the data is expressed in the new reference frame, by interpolation
of grids and particle accumulation for dynamic parts. 4. current time predicted
model.

C. Evaluation

The updated distributions over states are evaluated in
parallel in each cell of the current grid. In order to do
so, the predicted states related to a cell are identified. The
static, empty, undefined and dynamic initialization predictions
are taken in the respective grids. Dynamic predictions are
accumulated from moving particles located in the cell. In
a given cell c, according to equation (3), those predictions
are confronted with the observation. The observation model
used is similar to classic probabilistic sensor model [8], the
core originality is the evaluation of ”unknown” state, which
correlate with the relevance of sensor data. Typically, in case
of laser data, the ”unknown” model scores low values before
and around the impact, and high values further (where no
information is available). The sensor models are depicted in
fig 5. While computing state distribution evaluations, each
particle weight is also updated and normalized, according to
its relative contribution in the dynamic part.

D. Particle re-sampling

Once the state distributions over cells are properly es-
timated, the remaining task is the dynamic part sampling.

Distance

Probability

impact
0

1 P(S=u | Z)

P(S=e | Z)

P(S=s U d | Z)

Fig. 5. Sensor model representation, in case of laser-like sensors. Occupied
state likelihoods are low before the impact, high around and stabilize around
0.5 beyond. Empty state likelihoods display the symmetric profile. Unknown
state likelihood is low before and around the impact, and increases beyond,
i.e. where data is meaningless. The displayed profiles are not normalized.

This step purposes are to re-sample from the existing particle
distribution to concentrate on its significant parts (according
to their updated weights), to generate new particles for the
newly dynamic parts (the ”not yet sampled” part, with an
initialization distribution) and to reassign the right amount
of particles per cell. For each cell, the number of particles
to be allocated is evaluated in accordance with its dynamic
component, and in particular its newly dynamic part, which
requires initialization. For parallelization practical consider-
ations, the global amount of particles is set, these shared
resources distributed among cells. For each cell, particles are
then drawn from the updated previous particle distribution, and
from an initialization distribution in proportion of dynamic
appearance. Finally the cell dynamic coefficient is uniformly
divided between the particles.

IV. DYNAMIC OBJECTS CLUSTERING

While the CMCDOT tracks spatial occupancy in the scene
without object segmentation, detection and tracking of moving
objects (DATMO) is often required for high level processing.
The standard approach would then be to analyse the CMCDOT
outputs, apply a clustering algorithm on the occupancy grid
(enhanced by velocities) and use those clusters as potential
targets. This clustering can turn out to be computationally
expensive, considering the grid dimensions and most of all the
dynamic particle model size and complexity. In this section
we propose an extension of the CMCDOT to smoothly cluster
dynamics cells and extract object properties with limited
additional calculations.

The main idea is to consider that each dynamic particle
belongs to an object identified by an object id (oid) and use the
particle propagation within coherent moving blobs of spatial
occupancy to propagate the oid. The object clustering method
then consists in a simple addition in the re-sampling procedure
and can be summarized as follows:

• When a particle is initialized (drawn from initializa-
tion distribution), a new oid is randomly associated to
the particle.

• When a particle is duplicated (drawn from existing
dynamic particle distribution) the oid associated to the
particle is maintained.

Using this simple marker propagation, particles sampling
dynamic occupancy which belongs to an object are quickly



associated. The oid convergence can be boosted if necessary,
using additional sampling rules, but its speed is already satis-
factory. For each oid can then be computed a list of properties
such as the object weight (sum of particles probabilities),
the gravity center, the average linear and angular speed and
a covariance matrix representing the shape of the object.
Significant objects can then easily be extracted, for example
by setting a threshold on the weight.

V. EXPERIMENTAL RESULTS

A. Experimental platform

For the experiments, a Lexus LS600h car have been
equipped with two Ibeo Lux multilayer lidars under the two
front lights (see fig 6). The covered horizontal field of view
is almost 160 degrees. Vehicle velocity and steering data are
collected from the CAN bus system. Using a merging method
similar to [17], sequences of instantaneous occupancy grids
are computed and used as inputs for our algorithm.

Fig. 6. Experimental platform : Lexus LS600h car equipped with two Ibeo
Lux Lidars and cameras.

B. Estimation of irrelevant particle allocation ratio

In the first experiment, the objective was to evaluate the
ratio of irrelevant particle allocation in different situations for
the HSBOF and the CMCDOT. To calculate such a ratio, the
average percentage of dynamic samples generated in unob-
served areas is computed. The value itself is just indicative,
as a portion of those particles transports real information,
and depends of the selected grid size, but the comparison
of the two methods offers a convincing evaluation of the
allocation enhancement. Three scenarios have been tested :
a highway scenario where some vehicles are permanently
observed, a semi-urban environment where moving objects
are intermittently present, and a city-center scenario where
many pedestrians can be observed. The results displayed in
fig 7 points out that dynamic samples are way more efficiently
allocated with the CMCDOT algorithm, and so that the system
is inclined to be more reactive in observed dynamic areas with
the same resources.

Sequence Grid size (m) HSBOF CMCDOT
Highway 20x70 76.9% 23.5%

Semi-Urban 30x60 89.3% 46.7%
City Center 30x60 93.2% 40.1%

Fig. 7. Estimation of irrelevant particle allocation ratio.

(a)

(b) (c)

(d) (e)

Fig. 8. Results of the HSBOF with 262144 and 32768 particles (b) and
(c), and of the CMCDOT with the same number of particles (d) and (e). Red
segments represent the average estimated per-cell velocity. They show that
the CMCDOT is way more accurate and still manages to track most of the
moving pedestrians even with a severely reduced number of samples, whereas
the HSBOF loses track of almost all objects.

C. Dense tracking

In this second experiment, the HSBOF and the CMCDOT
algorithm results have been compared for different numbers
of samples. The size of the grid is 40x30m with a 0.1m
resolution. The number of samples tested are 262144 and
32768. In fig 8 more stable and accurate velocity estimations
can be observed for the new version. The results are also
way less impacted by the decrease of sample number. Another
noteworthy observation is that while the unknown areas turn
out to be noisy in the HSBOF version, which causes incorrect
dynamic cells to appear at the boundary between unknown and
occupied areas, the CMCDOT provides accurate estimations.

D. Objects clustering

The last experimental set displayed in fig 9 shows an
overview of the dynamic object clustering results. The inter-
esting point is that the clustering method successfully extracts
any kind of objects (pedestrians, vehicles, cyclists, etc). The



(a) (b)

(c) (d)

Fig. 9. Result of the dynamic objects clustering. (a) Camera image; (c)
resulting occupancy grid with velocity; (d) extracted dynamic objects (red
boxes) with velocity (blue segments) and id; (b) 3D view of the grid with
detected objects.

algorithm has been tested within a large set of environments
and we observed that almost all dynamic objects have been
extracted with our method. Two main drawbacks can however
be noted. The first one is that incoming large objects can be
at first divided into multiple small objects, it can takes several
seconds to converge to a single object. The second problem
occurs when multiple dynamic objects move together (like a
group of pedestrians), all objects can end up clustered in a
single object, and when the different objects split up, they are
still referenced in the same object. A direct extension of the
object clustering would be to detect and handle the splitting
of those groups (as most necessary data is already accessible).

VI. CONCLUSION

In this paper we presented a dense occupancy tracking
method, inspired by the Bayesian Occupancy Filter framework
enhanced by abstract states and a Conditional Monte Carlo
approach to optimize velocity estimation and focus on relevant
areas. The scene is analyzed through static, dynamic, free and
unknown states, to which are associated dedicated models.
Uncertainty and sensor coverage are explicitly taken into
account. We also briefly presented a method to extract dynamic
objects by slightly modifying the particle re-sampling step.

Experimental results showed that the insertion of an ”un-
known” state in the model leads to a better distribution of
dynamic samples on observed areas and then allows to be way
more reactive and accurate on the velocity distributions with
less computing power. The intrinsic clustering approach has
also been tested on real road data, showing promising results in
real-time tracking of moving objects, regardless of their type.
The method could be improved by managing split-and-merge
events that can occur in complex urban environment.
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