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Abstract—Precise and accurate localization is important for
safe autonomous driving. Given a traffic scenario with multiple
vehicles equipped with proprioceptive sensors for self-localization
and infrastructure equipped with exteroceptive sensors for car
detection, vehicle-infrastructure communication can be used to
improve the localization. However as the number of vehicles
in a scenario increases, data association becomes increasingly
challenging. We propose a solution utilizing the symmetric
measurement equation filter (SME) for cooperative localization
to address data association issues, as it does not require an
enumeration of measurement-to-target associations. The key idea
is to define a symmetric transformation which maps position
measurements to a homogeneous function, thereby effectively
addressing several challenges in vehicle-infrastructure scenarios
such as bandwidth limitations, data association challenges and
especially the configuration of the exteroceptive sensor. The
approach works well even in the case that the location and
orientation of the exteroceptive sensor are unknown. To the
best of our knowledge, our proposed solution is among the
first to address all these challenges of cooperative localization
simultaneously, by utilizing the topology information of the
vehicles.
A comparative study based on simulations demonstrates the

reliability and the feasibility of the proposed approach in 2D
coordinates.

I. INTRODUCTION

Within the past few years, vehicle-infrastructure cooperative

localization has become a hot issue in the intelligent trans-

portation domain [1]. Not only can cooperative localization

be used to improve perception performance, but it is also

beneficial towards the goal of achieving optimal traffic flow.

Since GPS is susceptible to interference or even not fully

available, for example in tunnels or underground, the lo-

calization task can be supported by utilizing both proprio-

ceptive and exteroceptive sensors [2], [3]. Furthermore, with

the development of Car-2-Car (C2C) and Car-2-Infrastructure

(C2I) communication techniques, sharing information, like

observations and state estimations, across the whole network

becomes possible [4]. These new communication networks

can be utilized to improve the perception performance, as

cooperative localization can lead to better state estimates than

separate self-localization by each individual vehicle [1]. Many

methods have been proposed for the vehicle-infrastructure

cooperative localization, e.g. Extended Kalman Filter [5],

Markov Localization [6], Maximum Likelihood Estimation
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[7] and Maximum A Posteriori Estimation [8]. However,

challenges still existed:

• The bandwidth challenge.

The data-link utilized for exchanging information may have

low bandwidth due to the network configuration. However, a

high communication bandwidth is often required to transmit

the states and the corresponding covariances. Specially, as

the number of vehicles increases, the network might get

overloaded and thus unusable.

• The uncertainty challenge.

Another important task for cooperative localization is called

data association. The development of C2C and C2I tech-

niques supports vehicles in localizing and identifying other

traffic participants correctly. However, assuming there is no

measurement-track association from the network, it is still

a challenge to estimate the states correctly. Furthermore,

measurements often contain clutters which increases the lo-

calization uncertainties.

• The coordinate transformation challenge.

Coordinate transformation plays an important role in coop-

erative localization. Measurements are acquired from propri-

oceptive and exteroceptive sensors to localize the positions.

However, the proprioceptive sensor only provides the absolute

location in 2D global coordinates whereas the exteroceptive

sensor often provides the relative position in 2D local coor-

dinates. This is still a challenge for cooperative localization

in highly dynamic infrastructure environment, especially if

the location and orientation of the exteroceptive sensor are

unknown.

A method for vehicle-infrastructure cooperative localiza-

tion based on the Symmetric Measurement Equation (SME)

filter [9] is proposed in this paper. With the SME filter, a

new type of symmetrical measurement transformation based

on homogeneous symmetric functions has been introduced

to combine measurements into a symmetric measurement

equation [10]. The key idea is to convert measurement data

with unknown association into a symmetrical measurement

equation to estimate the corresponding states [11].

The work-flow of the proposed SME filter is as follows:

Measurements from both proprioceptive and exteroceptive

sensors are projected to a symmetrical equation as new ob-

servations whereas the SME filter recursively estimates the

dynamic states.

The advantages of the SME filter are as follows:

First, the bandwidth challenge is adressed. Since the SME

filter is a recursive centralized Bayes filter that only requires
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Figure 1. Topology of multiple vehicle cooperative localization system

the network to transmit observations, instead of additional

covariance matrices, the amount of data that needs to be ex-

changed is reduced. In contrast to other methods, the proposed

approach has especially small bandwidth requirements.

Second, the data association challenge is addressed. The

SME filter provides a new solution to avoid the data associ-

ation by using a symmetrical measurement equation to build

up a pseudo-measurement space in which data association is

unnecessary.

Third, the coordinate transformation challenge is addressed.

Measurements are converted to a symmetrical measurement

equation based on homogeneous symmetric functions, which

avoids the transformation between different coordinates. Even

if the configuration of the exteroceptive sensor is unknown,

the proposed SME filter still works.

This paper is structured as follows: Sec. II briefly describes

the scenario of the vehicle-infrastructure cooperative localiza-

tion. Sec. III introduces more details about the SME filter with

the implementation details. Sec. IV presents simulation results.

Finally, the paper is concluded in Sec.V.

II. BACKGROUND DESCRIPTION

As illustrated in Fig. 1, the vehicle-infrastructure coopera-

tive localization scenario that we want to solve, described as

follows:

• Each vehicle is able to localize itself according to an ab-

solute reference. Here we assume that the measurements

are given in a 2D global coordinate system and measured

by the proprioceptive sensor.

• The infrastructure is able to measure the relative position

of the vehicles. Here we assume that the measurements

are given in a 2D local coordinate system and measured

by the exteroceptive sensor.

• A communication network to exchange information be-

tween the cars and the infrastructure is available. Here

we assume that there is no delay in the data-link and no

false detection originates from the vehicles, e.g. there is

no clutter in the scenario.

• The communication method and protocol are not used

to identify the individual vehicles. Furthermore, there is

no prior information regarding to the configuration of

the infrastructure. The location and orientation of the

exteroceptive sensor are unknown.

Vehicle-infrastructure cooperative localization improves the

precision of the position estimates. Assuming that the proprio-

ceptive sensors provide measurements with large uncertainties,

the localization may become imprecise. However, by cooper-

ative localization, the precision is ensured with the help of the

exteroceptive sensor.

Much work has been done for cooperative localization: cen-

tralized solution [5] and decentralized solution [12]. Regarding

to the centralized localization, all vehicles are considered as

a single system whereas the estimation is acquired by the

Kalman filter. However, a data association process is required.

In contrast to the centralized architecture, a decentralized

solution is proposed in which multiple fusion centers are used.

Each fusion center handles parts of the local information.

However, the computational demand is very high. Further-

more, it often exceeds network bandwidth limitations since

each fusion center requires both the states and the correspond-

ing covariances. Therefore communication and computation

demand is a challenge in decentralized solutions.

None of the solutions consider the coordinate transformation

issue during the localization process. Both centralized ap-

proaches and decentralized approaches assume that the trans-

formation between the global measurement and the relative

measurement is known. Cooperative localization only works

under the condition that all measurements are exchanged in

public coordinates. However, in highly dynamic environments,

the configuration of the exteroceptive sensor is often unknown.

To the best of our knowledge, it is still a challenge to address

the issues mentioned above simultaneously. In the next section,

the SME filter is presented to take into account the issues

in vehicle-infrastructure cooperative localization. This work

is developed in cooperation with the SADA Project (BMWi

funded, ’IKT für Elektromobilität III’) [13], to evaluate the

performance of the cooperative localization between vehicle

and infrastructure sensors.

III. THE SYMMETRIC MEASUREMENT EQUATION

FILTER

The SME filter based on homogeneous symmetric function

is proposed because of its superior performance in multiple

targets tracking.

A. Overview on SME filter

A major challenge in multiple target tracking domain is data

association since the association between the measurement and

the track is unknown. In the past decades, various methods

have been developed such as the Joint Probabilistic Data

Association filter (JPDA) [14], the Probability Hypothesis

Density filter (PHD) [15] and the Multi Hypothesis Tracking
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filter (MHT)[16]. However, as the number of targets grows, the

computation performance grows exponentially. Furthermore,

the topology information between targets is not considered in

above methods.

The Symmetric Measurement Equation (SME) filter is pro-

posed to remove the data association by utilizing a symmetric

transformation, which allows to bypass the combinatorial

complexity of the association issue. Due to the symmetric

measurement equation, the measurement-to-track association

is unnecessary during the whole process. As a conclusion, the

SME fliter transforms the association issue into a nonlinear

state estimation problem with non-additive Gaussian noise. In

this way, one difficult problem is traded for another difficult,

but quite different problem [17].

The first work on the SME filter was proposed by Kamen

[9]. Furthermore, it was proposed to deal with the nonlinear

conditions by the Unscented Kalman filter [17] and the Particle

filter [18].

M. Baum [19] implemented the SME filter in the field of

group targets tracking. The result illustrates that the SME filter

is an effective solution for the multiple target tracking. In

addition, it was shown that the SME filter is suitable for a large

number of closely-spaced targets during the tracking phase.

This paper applies the SME filter to vehicle-infrastructure

cooperative localization. Assuming the number of the vehicles

is known and no missed detection or false measurements occur,

the SME filter is utilized to localize the positions based on the

symmetric measurement equations.

B. Mathematic Background of the SME Filter

The idea of the SME filter is to generate ’pseudo-

measurements’ that consist of symmetric functions of the

original measurement from targets.

• Problem formulation
For n dimension target state x1k, · · · , xNk , where k denotes

the step and N is the number of the targets. The joint state

in SME filter is represented as xk = [(x1k)
T , · · · , (xNk )T ] ∈

R
n·N .
1) Measurement Model: Assuming at each step the mea-

surements are available, the following equation is acquired

y
fk(c)
k = Hc

k(x
c
k) + vck (1)

where fk ∈ ∏
N is a permutation in the symmetric group

which specifies the unknown association assignment and vck is
considered as the additive zero-mean white noise. Combined

with the joint SME state, the equations (1) can be composed

as follows

⎡
⎢⎢⎣

y
fk(1)
k
...

y
fk(N)
k

⎤
⎥⎥⎦

︸ ︷︷ ︸
yk

=

⎡
⎢⎣ H1

k

. . .

HN
k

⎤
⎥⎦

︸ ︷︷ ︸
Hk

·

⎡
⎢⎣ x1k

...

xNk

⎤
⎥⎦

︸ ︷︷ ︸
xk

+

⎡
⎢⎣ v1k

...

vNk

⎤
⎥⎦

︸ ︷︷ ︸
vk

(2)

where yk = [(y
fk(1)
k )T , · · · , (yfk(N)

k )T ]T and fk(·) permutes
the joint single measurement in the SME filter.

2) Process Model: With the same manner, the target system
model in SME filter is represented as

xck+1 = Ac
k(x

c
k) + wc

k (3)

where Ac
k is the process matrix and w

c
k is the additive white

noise. Equation (3) can also be composed as

⎡
⎢⎣ x1k+1

...

xNk+1

⎤
⎥⎦

︸ ︷︷ ︸
xk+1

=

⎡
⎢⎣ A1

k

. . .

AN
k

⎤
⎥⎦

︸ ︷︷ ︸
Ak

·

⎡
⎢⎣ x1k

...

xNk

⎤
⎥⎦

︸ ︷︷ ︸
xk

+

⎡
⎢⎣ w1

k
...

wN
k

⎤
⎥⎦

︸ ︷︷ ︸
wk

(4)

3) Symmetric Transformation: Since the SME filter is to re-
move the association uncertainty on the measurement equation

(1), a symmetric transformation to the pseudo-measurement is

required.

Two simple examples of how to construct the symmetric

measurement equations for tracking three targets in one di-

mension are given as follows:

Example 1. Sum-of-product:

Sprod =

⎡
⎣ m1 +m2 +m3

m1m2 +m2m3 +m1m3

m1m2m3

⎤
⎦ (5)

Example 2. Sum-of-powers:

Spow =

⎡
⎣ m1 +m2 +m3

m2
1 +m2

2 +m2
3

m3
1 +m3

2 +m3
3

⎤
⎦ (6)

The above two SME are called the sum of products and

sum of powers. It is concluded that the original measurement

mi can be recovered uniquely from the pseudo-measurement

S. Therefore, there is no information loss regarding to the
new transformation. The SME approach turns the data as-

sociation problem into an analytic nonlinearity and makes a

measurement-to-track association unnecessary.

Based on the nonlinear Bayesian estimators such as Ex-

tended Kalman filter (EKF), Unscented Kalman filter (UKF)

or Particle filter (PF), the joint single state is estimated in the

SME filter.

C. Implementation of SME filter

The mathematic background of the SME filter is briefly

introduced in Sec. III-B. However, there are still open issues

regarding to the implementation, e.g. how to utilize the SME

filter in vehicle-infrastructure cooperative localization? How

can configuration uncertainties of the exteroceptive sensor be

addressed?

With the goal of utilization the SME filter, a homogeneous

symmetric form of the converted measurements is constructed

as follows:
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For the process model, the joint single state of the vehicles

xk = [p1x,k, ṗ
1
x,k, p

1
y,k, ṗ

1
y,k, · · · , pNx,k, ṗNx,k, pNy,k, ṗNy,k]T con-

sists of the positions (px,k, py,k) and velocities (ṗx,k, ṗy,k)
of the vehicles.

Following the linear Gaussian dynamics, the evolution of

the process models can be represented as:

A1
k = A2

k = · · · = AN
k =

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ (7)

Q1
k = · · · = QN

k = δ2

⎡
⎢⎢⎣
T 2/4 T 2/2 0 0
T 2/2 T 0 0
0 0 T 2/4 T 2/2
0 0 T 2/2 T

⎤
⎥⎥⎦ ,

Qk =

⎡
⎢⎣ Q1

k

. . .

QN
k

⎤
⎥⎦ (8)

where Qk denotes the covariance of the noise wk and δ is the
standard deviation of the process noise.

The transformation of the original measurements into the

symmetric equation form needs to be done both for the

proprioceptive and the exteroceptive sensor.

To map the state to the observation space, measurements

from the proprioceptive sensors are converted as follows:

y1k = [yxk,yyk]
T (9)

yx
k
= [

N∑
i=1

pix,k,
N∑
i=1

(pix,k)
2, · · · ,

N∑
i=1

(pix,k)
N ]T

yy
k
= [

N∑
i=1

piy,k,

N∑
i=1

(piy,k)
2, · · · ,

N∑
i=1

(piy,k)
N ]T

Since in the described scenario the configuration of the

exteroceptive sensor is unknown (the orientation, location is

not provided), the topology information (distance between

vehicles) is therefore utilized as follows:

y2k = [

N−1∑
i=1

N∑
j=i+1

(pix,k − pjx,k)
2 +

N−1∑
i=1

N∑
j=i+1

(piy,k − pjy,k)
2]T

(10)

No matter in which coordinate system, the global coordinate

system or the local relative coordinate system, the distances

between the vehicles are the same. Equation (10) is therefore

considered as a new measurement to the SME filter, even

if the configuration of the exteroceptive sensor is unknown.

Furthermore, even if the exteroceptive sensor is moving a high

speed, the topology information of the vehicles would still be

equal in both coordinate systems. The joint measurement of

the SME filter is therefore acquired as

yk = [y1k,y2k]
T (11)

Based on the above procedure, the challenges in vehicle-

infrastructure cooperative localization are addressed simulta-

neously. The state is estimated during the whole process by the

pseudo-measurement. We would like to remind the reader that

the new measurement noise covariance matrix is calculated

with respect to the SME pseudo-measurement space, not in

the original Cartesian measurement space. More details of the

result can be found in [10], [17].

IV. SIMULATION RESULTS

The simulation was implemented with three vehicles on

the ground plane. The performance of the SME filter is

demonstrated with respect to the general Kalman filter.

In the simulation, vehicles are equipped with proprioceptive

sensors to measure their global coordinates. The exteroceptive

sensor also provides the positions, however, in the format of

local coordinates whereas the transformation between the two

coordinates is unknown.

The noise from proprioceptive sensor is assumed to be

white Gaussian with zero mean and covariance diag[50, 50],
whereas the exteroceptive sensor noise is zero mean

and covariance diag[10, 10]. The standard deviation of

the process noise δ is 1
2 . The joint single state is the

[0, 80, 0, 0, 0, 45, 0, 45, 0, 0, 0, 80] whereas the step interval T
is 1. It is also assumed that there is no false nor missed

detections during the whole process. In order to evaluate

the performance, vehicles are not able to identify the others

through the vehicle-infrastructure communication system.

During the whole process, the SME filter is implemented

based on an Extended Kalman filter. Regarding to the general

Kalman filter, it is assumed that the data association is known

from the proprioceptive sensors (only for the comparison pur-

poses). However, since the configuration of the exteroceptive

sensor is unknown, the information from exteroceptive sensor

is therefore useless for the general Kalman filter.

Figure 2 exhibits the true trajectories and the corresponding

estimations from different approaches: the SME filter and the

Kalman filter. Regarding to the Kalman filter, although it is

considered as the optimal estimation, the estimation is far

from the true trajectories compared to the SME filter. The

high performance of the SME filter results from the utilization

of the topology information measured by the infrastructure

sensor (the configuration is unknown). Furthermore, in contrast

to the Kalman filter (KF), the SME operates on the pseudo-

measurement space which avoids the data association issue.

Figure 3 analyzes the performances of both methods by

calculating the RMSE (root mean square deviation) value. The

total error is acquired by summing up the RMSE of each

vehicle during the whole process:

Error = (xest − xreal)
2 + (yest − yreal)

2 (12)

total error =

√∑n
j=1

∑3
i=1Error

j
i

n
(13)
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Figure 2. The vehicles’ trajectories and estimation result
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Figure 3. The performance of the estimation

where n is the time index. From Fig. 3 we can see that both the
SME and the KF have a certain estimation error compared with

the true trajectories. This error is caused by the uncertainties in

the measurements. However, Fig. 3 illustrates that the overall

performance of the SME filter is better than the performance

of the Kalman filter.

Regarding to the bandwidth and computation issue, the

SME filter is superior. As mentioned above, the SME fil-

ter is a predict and correct framework for recursive Bayes

filtering which does not rely on each estimation and the

corresponding covariance. Only measurements are transmitted

on the network and the required communication bandwidth

is therefore minimal. Assuming each location (px, py) takes
two communication bits when transmission happens, the SME

filter requires only 2N bits bandwidth at each step (There is

a total of N measurements acquired by exteroceptive sensor

and N measurements acquired by proprioceptive sensor).

• Discussion

To study the robustness of the SME filter in real applica-

tions, the following issues need further discussion.

1) False detection and missed detection: In this paper, both
proprioceptive and exteroceptive sensors are assumed to work

in an ideal environment. However, in practice, the number of

measurements M may not be equal to the number of vehicles

N , which can be caused by false or missed detections (due
to clutter). In order to address this challenge, the SME filter

should be implemented in parallel, c.p. [20], [21]. However,

these specific details are not the focus of this paper.

2) Exteroceptive sensor estimation: It is possible to jointly
estimate the vehicles and the infrastructure configuration.

In this case, the transformation between the coordinates is

calculated. However, the challenge is the over-convergence

problem. This is due to the stochastic interdependence between

the estimations when sharing the information [3]. Another

problem may also influence the localization: assuming the

exteroceptive sensor is moving with high speed, the uncer-

tainty of its estimation could become big and influence the

transformation function calculation. It is reasonable that in

such a situation the SME filter would only use the topology

information of the vehicles.

As a conclusion, the benefits of the SME filter are as

follows:

First, the communication bandwidth is addressed in

vehicle-infrastructure cooperative localization. The inter-

communication system only transmits the original measure-

ments to the SME filter which results in minimal consumption

requirements.

Second, data association is avoided. With the symmetric

measurement equations, the data association issue is traded for

another difficult, but quite different, problem. In this way, it is

possible to estimate states without considering the association

between measurements and targets.

Third, coordinate transformation is not required. By using

the topology information from the whole vehicles, the coordi-

nate transformation is avoided. Even if the configuration of

the infrastructure is totally unknown, the vehicles’ relative

measurements can still be utilized by the SME filter with the

goal of localization.

V. CONCLUSION

In this paper, a recursive Bayesian solution for vehicle-

infrastructure cooperative localization is proposed. The com-

munication bandwidth issue, measurement-to-track association

uncertainty and unknown coordinates transformation problem

make cooperative localization complex and unfeasible. How-

ever, an SME filter solution is proposed to address all of the

mentioned issues simultaneously. In comparison to the related

work, all vehicles are considered as a joint single state which

is updated with the symmetric measurement equations. The

proposed method has been evaluated in simulations and the

results demonstrate the high performance of the SME filter

for cooperative localization.

Future work will focus on the evaluation of the proposed

approach in cluttered environments.
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