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Abstract— Fatigue and drowsiness can play an important role 

in Conditional Automation (CA), as drowsy drivers may fail to 

properly recover control. 

In order to provide better insight in the effects of drowsy 

driving in Take Over Request (TOR), we designed a driving 

experiment that extends related literature in drowsiness 

research CA with self-rated subjective drowsiness, and analyze 

TOR performance adopting methods from recent TOR 

publications.  

Results show that under certain conditions, drivers are very 

prone to drowsiness. Specifically, in this study the majority of 

subjects reported a high level of drowsiness before 15 minutes. 

Furthermore, this self-perceived drowsiness was followed by a 

decrement in vehicle lateral control during TOR. In this time 

frame, remaining driving performance and eye-tracking related 

metrics did not show significant decrements traditionally 

associated with fatigue and drowsiness, suggesting self-report to 

be more indicative of drowsiness than eye-based metrics. 

I. INTRODUCTION

In a near future, automated vehicles are expected on public 
roads. This expectation is reinforced by technological 
achievements [1], prototypes [2] and even commercially 
available cars [3]. As countries such as Germany define 
roadmaps for operationalizing automation, it becomes evident 
that humans will still have a relevant role to play. In the 
different types of automation, according the SAE [4], 
Conditional Automation (CA) is perhaps the major significant 
advance because it no longer requires drivers to be vigilant 
regarding the driving scene or the automation. However, if the 
system can no longer continue, it can delegate control back to 
the driver – Take Over Request (TOR). 

TOR research addresses driver ability to resume control 

during vehicle’s control transitions [5]. One category of 

particular interest is the emergency unplanned TOR, where 

the automation delegates the vehicle control back to the driver 

in a short time period (typically 3-10 secs) due to 

unanticipated situations (e.g. road constructions / accidents). 

If the driver fails to resume control or to resolve the situation 

in a safe way, the outcome of the event can result in an 

accident. For this reason, even if these events may be rare, 

they are a cornerstone for making the CA concept work. 

A. Driver State role in TOR

In early CA research, such as [6]–[8], major emphasis is 
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made towards characterizing the time aspects associated with 

the event. This was expected to help establish a definition for 

an adequate time window in order to give drivers enough time 

to handle the situation; the other objective would be to 

diagnose which aspects contribute more to the performance. 

Despite setting the frames for analyses of TOR situations, 

those descriptive models suffer some limitations: limited 

prediction capability [9], HMI contributions to improve the 

transition are not always clear [10], [11], and the influence of 

traffic density on TOR outcomes [12]. 

In [13] and [14], it is shown that the task drivers were doing 

previous to the TOR can significantly influence the outcome. 

In order to the importance of the driver state, more recent 

TOR schemes such as [15] give as much emphasis on 

psychological and physiological aspects as to the time and 

motoric aspects. Examples of psycho-physiological states 

have been then widely explored such as distraction [16], trust 

[17], and drowsiness. 

B. Drowsy Driving Diagnosis and Effects in CA

Arguably, fatigue and drowsiness effects on TOR have 

been less explored than other states. This happens perhaps 

because in early stages of CA, it was not anticipated as a 

major automation effect [18], [19]. 

Neubauer and colleagues [20] recognize that automation 

can decrease workload such that drivers become underloaded 

(passive fatigue), and therefore increasingly become prone to 

fatigue. They pointed that increased distress and task 

disengagement gets high after the use of automation. Another 

effect found was that the critical event response time also 

degraded compared to drivers with no automation, in line with 

[21], specifically in terms of steering response time. Later, in 

[22] a driving performance effect was found in brake time

responses. While the experiments are different in structure

and secondary task, both confirm that elicited fatigue

contributed to a degraded driving response.

 Körber and colleagues [23] designed a driving simulator 

experiment for eliciting fatigue during automation. To further 

confirm the effects of fatigue, they used an eye-tracker to 

detect drowsiness. They showed that blink frequency, and 

blink duration had significant decrements, while PERCLOS 

Riender Happee, is with Technical University of Delft, Faculty 

Mechanical, Maritime and Materials Engineering (3mE) Mekelweg 2, 2628 

CD Delft, The Netherlands. (Phone: +31 (15) 27 84981; email: 

r.happee@tudelft.nl).

Klaus Bengler is with the Institute of Ergonomics from Technical

University of Munich, Munich, Boltzmannstraße 15 D – 85747 Garching,

Germany (Phone: +49 89 289 15400; e-mail: bengler@lfe.mw.tum.de).

Drowsiness in Conditional Automation: proneness, diagnosis and 

driving performance effects 

Joel Gonçalves, Member, IEEE, Riender Happee, and Klaus Bengler 

Accepted Author Manuscript. Link to published article (IEEE): https://doi.org/10.1109/ITSC.2016.7795658

rhappee
Typewritten Text
Author Copy, IEEE ITSC 2016



  

[24] did not. Further research, in [25], showed that even if 

subjects are prone to boredom, there was no significant effect 

in event detection for relatively long trips (25 min). 

In [12] Jamson et al. study the voluntary non-driving task 

uptake as a means to divert drivers away supervision 

monotony. They report that through PERLCOS they were 

able to detect a significant difference between manual and 

automation driving. No critical events were tested. 

Addressing specifically drowsiness signs, Miller et al. [26] 

defines drowsiness indicators in terms of manual eye-closure 

for 5 seconds or yawning events. Results show that these 

events happen significant more when the driver needs to be in 

a supervision mode instead of being engaged with multimedia 

non-driving tasks. 

The current status of drowsiness effects associated with CA 

is far from a consensus that allows a clear strategy for 

exploiting the knowledge to build effective driver state 

monitoring systems. Non-repeatable effects in driving 

performance and eye behavior are evident, insufficient 

experiment details are reported, and a lack of similar 

replicable conditions make it hard to identify possible causes 

of differing effects between studies. 

C. Study’s purpose 

The aim of this study is to clarify the effects of drowsiness 

in TOR. As previous works showed somehow contradictory 

results, we intend to contribute by improving drowsiness 

monitoring, and by better detailing the handling of the driving 

event. 

In order to provide more insight in the drowsiness aspect, 

we complement eye based measurements with specific 

instructions, and by adding the subjective drowsiness self-

assessment during the experiment. 

As for the driving performance analysis, inspired in the 

good tradition of TOR analysis established by [27], we 

defined several objective metrics that help interpret the 

driving performance. 

 

 

Figure 1.  The high fidelity driving simulator used for the experiment. 

Finally, and regarding our expectations concerning the 

outcome of this study, we expect to find negative effects of 

drowsiness in driving performance, and likewise no positive 

effects. It is also our expectation that this work will be 

relevant for the TOR analysis community with the addition of 

drowsiness driving state; fatigue and drowsiness communities 

should also be interested in this work, as more studies with 

more details are needed to clarify this field; and the driver 

state monitoring community can profit from in depth human 

factor research.  

II. METHOD 

A. Apparatus 

The study was conducted in the installations of the Institute 

of Ergonomics from the Technical University of Munich. A 

fixed high fidelity driving simulator, composed of a BMW 

Series 6 vehicle and around 180° degrees of vision, as showed 

in Figure 1. Inside the vehicle participants had a the Stanford 

Sleepiness Scale (SSS) [28] table positioned in the central 

console, and a number pad in the arm support. The simulation 

software was SILAB 4 version.  

B. Groups and Instructions 

The experiment followed a between design approach, 

where volunteers were assigned to one and only one group: 

Reference Group and Drowsy Group. In the first group 

participants experience the scenario in fit condition, while the 

second group is in a state of induced drowsiness. 

1) All groups instructions 

All participants, regardless of group, had to perform a 

monitoring task. The instruction was to be vigilant concerning 

any traffic event happening in the driving scenario. 

Monitoring the road at all the time was mandatory, and 

distraction with objects inside/outside of the simulator was 

prohibited. 

Feet position was delimited by a mark in the bottom of the 

vehicle, and hands must be positioned over the lap. This was 

instructed to ensure the posture consistency, while not 

engaged with the vehicle controls. 

2) Drowsy Group specificities 

During the recruiting process, and the experiment 

participants assigned to the Drowsy Group were 

selected/instructed to comply with requirements detailed in 

Table 1. The other distinct instruction for the Drowsy group 

is the need to do an additional task: drowsiness self-report. 

The frequency of such report is not fixed, rather the 

participant is instructed to just report whenever assess his/her 

drowsiness progressed using a number pad. The motivation 

for this freedom to report, was to avoid inclining participants 

to report increasingly high levels when regularly pressured to 

self-evaluate because they know they are participating in a 

drowsy experiment. Another motivation was to minimize the 

stimuli during the experiment. 

C. Training 

All participants followed the same training procedure. This 

consisted of manually driving around 10 minutes on a 

highway. Then the interaction to intentionally start or 

interrupt the automation was trained, and finally a TOR sound 

was issued and the driver recovered control. 



  

 

TABLE I.  REQUIREMENTS FOR THE DROWSY GROUP 

Experiment 

Phase 

Designation Requirement 

Before Time of the 

Day 

Experiment only between 14h and 

16h. 

Sleep Disorder Acknowledgement of having sleep 

disorders are not eligible. 

Sleep Quality Report of experienced bad sleep 

quality in last 2 days are not eligible. 

Eating 

Behaviour 

Participants must have had lunch. 

However no coffee or energy drink 

allowed that day. 

Physiologic 

Needs 

Participants were required to go to 

the bathroom just before the start. 

During External 

Devices 

Devices such as watches, and 

electronic devices are removed from 

the participant. 

After Transport Participants must not drive vehicles 

after the experiment. 

Public transportation payed if needed 

for the return. 

 

D. Scenario 

During all course length, elements that can stimulate 

drivers were removed, i.e. other vehicles, trees, billboards, 

and changes in background. 

The course can be divided in two phases, the Pre-TOR area 

and the TOR area. 

1) Pre-TOR area 

Before the TOR, participants experienced a long straight 

highway with a very smooth elevation. Albeit the map’s 

layout is the same for both groups, the length of this area is 

different. 

In the reference group the Pre-TOR area is calibrated to last 

the exact duration of 3 minutes. This is decided to reduce the 

exposition of this group to a monotonous scenario, therefore 

keeping them fit.  

Drowsy group participants experience this segment as an 

infinite straight, with no specific time duration. The strategy 

is to keep participants reporting their subjective drowsiness 

level until it reaches a high level. The 5th level from the SSS 

was set as the threshold for considering the driver was 

drowsy. Once 5 or higher level is reported the TOR area can 

be queued in. 

2) TOR area 

The TOR scenario consists of an obstacle, in the same lane 

as the ego vehicle, that triggers a TOR with a Time to 

Collision (TTC) of approximately 5 seconds. The TOR was 

indicated with a tone of 680Hz with 28% amplitude, and 

immediately deactivated longitudinal and lateral automation. 

Since there are no other vehicles in the highway, there are two 

types of maneuvers that can be performed: evasive and stop. 

Since participants are not performing any high demanding 

task apart from being vigilant, in the 5 seconds time window 

drivers are expected to regain control, develop and implement 

a strategy for handling the situation. 

The experiment is designed such that when participants 

reach this situation, the major difference between the two 

groups is that in one group drivers are drowsy while others 

not. 

III. RESULTS 

During this section it is established for the purpose of 

statistical tests that alpha = 0.05 as the significance level. 

A. Sample 

In total we collected 31 eligible participants. For the 

reference condition a total of 16 subjects participated with 

mean age of 23.23 and a standard deviation of 1.95 years old. 

Concerning drowsy conditions, sample size is 15 with a mean 

age of 26.45 and standard deviation 7.49. 

All participants were at least 18 years, and had a valid 

driving license at the experiment time and had normal or 

corrected to normal vision. The participation in the 

experiment was voluntary, without monetary compensation.  

Figure 2.  Self-experience subjective drowsiness reported over time per participant. Vertical lines represent the mean values. The filled black dots represent 

reports above or equal to 5, which trigger the TOR event; empty fill square represent lower levels of drowsiness. N/A are participant excluded. 



  

B. Self-Reported Subjective Drowsiness 

Figure 2 presents the results for the self-report drowsiness. 

By plotting individual self-reports against time, it helps 

clarify how drowsiness is perceived at the individual level, in 

terms of evolution, but also how different this progress can be 

between individuals. 

With drowsiness level 5 defined as the threshold for the 

TOR, results show the time to reach level 5 was M = 13.33s 

and SD = 9.26s. This shows how fast perceived drowsiness 

evolves. A second lesson is the high variation, indicating 

major inter individual differences between participants, 

undertaking the experiment in the same conditions. 

C. Eye Behavior Analysis  

We proceed our analysis by analyzing the eye-tracker data, 

with the objective of obtaining evidence of eye-behavior 

effects. Using FaceLab 5.1 data for blink frequency, duration 

and PERCLOS, we select the period just before the TOR, 

which represents the mean value from the last 3 minutes. The 

results are summarized in Table 2. 

TABLE II.  EYE BEHAVIOUR DIFFERENCE BETWEEN CONDITIONS. 

Feature Reference Drowsy Two-Tail 

t-Test 

equal variance 

M SD M SD T(30) p 
Blink 

Frequency 

0,39 0,06 0,40 0,07 0,14 0,89 

Blink 

Duration 

0,16 0,005 0,17 0,005 1,05 0,30 

PERCLOS 0,03 0,01 0,05 0,02 0,67 0,51 

 

As none of the metrics had a significant difference, we 

conclude that there was no effect in eye-behavior caused by 

drowsiness in this study. 

D. Driving Performance Effects 

In terms of collisions, in both conditions, no participant 

crashed. The intervention time and the minimum time to 

collision (minTTC) are defined in [27]. The Intervention time 

and minTTC are helpful to understand how fast drivers 

intervene after the TOR starts; and how close they were to 

colliding with the obstacle, respectively. The results are 

plotted in Figure 3. 

Intervention time in the reference condition is characterized 

by M = 1.81s, SD = 0.72s, and Med = 1.75s. As for the drowsy 

condition, the values are M = 1.87s, SD = 0.89s, and 

Med=1.82s. A student t-test resulted in a non-significant 

difference, t(30)=-0.37, p= 0.71. 

Following similar analysis for the minTTC, there was no 

significant difference between reference condition (M= 1.87s, 

SD= 0.89s) and drowsy condition (M= 2.46s, SD=1.10s) with 

t(30)= -1.68, p=0.10. 

Therefore, in this study, and following a similar analysis as 

TOR research, drowsiness did not significantly affected the 

temporal aspects. 

Using the maximum (absolute) acceleration during the 

TOR can discriminate between good and bad takeovers, as it 

is often interpreted that high de/accelerations mean extreme 

measures and loss of control. 

 
Figure 3.  Intervention Time and minimum TTC. The temporal aspects 

associated with response to the event, and danger of collision. 

 
 

Figure 4.  Maximum acceleration. Circles represent the reference 

condition, and X the drowsy condition. Lateral acceleration was 

significantly higher for drowsy condition subjects. 

In longitudinal acceleration, there was no effect of 

drowsiness with the reference condition (M= 2.63s, SD= 

1.48s) and the drowsy condition (M= 2.88s, SD= 1.74s) 

scoring t(30)= -0.45, p= 0.66. Lateral acceleration showed a 

significant effect of drowsiness, where reference condition 

(M= 2.58s, SD= 2.34s) and (M= 5.03s, SD= 3.12) tested 

significant with t(30)= -2.53, p=0.02. 

The data evidences that drowsy condition had more 

extreme lateral accelerations, which in practice translated to 

stronger jerks in the steering wheel when compared with the 

reference group. This becomes evident in Figure 4, with the 

right side of the plot being populated by a cluster mainly 

composed by drowsy participants. 

The final qualitative measurement we assess is mirror 

checking, and can be useful to assess if drivers perform good 

or bad maneuvers for the right or wrong reasons by checking 

if subjects consult the mirrors before intervening. The results 



are presented in Figure 5.Testing if the frequencies are 

different, the results are 𝜒2(3) = 8, p = 0.24. Therefore, we 

have no evidence that drowsiness significantly affected mirror 

checking despite the slightly lower score for the reference 

group. 

Figure 5.  Mirror checkings during TOR. Checking the mirrors before 

interve is interpreted as a good practice. No signigicant difference between 

the two conditions. 

IV. DISCUSSION

A. Drowsiness in Conditional Automation

Drowsiness seems to have an important role to play, 

perhaps more relevant than previously anticipated. In this 

study, we explored the concept of passive fatigue [29], where 

prolonged exertion of a task [30] in a monotonous 

environment can be elicit fatigue and drowsiness.  

In order to exploit this situation, we setup drowsy condition 

participants to have pre-conditions (see section II.B.2) and 

place them in monotonous highway traffic. As data shows, 

most subjects experience subjective drowsiness in less than 

15 minutes. Albeit works such as [22], [26] suggest that 

performing engaging non-driving tasks can counter this 

effect, there is still no large scale experiment or high number 

of experiments confirming the validity.  

Driving CA with the pre-conditions as the drowsy group, 

and having a segment of 15 minutes’ monotonous road 

segment in a long trip, can arguably occur sufficient times 

during a year to be worth our attention towards this topic.  

B. Relevance of Drowsiness effects on Performance

Assuming the difference between intervention time and 

response time (i.e. time to reach the vehicle’s controls) is 

neglectable, then this study contrasts with the increment of 

time from the studies [21], [22], and [29]. Two main reasons 

can contribute to this disparity: experiment time and pre-

warning. One important difference between experiments is 

the time drivers are experiencing the drowsy condition, where 

this study is roundabout 15 minutes, others are 50 min [29], 

35 min [31] and 45 minutes. The second difference is that 

critical events in this study are preceded by an auditory 

warning, which can improve the reaction time compared to 

subjects that are required to identify the situations. 

In this study we had evidence that subjective drowsiness 

can be used to predict decrement in lateral control. Effects  on 

lateral control are also reported in [31], and [29]. Albeit 

metrics are different, with other authors relying in SDLP, 

there is a common denominator that lateral control has 

potential to be affected. Yet, in [29] the SDLP is lower than 

the other groups (on manual driving after critical event), while 

in [31] it was higher. Since SDLP can be interpreted both 

ways, it is not clear how it affects drivers, just the changing 

effect seems to be consistent. 

Considering eye-based metrics used for drowsiness 

detection [24] and their potential capabilities for CA [32], the 

results do not support their use, at least for such short time. 

However, as showed by the works of [23], [12], and [24] eye 

behavior of each individual seems to significantly differ; not 

even metrics like PERCLOS hold in all studies; this may 

happen due to the wrong premise that eye-behavior alone 

captures drowsiness effects. As Philips and colleagues 

noticed [30], it is possible to have “normal” eye-behavior 

even when experiencing major drowsiness. 

The individual differences were quite noticeable also in 

terms of facial and motion behavior, as some participants 

would nod or yawn making it evident they were experiencing 

drowsiness. This individual behavior and the expansion of 

sensory data to motion and facial behavior looks likean 

interesting source of information for complementing eye 

behavior [33],[34] and [35].  

C. Study Limitations

It should be mentioned that this study was done with a 

relatively small sample, and it is not representative of the full 

driver population. 

Due to technical limitation it was not possible to 

objectively check all pre-conditions (i.e. energy drinks, or 

sleep quality the night before) for admitting a subject into the 

drowsy group. This control was made by only questioning the 

subject. 

V. CONCLUSION & FUTURE WORK

In this study we provide evidence on driving performance 

effects caused by a drowsy state using a driving experiment 

design similar to TOR research, allowing us to compare the 

effects of this state with other driver states. 

By adding the self-report mechanism for subjects to report 

their perceived drowsiness, this study showed that human 

self-assessment may outperform eye-based assessment. 



For future research, the focus will be twofold: 1) extend the 

time of the experiment to be equivalent to related literature 

and; 2) explore diagnosis models focused on the intra and 

inter-individual eye, motion and facial differences when 

drowsy. 
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