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Abstract— Car pooling is expected to significantly help in
reducing traffic congestion and pollution in cities by enabling
drivers to share their cars with travellers with similar itineraries
and time schedules. A number of car pooling matching services
have been designed in order to efficiently find successful ride
matches in a given pool of drivers and potential passengers.
However, it is now recognised that many non-monetary aspects
and social considerations, besides simple mobility needs, may
influence the individual willingness of sharing a ride, which
are difficult to predict. To address this problem, in this study
we propose GOTOGETHER, a recommender system for car
pooling services that leverages on learning-to-rank techniques
to automatically derive the personalised ranking model of each
user from the history of her choices (i.e., the type of accepted
or rejected shared rides). Then, GOTOGETHER builds the list
of recommended rides in order to maximise the success rate
of the offered matches. To test the performance of our scheme
we use real data from Twitter and Foursquare sources in order
to generate a dataset of plausible mobility patterns and ride
requests in a metropolitan area. The results show that the
proposed solution quickly obtain an accurate prediction of the
personalised user’s choice model both in static and dynamic
conditions.

I. INTRODUCTION

Car pooling (aka ride-sharing) consists in the sharing of

private cars and related journeys with one or more people

who have similar mobility needs. Car pooling is commonly

considered a sustainable transportation mode since it reduces

the number of travelling cars, which is beneficial to lower

traffic congestion on roads, the need of parking spaces and

total carbon emissions [1], [2]. Car pooling is not a novel

concept. In the past, local authorities already tried to promote

ride-sharing for commuters, starting with the construction of

high-occupancy vehicle lanes in early 1980s. However, only

recently car pooling started to gain momentum through the

development of online and mobile services that allow drivers

with spare seats to connect with people wishing to share a

ride on very short notice or even en-route (e.g., BlaBlaCar,

carpooling.com, gomore.com).

In order to be successful, car pooling applications need

efficient matching algorithms able to automatically provide

suitable and real-time ride matches to their users [3]. Typi-

cally, proximity in time and space is a necessary condition to

*This work has been partially supported by the EC under the H2020-SC
Lighthouse Project n. 691735, REPLICATE.

have a good match between trips [4], [5]. Clearly, private car-

pooling providers want to generate revenues and maximise

the number of participants. Public providers may also have

a societal objective and aim at maximising a system-wide

benefit (e.g., reduction of congestion). Thus, when deter-

mining matches between drivers and riders in a ride-sharing

system, it is essential to effectively combine system-wide

optimisations with user-based benefits and constraints on the

feasibility of ride matches.

It is important to recognise that reduced travel costs may

not necessarily be the only or most important reason for a

user to accept a ride-sharing suggestion [1], especially in case

of short distances. Many other aspects may be relevant for

the user’s choice, and determine whether a particular shared

ride would be accepted or not (e.g., safety considerations,

social similarity between driver and passengers, etc.). For

these reasons, many recommendation systems and incentive

models have been recently proposed to increase the success

probability of ride-sharing suggestions, for instance on the

basis of monetary negotiation [6], measurements of ride

enjoyability [7] and utility of the user’s desired activity at the

destination [8]. However, the majority of existing solutions

assume to know a priori the most relevant reasons to accept

or reject a shared trip for each user, typically on the basis

of stated-preference travel surveys [9]. Furthermore, users’

preferences may change over time making the users’ profiles

difficult to maintain.

In this work we propose GOTOGETHER, a dynamic and

personalised car pooling solution that is able to learn the

individual acceptance model of each user in an automated

and transparent (for the user) way. We start by observing that

any online car pooling system provides the passengers with

an ordered list of the top ride matches to choose from. The

user can accept one of the suggested offers (not necessarily

the top ranked) or reject all of them. The user’s choices

over time provide invaluable information on her personal

preferences. For this reason, we leverage on machine-learned

ranking (also Learning-to-Rank or LR) techniques [10] to

reconstruct the initially unknown ranking model that is

implicitly adopted by each individual user to determine

the relevance of a ride match for a specific request of

the user. Then, GOTOGHETER builds a personalised list of

recommended shared rides for each user in order to maximise

the success rate of the offered ride matches. To investigate

http://arxiv.org/abs/2307.05697v1


the effectiveness of the proposed solution we used a data-

driven validation methodology generating a data set that

merge topological information with the social characteristics

of the visited places and of possible car poolers. To this aim,

we extracted data from FourSquare and Twitter online social

networks as explained in Section IV. The results show that

the proposed solution can obtain an accurate prediction of

the personalised user’s choice model after a few replications

of the same car pooling requests. Furthermore, our learning

algorithm quickly reacts to variations of the users’ profiles

and dynamically adjust the users’ ranking models.

The rest of this paper is structured as follows. Section II

provides an overview of related work. Section III presents

GOTOGETHER and the proposed learning framework. In

Section IV, we present numerical results for the analysed

case study. In Section V, we describe GoTogether mobile

application, currently in use for a pilot testing. Finally, in

Section VI we draw our conclusions and present directions

for future research.

II. RELATED WORKS

There is large body of work on the carpooling problem. A

thread of studies focuses on determining the potential of

carpooling services in urban transportation scenarios mining

big mobility data. For instance, authors in [4] estimate the

percentage of sharable traffic for private cars in Tuscany

by extracting mobility profiles and route similarity between

routine trips from GPS-based car trajectories. In [11], the

benefits of vehicle pooling for taxi services in New York is

quantified as a function of tolerable passenger discomfort.

Mobile and online social data is used in [12] to assess the

potential of ride-sharing for reducing traffic in the cities

of Barcelona and Madrid. All the aforementioned studies

show that a range from 30% to 70% of existing trips can be

typically shared.

Many carpooling works are related to the design of ef-

ficient algorithms for matching passengers and drivers with

similar mobility needs, and scheduling riders’ pickup and

delivery, in order to maximise the benefits of carpooling

(e.g., minimising the total travelled distances or maximising

the number of carpoolers) considering a range of constraints

and rider preferences (e.g., maximum waiting time or social

distance). A survey of optimisation frameworks for the dy-

namic carpooling problem can be found in [3]. For instance,

integer programming is used in [13] to solve the carpooling

problem. Genetic algorithms are proposed in [14], [15] to

reduce computational times. Frequency-correlated algorithms

for rider selection and route merging are developed in [5]. A

stochastic carpooling model that considers the influence of

stochastic travel times is formulated in [16].

Recently, other studies focus on designing recommenda-

tion systems to improve the acceptance probability of a

carpooling match and to encourage participants to use the

carpooling service. The authors in [17] develops a model

for the carpooling problem that incorporates pre-matching

information (e.g., previous accepted passengers). Network

analytics is used in [18] to determine subpopulations of

Fig. 1. GoTogether system architecture.

travellers in a given territory with a higher change to create

a carpooling community, and the predisposition of users to

be either drivers or passengers in a shared car. A measure of

enjoyability for a carpooling ride is defined in [7] based on

social similarities between any two users and tendency of a

person to group with similar ones. In [19] an route planning

algorithm is proposed to generate the top-k personalised

routes based on route familiarity for each user. Our work

differs from the aforementioned studies because we leverage

on the history of user’s interactions with the carpooling

system to incrementally learn the acceptance model of each

user.

III. GOTOGETHER: A DYNAMIC AND PERSONALISED

CAR POOLING SERVICE

In this section we describe the system architecture of GO-

TOGETHER and we present its core functionalities, focusing

on the learning algorithm used to infer the users’ personal

ranking model.

A. System architecture

Figure 1 illustrates the system architecture of GOTOGETHER,

highlighting the operation flows between the user and the

system during the ride selection process. The basic compo-

nent of the system is a spatial database that stores all the

offered trips. A passenger’s query for a shared trip triggers

the ride searching process, which generates a list of possible

ride matches. Then, the candidate trips are ranked according

to the estimated user’ ranking model in order to maximise the

success probability of a ride match. The passenger’s query

must provide a series of parameters to define the ride search.

Specifically, it is necessary to specify at least: i) the departure

place (qsp), ii) the destination place (qdp), and iii) the desired

departure time (qdt). Typically, the query can also include the

user’s preferences for the ride, such us the tolerance for pick-

up/drop-off distances, the tolerance for the deviation from

the preferred departure time, and desired trip and driver’s

characteristics.

To obtain the list of candidate shared trips GOTOGETHER

applies the following procedure. First of all, it defines the

pickup area and drop-off area of the potential passenger

as the circles of radius δ around the qsp and qdp points,



Fig. 2. Example of selection of a candidate ride.

respectively1. In addition, we denote with τ the maximum

delay of the shared trip with respect to the desired departure

time. Then, for each retrieved ride in the database, say ri,

we compute the shortest paths between qsp and qdp. The

intersections between the shortest paths originated from qsp
and qdp and ri are the pickup points and drop-off points of

the passenger, respectively. The pick-up delay is obtained

as the difference between the desired departure time of the

passenger and the time instant at which the driver reaches

the pickup point following ri. Finally, ri is a candidate ride

match for the passenger’s query if the pickup and drop-off

points fall within the pickup and drop-off areas, and the pick-

up delay is shorter than τ . Figure 2 illustrates an example of

the above-described ride selection process for a given request

(solid line is a candidate ride, while dashed line no).

The list of candidate rides extracted from the ride database

needs to be ordered based on the passengers’ preferences.

To this end, the user’s personal ranking model (also called

ranker) is applied to this list to assign a ranking score to each

shared trip. Typically, this score is obtained by a combination

of utility functions associated with a set of ride features.

Clearly, the system does not have the complete and exact

knowledge of the user’s ranker but it has to rely on an esti-

mated model. In this study, we advocate the use of the history

of users’ choices to predict the users’ rankers. Specifically,

we leverage on LR techniques for automatically learning

the ranking model, and therefore optimise the car pooling

recommendations. As better explained in Section III-B, when

the user accepts a ride from the proposed ranking, the system

generates a training data which is then used by the learning

algorithm to produce the ranking model.

B. The ranking model

Before describing the GOTOGETHER learning algorithm of

the individual ranking models, it can be useful to provide a

brief overview of Learning-to-Rank (LR) techniques.

1) Background on Learning-to-Rank: Learning-to-Rank

(LR) was originally proposed for Information Retrieval (IR)

systems, i.e., collections of data objects (text documents,

images, trajectories, etc.), which can be queried by multiple

users to obtain ranked lists of objects that match the queries

with different degrees of relevance. Then, machine learning

techniques can be applied to IR systems in order to automat-

ically discover the users’ ranking models [20]. Most of LR

methods employ offline supervised learning approach, i.e.,

rankers are estimated before deploying the IR system using

training data that has been created in advance [21]. This

approach has two main drawbacks: (i) it requests a large

amount of manually annotated data (i.e., the training and

1δ is a system parameter that defines the maximum walking distance from
the passenger’s departure/arrival locations to the pickup/drop-off points.

test sets) needs to be available before deployment, and (ii)

it is difficult and costly to track dynamic behaviours in a

timely manner. On the contrary, online LR techniques allow

the system to learn directly from the users’ interactions, e.g.

via click actions2 [21]. This type of solutions are typically

based on reinforcement learning techniques, meaning that the

system test new rankers, and learns from users’ interactions

with the presented rankings. We believe that the online

approach is best suited for a car pooling system, since

collecting a large amount of training data before the system’s

deployment is not feasible. Furthermore, car pooling users

may show dynamic behaviours, and the rankers should be

able to self-adapt during the system lifetime.

Two of the most successful approaches to LR are the

listwise and pairwise methods, which differentiate on the

basis of the type of users’ feedbacks and cost functions used

to evaluate the performance of the learned ranking functions.

More precisely, listwise approaches directly operate on the

entire ranked list of data objects associated with a query. In

pairwise approaches the learning procedure consider as input

pairs of objects, and it assigns a label to the pair representing

the relative relevance of the two objects for the user. In this

case the LR method learns a classifier that predicts these

labels for each possible pair of data objects in the query

result. We believe that pairwise LR techniques fits better a car

pooling system because each query generates a single output,

i.e., the selected trip. Thus, for a pairwise LR approach, it

is easier to generate a sufficiently large sequence of training

data from a single query, while the system is running.

Finally, it is important to point out that online LR

methods intrinsically suffer from the exploitation-exploration

dilemma. In other words, an LR algorithm needs to both ex-

plore new solutions to obtain feedback for effective learning,

and exploit what has already been learned to produce results

that are acceptable for the users. A well-known method

for balancing exploration and exploitation is the ǫ-greedy

strategy [22], in which the agent selects at each time step

the greedy action3 (i.e., the action with the highest currently

estimated value) with a constant probability 1 − ǫ, and a

random action with probability ǫ. However, in [23] it has

been shown that implicit feedback can be biased towards the

top results displayed to the user. The user may not choose

the most relevant ride simply because it is located in the

lower section of the proposed list.

2) The learning algorithm: GOTOGETHER uses an online

and pairwise LR approach to define the learning algorithm,

which is inspired by the technique developed in [24]. Our

algorithm, which is described in Algorithm 1, takes as input a

user u, the set of candidate rides R fetched from the database

with a randomised order for a specific query, the learning

rate η, and the probability ǫ ∈ [0, 1]. As better explained

in the following, R is the explorative list of ride matches

because rides are not yet sorted based on their relevance

2Typically, IR systems are web-based and a click corresponds to the user’s
choice of a data object in the ranked list or to an expression of interest in
a specific data object.

3In GOTOGETHER an action is the selection of a ride match.



Algorithm 1: The carpooling learning algorithm.

Input: u, R, η, ǫ
1 R = fetchCandidateRides(qt, u)
2 X = φ(R) // extract features
3 wt−1 = fetchUserRanker(u)
4 // construct exploitative result list

5 S = w
T

t−1X

6 L = sortDescendingByScore(R,S)
7 I [r]← first element of L /∈ I with probability ǫ; element

randomly sampled without replacement from L \ I with
probability 1− ǫ

8 Display I to u and observe accepted ride rs.
9 Construct labeled pairs P = (xa,xb, y) from I and rs.

10 // update model
11 for i in 1. . .P do

12 if yi(xa i − xb i)w
T

t−1 < 1.0 and yi 6= 0.0 then
13 wt = wt−1 + ηyi(xa i − xb i)
14 end
15 end

and their position in the list is random. The algorithm starts

by extracting the vector of features x = φ(r) from each

candidate ride r ∈ R. The set of features used in this study to

rank the potential ride matches is explained in Section III-B,

but it can be further extended. We associate a weight wk

with each feature xk ∈ φ(r). Then, the candidate rides

are ranked using a weighted linear combination of these

features. Specifically, the estimated user’s ranker at time step

t corresponds to the vector of ranking weights, say wt−1,

learned so far. Then the learning algorithm construct the

exploitative list L by sorting the list R of candidate rides

using the estimated ranker. Finally, a recommendation list

I is selected from L and R as follows. For each ranking

position, the algorithm selects the corresponding ride from

the exploitative list L with probability 1− ǫ; otherwise, with

probability ǫ, the algorithm selects a ride from the explorative

list R.
At this point, the system shows the resulting recommenda-

tion list to the user, and it observes the user’s feedback. Two

types of feedbacks are possible. On the one hand, the user

can reject the entire recommendation list if the relevance of

all shown results is too low (i.e., below a critical relevance

threshold). On the other hand, the user can accept one of

the proposed rides, not necessarily the one ranked first. If

the user accepts a ride, the algorithm infers all the possible

labeled ride pairs P using the pairwise labelling method

described hereafter. For the sake of presentation clarity, we

introduce the operator ≻, and ri ≻ rj means that the ride

ri is more relevant than the ride rj for the user. Let us

assume that the recommendation list that is showed to the

user contains four ride matches (r1, r2, r3, r4) and the user

accepts ride r3. Then, we can infer that r3 ≻ r1, r3 ≻ r2,

and r3 ≻ r4, but we can not say anything about the relevance

between r1 and r2. From these observations, three train-

ing pairs can be obtained as (r1, r3,−1), (r2, r3,−1), and

(r3, r4,+1), where the labels “−1” and ‘+1” mean that they

are negative and positive learning instances, respectively. In

other words, the learning algorithm should update the user’s

ranker in order to prefer a ride similar to r3 (assigning

a higher rank to it) than a ride like r2 or r3 the next

Fig. 3. The trip trace in New York, inferred from the Foursquare’s check-
ins shared in Twitter.

time the user makes a similar query q. More formally, for

each training pair (xa,xb, y) in the training data P , the

algorithm measures how much the current model has mis-

labeled the examples. If the labels don’t match, the weight

vector is updated with the unregularized Stochastic Gradient

Descent [25] update rule:

wt = wt−1 + η yi(xa − xb),

where xa and xb are the features vectors of the ride pair.

The update rule adjusts the model weights in order to

minimise the number of mis-labeled pairs. The parameters η

influences the rate of learning but also the convergence speed

of the learner and its tuning is essential to avoid excessive

fluctuations of the learner weights.

IV. EXPERIMENTAL EVALUATION

In order to assess the performance of our learning algorithm

we generate synthetic users and mobility traces using real-

world data sources. Our dataset, evaluation methodology and

experimental results are described in the following sections.

A. Data sources

Nowadays, Online Social Networks (OSNs) can be effec-

tively used to study different aspects of human behaviours,

as well as to obtain information regarding individual mo-

bility patterns. In this study we jointly use Twitter and

Foursquare as data sources [26]. Specifically, Foursquare

is a location-based OSN that motivates registered users to

share their check-ins at different places. A check-in is often

characterised not only through raw GPS coordinates, but also

with contextual information such as the location name (e.g.,

“Starbucks”) and its semantic description (e.g., coffee shop).

Foursquare does not provide an API to fetch the check-ins

generated in a given geographic area. However, Foursquare

users typically share their check-ins also with other OSNs

like Twitter. Furthermore, Twitter provides supplemental

information about social connections and interest similarities

between users. The following methodology is used to obtain

the dataset for our experiments. First, we leverage on the

Twitter streaming APIs to get a set of geolocated tweets

sharing Foursquare check-ins within the metropolitan area



of New York for two weeks at the end of February 2016.

In this way, we collect the check-ins of 56 users. For each

user, we also download the tweet history and we use the

TagMe annotation tool [27] to extract the users’ topics of

interest4. Finally, we employ Foursquare APIs to expand the

set of topics of each user with the semantic categories of his

check-ins. To infer a plausible mobility traces from the users’

check-ins, we proceed as follows. First, for each user in our

trace we aggregate all check-ins in a single day and we sort

them by their timestamp. Then, we use the Google Maps

Directions APIs in order to determine the most plausible car

trajectory between pairs of consecutive locations in each day.

Finally, we prune all the trips with a duration shorter than 20

minutes, which results in maintaining a total of 3679 trips.

Figure 3 shows the spatial distribution of these trips on the

analysed geographical area, while Figure 4 shows the hourly

distribution of the trips over a day. Typical peak and off-peak

behaviours can be observed.
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B. User’s choice model

In the transportation field various discrete choice models

have been proposed to characterise the probability of indi-

viduals choosing a given transportation option from a finite

set of alternatives [28]. To represent the attractiveness of the

alternatives, the concept of utility is typically used, and the

observable utility is usually defined as a linear combination

of features associated to each transportation alternative. Fur-

thermore, a weight is associated to each feature to quantify

the relevance of that feature for an individual.

In this study, we use the following four features to rank a

ride offer:

• the walking distance from the trip origin to the pickup

point (dp);

• the walking distance from the drop-off point to the trip

destination (dd);

• the pickup delay (tp);

• the social similarity between the driver and the passenger.

It is intuitive to recognise that walking distances may have

different degrees of utility for each user. In general, the

shorter the walking distance and the higher the utility. To

represent this variability, we describe the walking distance

as the combination of three features, which correspond to

4We remind that Twitter APIs allow to freely download only the last 3200
tweets of a user.

three non-overlapping distance ranges. Specifically, ranges

[0, d1], (d1, d2] and (d2, d3] correspond to short, medium and

long walking distances, respectively. Then, a weight ω1(dp),
ω2(dp), ω

3(dp) for the walking distance from the trip origin

to the pickup point, and ω1(dd), ω
2(dd), ω

3(dd) for the walk-

ing distance from the drop-off point to the trip destination,

are assigned to each one of the previous ranges, respectively.

Similarly, we model the pickup delay as the combination of

three features, which correspond to three non-overlapping

time ranges. Specifically, ranges [0, t1], (t1, t2] and (t2, t3]
correspond to short, medium and long delays, respectively.

Then, a weight ω1(tp), ω2(tp), and ω3(tp) is assigned to

each one of the previous ranges, respectively5.

The fourth feature is a measure of the common interests

between users, as in [7]. Specifically, for each pair of users

u and v we can build two vectors of topics, say ~tu and
~tv, from their tweets, where each topic is weighted by its

relative importance (i.e., frequency) within the tweets. The

similarity between these two vectors is estimated using the

cosine similarity, i.e., the cosine of the angle between the

vectors of topics:

sim(~tu,~tv) =
~tu · ~tv

||~tu||||~tv||

From the social similarity we can also derive the homophily

of user u, say hu, which is defined as the median of the social

similarity between this user and all his friends. If hu ≈ 1,

we say that u is homophilous, while if hu ≈ −1 we call u

heterophilous. In the former case, the user tends to associate

and bind with similar others, while in the latter case with

individuals that have different interests. Thus, we expect that

this property may also influence users’ choices of attractive

ride shares. Clearly, varying degrees of homophilous and

heterophilous behaviours can be identified.

Finally, we can express the total utility, for a user u, of a

ride r offered by driver v as follows:

Uu(r) = hu · sim(~tu,~tv) +
3∑

j=1

ωj(tp) · 1{tp ∈ [t(j−1), tj ]}

+
∑

x=p,d

3∑

j=1

ωj(dx) · 1{dx ∈ [d(j−1), dj ]},

(1)

where 1{z} is the indicator function of a condition z:

1{z} = 1 if z = true, and 1{z} = 0 otherwise. In

other words, for the sake of simplicity the utility associated

with each feature is equal to one, but different weights are

assigned to each feature. It is important to note that we do

not need to learn the utility functions but only their weights.

Based on the values of the weights we have defined four

categories of typical users:

• Homophilous and lazy users (U1). They have a high level

of homophily and they prefer rides with a short walking

distance, and a short pickup delay: hi = 0.9; ω1(tp) =

5In the following experiments d1 = 1 Km, d2 = 2 Km and d3 = 3 Km.
Similarly, t1 = 30 minutes, t2 = 60 minutes and t3 = 90 minutes.



ω1(dp) = ω1(dd) = 0.8; ω2(tp) = ω2(dp) = ω2(dd) =
0.15; ω3(tp) = ω3(dp) = ω3(dd) = 0.05.

• Homophilous and active users (U2). They have a high

level of homophily and they are willing to walk longer

distances to reach the driver, and wait a longer time:

hi = 0.9; ω1(tp) = ω1(dp) = ω1(dd) = 0.05; ω2(tp) =
ω2(dp) = ω2(dd) = 0.15; ω3(tp) = ω3(dp) = ω3(dd) =
0.8.

• Heterophilous and lazy users (U3). They have a low level

of homophily, and they prefer a short walking distance

and a short pickup delay: hi = 0.1; ω1(tp) = ω1(dp) =
ω1(dd) = 0.8; ω2(tp) = ω2(dp) = ω2(dd) = 0.15;

ω3(tp) = ω3(dp) = ω3(dd) = 0.05.

• Heterophilous and active users (U4). They have a low

level of homophily, and they are willing to walk a long

distance and to wait a longer time: hi = 0.1; ω1(tp) =
ω1(dp) = ω1(dd) = 0.05; ω2(tp) = ω2(dp) = ω2(dd) =
0.15; and ω3(tp) = ω3(dp) = ω3(dd) = 0.8.

C. Evaluation methodology and results

To test the performance of the proposed car pooling system

we use the following methodology. First, we assume that the

users in our dataset are commuters, who perform the same set

of ride-sharing requests over several consecutive days. Then,

we uniformly distribute the users in the previously described

categories (i.e., U1, U2, U3, and U4).

The requests of shared rides for each user are generated

as follows. We consider the mobility trace of each user in

the dataset and we cluster both the origin and the destination

points of the trips in the trace. We assume that two points

belong to the same cluster if the distance between them is

shorter than 400 meters. Then, we use the centroids of these

clusters as the origin and destination points of the queries

performed by that user. To avoid searching for unpopular

and short routes, we also require that the requested ride is

not shorter than 10 Km, and that there are at least fifteen ride

matches for that query in the mobility database. To assess the

load of our car pooling service, Figure 5 shows the average

number of feasible requests generated by each user on a

hourly basis. As expected, the car pooling service has a load

peak in the middle of the day. Clearly, the number of feasible

requests is varying between the users. To avoid a bias towards

users that are much more active than others, we randomly

select at most 100 queries per hour for each user from the set

of feasible ride-sharing requests. Finally, we assume that the

recommendation list consists of ten suggested ride matches,

and that the user selects one of the recommended rides only

if the ride utility, as defined in Equation (1), is greater than

a critical threshold called C.

Considering all the feasible rides, the average ride utility

per user varies between 0.1 and 2.77. However, the utility

values are more concentrated in the lowest part of this range.

For instance, only 4.26% of ride offers has an utility that is

greater than 2. For this reason, it does not seem reasonable

to select high values of the threshold C. Consequently, to

evaluate our system we consider three different acceptance

thresholds, namely C = 0, 1, 2. Clearly, if C = 0 then users

will always select one of the proposed ride matches in the

recommended list. The larger the C values, the higher the

probability to reject an offer.
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Fig. 5. Hourly distribution of the average number of feasible queries
generated by each user.

1) Metrics: We evaluate GOTOGETHER in terms of two

performance metrics. The first one is the average ranking

of the best ride match of each query. In principle, an ideal

ranker should always classify the best ride match as the

top ranking in the recommended ride list. The second one

is the success probability of the ride match, computed as

the ratio between the number of rejected ride requests (i.e.,

recommended ride lists without acceptable offers) and the

total number of requests.

2) Static scenario: The first set of experiments is carried

out in a static scenario in which each user is characterised

by a choice model with time-invariant parameters. Then,

we evaluate the convergence time of the learning algorithm

as a function of the exploration rate ǫ. Figures 6a, 6b,

and 6c show the average ranking in the recommendation

list of the best ride match for acceptance thresholds equal

to 0, 1, and 2, respectively. Note that we do not assume

any a priori knowledge of the users’ choice model, and

the users’ rankers are initialised with all weights set to

0. Important observations can be derived from the shown

results. First, our learning algorithm quickly improves its

predicting performance and after a few iterations (i.e. days)

it is able to classify the best ride as one of the top rankings

in‘ the recommendation list. Clearly, the convergence speed

to a stationary behaviour depends on the exploration rate

ǫ. Generally, the lower the exploration rate, the better the

learning performance. Intuitively, this can be explained by

observing that in a static scenario the users apply always

the same choice model and the ranker continues to learn

and adapt to the users’ profile. Thus, exploitative actions

should be preferred over explorative actions. For instance, a

purely random strategy that selects only explorative actions

(i.e. ǫ = 1) is unable to learn the users’ ranking models and

it could even fail to include the best ride match in the list

of the ten recommended rides. On the other hand, ǫ = 0.2
and ǫ = 0.1 provide the highest rankings for the best ride

match. Interestingly, a strategy that selects only exploitative

actions (i.e. ǫ = 0) performs worse than a strategy that

still allows an exploration phase. Furthermore, the learning

performance significantly degrades when increasing the value
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Fig. 6. Average ranking of the best ride match for various acceptance thresholds and exploration rate.

of the acceptance threshold C. In particular, with C = 2 the

learning the best ride match is classified at most with the

sixth ranking even with the best setting of the exploration

rate. A possible explanation of this behaviour is that there

are many rejected offers and the learning algorithms has too

few examples to learn from.

To validate our intuition about the learning degradation,

in Figure 7 we show the average success probability of a

ride request for three different cases: i) an ideal ranker that

always classifies the best ride match at the top of the rec-

ommended list, ii) the fully explorative learning algorithm,

and iii) the learning algorithm with the best setting of the

exploration rate (i.e., ǫ = 0.2). We can observe that, when

C = 2, even an ideal learning algorithm would obtain a

low success probability (around 28%). The performance of

our exploitative learning algorithm with ǫ = 0.2 is close

to that of the ideal solution, even if the best ride match is

not top ranked (see Figure 6c). On the contrary, a random

choice of the recommended list (i.e., ǫ = 1) leads to worse

performance with a 30% decrease of the success probability.

In general, the learning algorithm needs the users’ choices to

improve its estimate of the users’ ranking models. If many

ride requests fail, then the learning algorithm gets stuck with

inaccurate estimates.

3) Dynamic scenario: In this section we consider a dy-

namic scenario, in which each user periodically decides

to change his choice model. Specifically, every 5 days a

user randomly changes its user category. Figure 8 shows

the variation of the average ranking of the best ride match

in the recommendation list. Clearly, after a radical change

of the user’s choice model, the ranking model provides
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Fig. 7. Average success probability of a ride request.

wrong estimates. However, our learning algorithm quickly

detects this change and correctly updates the weights of the

ranking function. Interestingly, we can observe that after the

first change of user category, the learning algorithm appears

slightly slower in updating the user’s ranking model. This

can be explained by observing that the update rule of the

learning algorithm may have some inertia. However, the

error introduced by the subsequent changes of user category

tends to decrease. As for the static scenario, exploration rates

ǫ = 0.2 and ǫ = 0.1 provide the best learning performance.

V. GOTOGETHER MOBILE APPLICATION

In order to experimentally evaluate GOTOGETHER with real

users, we developed an Android mobile app implementing

the recommendation system described above. It has been

recently launched in the CNR campus area in Pisa as a

corporate carpooling service. The campus hosts more than

1200 working people, several of them commuting every day.

The GOTOGETHER app provides several functionalities: ride

search and offer operations, visualisation of the current user’s

rides (both as a driver and a passenger) as well as the most

popular shared routes, the possibility to set a reminder to be

automatically notified when a plausible trip is available (see

Figure 9 for some screenshots). Note that the users’ profiles

can also be characterised in terms of travel preferences (i.e.,

listen to music, travel with smokers, colleagues, neighbours),

in addition to the temporal and spatial constraints for the

requested ride. The application is currently available on the

Playstore6 and we are collecting real data from its usage to

6https://play.google.com/store/apps/details?id=it.cnr.iit.smartmobility
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Fig. 9. GoTogether mobile app.

further evaluate the system.

VI. CONCLUSIONS

In this work we have shown that machine-learned ranking

techniques can be effectively used to improve the quality

of the recommendation system of a car pooling service. In

particular, we have designed an online, pairwise learning-

to-rank algorithm that leverages on the history of users’

selections among the offered rides to predict the individual

ranking model of the users. Then, we have used Twitter and

Foursquare as data sources to generate a dataset of plausible

mobility patterns and ride requests. Finally, we have used this

dataset to evaluate our learning algorithm in terms of learning

speed and accuracy, both in static and dynamic scenarios.

The shown results confirm the validity and robustness of the

proposed solution.

As future work, we plan to extend our methodology to

consider additional data sources and ride features. Further-

more, we are collecting real data from a prototype implemen-

tation of the GOTOGETHER system to evaluate our solution

in the real world. Another avenue of research is to design

a more sophisticated learning framework that could work in

multi-modal scenarios in which car pooling is one of the

available on-demand mobility services, in addition to, for

instance, car and bike sharing.
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