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Trajectory Planning Under Vehicle Dimension Constraints
Using Sequential Linear Programming

Mogens Graf Plessen∗,1, Pedro F. Lima∗,2, Jonas Mårtensson2, Alberto Bemporad1, and Bo Wahlberg2

Abstract— This paper presents a spatial-based trajectory
planning method for automated vehicles under actuator, ob-
stacle avoidance, and vehicle dimension constraints. Starting
from a nonlinear kinematic bicycle model, vehicle dynamics
are transformed to a road-aligned coordinate frame with path
along the road centerline replacing time as the dependent
variable. Space-varying vehicle dimension constraints are lin-
earized around a reference path to pose convex optimization
problems. Such constraints do not require to inflate obstacles
by safety-margins and therefore maximize performance in very
constrained environments. A sequential linear programming
(SLP) algorithm is motivated. A linear program (LP) is solved
at each SLP-iteration. The relation between LP formulation
and maximum admissible traveling speeds within vehicle tire
friction limits is discussed. The proposed method is evaluated in
a roomy and in a tight maneuvering driving scenario, whereby
a comparison to a semi-analytical clothoid-based path planner
is given. Effectiveness is demonstrated particularly for very
constrained environments, requiring to account for constraints
and planning over the entire obstacle constellation space.

I. INTRODUCTION

Automated vehicles can address various challenges. Fuel
consumption can be reduced by means of platooning [1],
and anticipative driving in car-2-car and car-2-infrastructure
communicating environments [2], [3]. Traffic safety may be
increased by means of automated handling of vehicles at their
friction limits [4]–[6]. Congestion in cities can be reduced
by means of coordinated traffic flows [7]. We can distinguish
between longitudinal and steering-related vehicle control.
The former is much simpler when considered isolatedly
and it is introduced commercially [8]. Steering-applications
are more complicated, since the exact traveling trajectory
is decisive for permissible traveling speeds within friction
limits, thereby affecting vehicle stability. In general, we can
distinguish between high- and low-velocity driving scenarios.
For the former, steering is relevant for obstacle avoidance
and throughput maximization on highways with vehicles of
different agility capabilities [9]. For the latter, steering is
relevant for tight maneuvering.

We address trajectory planning with obstacle avoidance.
The main motivation and contribution is the development of
a linear programming-based framework for the incorpora-
tion of actuator, obstacle avoidance, and, foremost, vehicle
dimension constraints. A spatial-based problem formula-
tion is employed, eliminating time-dependency [10]–[14].
A sequential linear programming algorithm is motivated to
successively improve planned trajectories.

Regarding obstacle avoidance, in [15], vehicle dimensions
are accounted for by decomposing the vehicle shape into
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Fig. 1. A nonlinear dynamic bicycle model, including the representation
of the curvilinear (road-aligned) coordinate system, and vehicle dimensions.

several circles of specific radius laid out equidistantly along
the longitudinal vehicle axis. In [16], safety distances are
added to each side of the vehicle before making a hierarchical
zero/one decision about interference with other obstacles.
In [17], an obstacle proximity cost is considered. In [11],
[12], [14] safety margins are added to obstacle contours such
that point-mass trajectories can be planned; see also [18] for
a method transforming obstacle contours.

Regarding trajectory planning, in [6], [19], [20] reference
paths composed of straights, arcs, and clothoids are used.
In [21], a path sparsification method is presented that enables
to fit a reduced number of clothoid segments to a refer-
ence path. Alternative trajectory planning approaches include
sampling-based methods, such as rapidly-exploring random
trees (RRT) [22], B-splines [23], lattice-based motion plan-
ners [24], hybrid [25], configuration-space planners [18], and
hierarchical methods, such as [26], where the output of a
graph search based planner (A⋆) is consequently smoothed
by a nonlinear optimization scheme to improve the quality of
the solution. Though not addressing obstacle avoidance tasks,
a sequential convex programming approach is employed
in [27] when seeking the racing-line along a road segment.
For a recent survey on motion planning, see [28]; according
to its taxonomy, the method presented in this paper can be
classified as a numerical optimization approach.

This paper is organized as follows. The problem formula-
tion and main notation are defined in Section II. The SLP-
Algorithm is stated in Section III. Simulation results are
reported in Section IV, before concluding.

II. PROBLEM FORMULATION AND NOTATION

A path is sought avoiding obstacles, accounting for vehicle
dimensions, traveling within road boundaries, respecting
physical actuator constraints, and preferring smooth trajecto-
ries to increase safety by providing high maximum traveling
speeds within friction limits. We consider two coordinate
frames: a global one within the (x, y)-plane and a road-
aligned one within the (s, ey)-plane, see Fig. 1. The road
centerline coordinate is denoted by s. Let a trajectory planned

at time t be defined by z(s) = [eψ(s) ey(s)]
T

, with
s ∈ [st, st + S], where the corridor length is S > 0 and
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st denotes the vehicle’s position along the road centerline.
The driving corridor is defined by spatially dependent convex
bounds emin

y (s) ≤ ey(s) ≤ emax
y (s). Moving obstacles are

accounted for by a velocity-adjusted mapping to the road-
aligned coordinate system according to [14, Sect. III.E].
For few obstacles, a corridor may be determined based on
heuristics (overtaking left or right). In general, a combina-
torial problem has to be solved. In all of the following,
this paper concentrates on the development of a trajectory
planning method and assumes that a traversable corridor is
given. Throughout this paper forward motion is assumed,
i.e., eψ(s) ∈ (−π

2 ,
π
2 ). Let the associated trajectory in the

(x, y)-plane be defined by X (s) = [x(s) y(s) ψ(s)]
T

.
The actual path length traveled by the vehicle is denoted by
η(s). It holds that η(s) = s if eψ(s) = 0 and ey(s) = 0, ∀s.
Otherwise, η(s) 6= s because of lateral deviations of the
vehicle’s traveled path from the road centerline. For brevity,
the distance argument is dropped in the following. We
model vehicles as rectangles. This is a simple and yet an
accurate vehicle representation. As illustrated in Fig. 1,
parameters a, b, and w indicate distances between the center
of gravity (CoG) and rear, front and lateral vehicle sides,
respectively. The four vehicle corners ci, i = 1, . . . , 4, can
be expressed as

sci = s+ ξsci cos(eψ) + ζsci sin(eψ), (1)

ey,ci = ey + ξeyci cos(eψ) + ζeyci sin(eψ), (2)

with ξsci , ξ
ey
ci ∈ {b,−a,−a, b}, ζsci ∈ {−w,−w,w,w}, and

ζ
ey
ci ∈ {w,w,−w,−w} for ci, i = 1, . . . , 4, respectively.

Let the maximum and the rate steering actuator limitations
be denoted by δmax and δ̇max. We assume symmetry, i.e.,
δmin = −δmax and δ̇min = −δ̇max. Throughout this paper a
goal is the minimization of absolute curvature peaks to
maximize the lower bound on maximum permissible velocity
within vehicle friction limits [6]. Let the initial and desired
end vehicle pose be indicated by z(st) and z(st + S).

For obstacle avoidance, this paper incorporates vehicle
dimension constraints starting directly from nonlinear equa-
tions (1) and (2). Such constraints and the exploitation of
available space is of particular relevance for maneuvering in
tight spaces and for larger-sized vehicles.

III. SEQUENTIAL LINEAR PROGRAMMING

A. Spatial-based vehicle dynamics

Consider the nonlinear kinematic bicycle model

[

ẋ ẏ ψ̇
]T

= [v cos(ψ) v sin(ψ) v
l
tan(δ)]

T
, (3)

assuming the CoG to be located at the rear axle and l
denoting the wheelbase. We abbreviate time and spatial
derivatives by ẋ = dx

dt
and x′ = dx

ds
, respectively. In order to

derive a spatial representation, we briefly review [14]. In ac-
cordance with Fig. 1, we have ėψ = ψ̇− ψ̇s, ėy = v sin(eψ),

and ṡ =
ρsv cos(eψ)
ρs−ey

. Expressing e′ψ =
ėψ
ṡ

and e′y =
ėy
ṡ

, the

spatial-based representation of (3) is

[

e′ψ e′y
]T

=
[

(ρs−ey) tan(δ)
ρsl cos(eψ)

− ψ′

s
ρs−ey
ρs

tan(eψ)
]T

. (4)

The control variable is the front-axle steering angle δ.
Note that the spatial transformation eliminates any velocity-
dependence in (4). This is characteristic for kinematic vehicle
models but not the case for dynamic models [14].

In [21], curvature κ along the traveled vehicle path is
related to steering angle δ. For path sparsification, an ℓ1-
optimization problem is then solved, where the decision
variable is a set of discrete κ expressed along a trajectory of
waypoints. The optimized curvature sequence κ is ultimately
inverted and fed to a low-level feedback controller, which
translates it to steering commands. It is well known that
paths composed of clothoid concatenations are desirable and
frequently employed in road design [29]. In a clothoid, the
curvature varies linearly with the path arc-length. Thus, the
curvature of paths composed of clothoid concatenations is
PWA. Here an important remark can be made.

Remark 1: Expressing states and control variables as a
function of path arc-length s is advantageous when formulat-
ing linearly constrained optimization problems. This is since
it is possible to formulate linear bounds on state variable ey.
These bounds are derived from, in general, spatially-varying
road widths and coordinate transformation-distorted obsta-
cles that can be approximated by their minimal rectangle-
envelope within the (s, ey)-plane. However, because of the
resulting obstacle avoiding trajectory, the actual planned
path may significantly deviate from the road centerline. In
accordance with Section II, the path arc-length along the
actual planned path is η. A PWA curvature profile κ(η)
would ensure clothoid-based path planning. However, a PWA
κ(s) does not yield a clothoid path, unless s = η.

Let us denote (4) by z′ = f(z, u) with u = δ. Let
a discretization grid along the road centerline be defined
by {sj}

N
j=0 = {s0, s1, . . . , sN}, whereby for simplicity we

abbreviated sj for st+j when planning at time t. For a user-
defined number of discretization points N , the discretization
grid is initialized uniformly. New grid points are added such
that all (potentially safety margin-adjusted) obstacle corners
within the (s, ey)-frame are accounted for. Consequently,
the grid is, in general, non-uniformly spaced. Then, given
a set of corresponding references {eref

ψ,j}
N
j=0, {eref

y,j}
N
j=0 and

{uref
j }N−1

j=0 , the linearized and discretized system dynamics
are zj+1 = Ajzj +Bjuj + gj .

B. Linear vehicle dimension constraints

Let us derive convex vehicle dimension constraints. At
every sj , assuming forward motion, we can describe lateral
vehicle boundaries affine in s and nonlinear in eψ,j as

elower
y,j (s) = tan(eψ,j)(s− sj,c3) + ey,c3 , (5)

e
upper
y,j (s) = tan(eψ,j)(s− sj,c2) + ey,c2 , (6)

accounting for (1). We define the set

S̃j = {{sk}
N−1
k=1 : sj −∆sj,min ≤ sk ≤ sj +∆sj,max}

=: {sk̃1 , sk̃2 , . . . , sk̃Ñj
},

with

∆sj,min = min(sj,c2 , sj,c3),∆sj,max = max(sj,c1 , sj,c4),

and

Sj={sk̃1−1, sk̃1 , . . . , sk̃Ñj
, sk̃Ñj+1}=:{sk1, . . . , skN̄j}, (7)

to also guarantee coverage of vehicle corners in between any
two grid points. The linearization of (5) and (6) yields

elower
y,lin,j(s) =

[

glower(s) 1
]

[eψ,j ey,j]
T
+ hlower

lin,j (s), (8)

e
upper
y,lin,j(s) = [gupper(s) 1] [eψ,j ey,j]

T
+ h

upper
lin,j (s), (9)
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Fig. 2. Illustration of vehicle dimension constraints. Indices (i) and (i−
1) indicate the corresponding SLP-iteration. The planning result at path
coordinate sj = 14m is displayed.

with glower(s), hlower
lin,j (s), g

upper(s), and h
upper
lin,j (s) parameter-

ized by sj , e
ref
ψ,j , and eref

y,j . The main motivation of vehicle
dimension constraints is to ensure that the vehicle geometry
is constrained to the interior of the road corridor. By evalu-
ating (8) and (9) at the discrete grid points of (7), this can
be expressed as the set of inequalities







elower
y,lin,j(sk1 )

...
elower
y,lin,j(skN̄j )






≥







emin
y (sk1)

...

emin
y (skN̄j )






, (10)







e
upper
y,lin,j(sk1 )

...
e

upper
y,lin,j(skN̄j )






≤







emax
y (sk1 )

...
emax
y (skN̄j )






. (11)

We summarize the left-hand sides of the inequality signs
by Llower

sj
and Lupper

sj , respectively. For visualization, see
Fig. 2. Inequalities (10) and (11) are linear in state zj at
position sj and can be compactly summarized as Qlower

j zj ≥

qlower
j , and Q

upper
j zj ≤ q

upper
j , with Qlower

j , Q
upper
j ∈ R

N̄j×2,

qlower
j , q

upper
j ∈ R

N̄j , and N̄j variable for each sj and

dependent on references eref
ψ,j and eref

y,j . Finally, note that

instead of S̃j , as a least-conservative variant, it could be

differentiated between two grid segments S̃ lower
j and S̃

upper
j

that are different for both lateral vehicle sides, instead of
having one S̃j common to both.

C. Linear programming formulation

We propose the following linear programming (LP):

min max |u|+ λmax |D1u|+Wσ(σ + σ
N
eψ

+ σ
N
ey ) (12a)

s.t. z0 = z(st), u−1 = u(st −Ds), (12b)

zj = [eψ,j ey,j]
T
, j = 0, . . . , N, (12c)

zj+1 = Ajzj +Bjuj + gj , j = 0, . . . , N − 1, (12d)

eψ(st + S)− σ
N
eψ

≤ eψ,N ≤ eψ(st + S) + σ
N
eψ

, (12e)

ey(st + S)− σ
N
ey ≤ ey,N ≤ ey(st + S) + σ

N
ey , (12f)

e
min
y,j − σ ≤ ey,j ≤ e

max
y,j + σ, j = 1, . . . , N, (12g)

u
min ≤ uj ≤ u

max
, j = 0, . . . , N − 1, (12h)

∆u
min ≤ uj − uj−1 ≤ ∆u

max
, j = 0, . . . , N − 1, (12i)

Q
lower
j zj ≥ q

lower
j − σ1N̄j

, j = 1, . . . , N, (12j)

Q
upper
j zj ≤ q

upper
j + σ1N̄j

, j = 1, . . . , N, (12k)

σ ≥ 0, σeNy ≥ 0, σeN
ψ

≥ 0, (12l)

with decision variables {uj}
N−1
j=0 , σ, σNeψ , and σNey , and where

| · | and 1 denote the absolute value and a column-vector of
ones, respectively. LP (12) is solved repeatedly as discussed
in the next Section III-D. The initial state is z(st). The
previous input u−1 is relevant for rate constraints (12i).
The desired end pose is given by z(st + S). Constant
upper and lower bounds are umin, umax, ∆umin = u̇minTs, and
∆umax = u̇maxTs, where time Ts is related heuristically to
the discretization grid taking reference speed into account.
In general, Ts may also account for a curved reference trajec-
tory using a spatial transformation [14]. Vehicle dimension
constraints (12j) and (12k) were discussed in Section III-B.
All state constraints are softened by the introduction of slack
variables σ, σNeψ and σNey to ensure feasibility of (12). Matrix
D1 denotes the space-based first-order difference operator
acting on vectorized input u ∈ R

N×1. Let us motivate the
objective function choice (12a). The first term is to minimize
the maximum absolute curvature along traveled path; thereby
simultaneously maximizing the lower bound on maximum
admissible speed within vehicle friction limits. The second
term max |D1u| is for input signal smoothing. To strongly
penalize state constraint violations, we select a high scalar
weight Wσ = 104. A benefit of the proposed LP-based path
planning is that additional constraints can easily be added.
To enforce the overtaking of L obstacles in parallel (without
specifying the lateral distance though), we may add

eobs
ψ,l − σNeψ ≤ eψ,j ≤ eobs

ψ,l + σNeψ , ∀j ∈ J obs
l , (13)

for l = 1, . . . , L, and where

J obs
l = {j : sobs,b

l ≤ sj ≤ sobs,e
l , j = 1, . . . , N},

where eobs
ψ,l denotes the heading of the rectangle-envelope of

obstacle l, located between sobs,b
l and sobs,e

l . We reused slack
variable σNeψ to not introduce a new decision variable.

Let us elaborate on the LP (12). All uj are box-
constrained. All slack variables (including the ones when
resolving the max-terms in (12a)) are non-negative. Thus,
all decision variables are constrained to a polyhedron with
multiple extreme points. This polyhedral set is not upper-
bounded w.r.t. the slack variables. However, since the slack
variables are only additively included in a min-objective, they
will never cause unboundedness or infeasibility of (12). This
further implies that (12a) attains a finite minimum. Then, by
the Fundamental Theorem of Linear Programming [30], the
minimum is attained at an extreme point of the polyedron.
Since the simplex method searches among these points and
since they are finite numbered, (12) is guaranteed to be
solved within a finite number of iterations. For the design of
a customized LP-solver, e.g., based on the simplex method,
a warm-start is expected to be particularly useful for this
search among extreme points of the polyhedron.

Closed-loop stability in the classical sense of linear sys-
tems and Lyapunov functions cannot be guaranteed. How-
ever, the spatial modeling, in particular, constraints (12g)
(minus slack variables) in combination with the discussion in
Section III-E enforce vehicle operation within road bound-
aries and within the stable tire friction domain.

D. SLP-Algorithm

For obstacle constellations requiring larger steering ma-
neuvers, transition dynamics (12d) and vehicle dimension



Fig. 3. Sketching the motivation for SLP-iterations. Large deviations
between the trajectory output from the LP-solution and the reference
trajectory can result in jaggedness (left). This undesired jaggedness can
be alleviated by solving (12) repeatedly causing optimization and reference
trajectory to converge iteratively (right).

constraints (12j) and (12k) are strongly dependent on un-
derlying reference trajectories used for linearization and dis-
cretization. This is of particular relevance for the first initial-
ization of references, for which we reconstruct {eref

ψ,j}
N
j=0 and

{eref
y,j}

N
j=0 from a least-heading-varying PWA path avoiding

all obstacles. Therefore, we propose a sequential linear pro-
gramming (SLP) approach, i.e., we sequentially solve (12)
using as reference trajectory for linearization and discretiza-
tion the solution of the previous SLP-iteration. See also Fig.
3. We initialize steering commands as {uref

j }N−1
j=0 = 0. For

our prototyping, the maximum admissible number of SLP-
iterations is set as Imax = 5. We distinguish between SLP and
SLPp. The latter formulation additionally incorporates (13)
into (12). We summarize the following SLP-Algorithm:

1) Select: SLP or SLPp.
2) Initialize: {eref

ψ,j}
N
j=0, {eref

y,j}
N
j=0 and {uref

j }N−1
j=0 .

3) For i ∈ {1, . . . , Imax}:

- Solve (12); including (13) in case of SLPp.
- Update {eref

ψ,j}
N
j=0, {eref

y,j}
N
j=0 and {uref

j }N−1
j=0 .

- Check termination criterion.

4) Output: {eref
ψ,j}

N
j=0, {eref

y,j}
N
j=0 and {uref

j }N−1
j=0 .

The termination criterion is as follows. Every i, we eval-
uate (1) and (2) along {sj}

N
j=0. If any obstacle or road

boundary is hit or a jaggedness according to above sketch is
encountered, an additional SLP-iteration is conducted.

E. Bounds on admissible traveling speeds

The spatial transformation eliminates any velocity depen-
dence of a kinematic vehicle model expressed in the road-
aligned coordinate system, see Section III-A. In order for our
trajectory planning method to still provide velocity informa-
tion, we employ the method from [6, Sect. 3] to determine
spatially varying upper bounds, vmax,fric(η), on admissible
traveling speeds. Besides the gravitational acceleration con-
stant, a friction coefficient µ must be assumed. It is set as
µ = 0.8 in subsequent simulations. Any reference traveling
speeds vref(η) ≤ vmax,fric(η) are consequently within vehicle
tire friction limits.

IV. NUMERICAL RESULTS

For fast prototyping we employ MATLAB R2016b and
CVX [31]. Its default settings and solvers are used, which
come with a high numerical precision. It was found that
a much reduced solver precision did not affect trajectory
results, but sped up solver time. Two examples are discussed.
For both, N = 200 discretization points are employed,
resulting in different adaptive spatial discretization step sizes
according to Section III-A. It was found that the largerN (the
finer the discretization grid), the more tightly obstacles are
avoided. The solver time can be greatly lowered by small N .
While we retrieved acceptable trajectories for both examples

for as low as N = 40, we found that the computation of
vmax,fric(η) according to Section III-E was sensitive numeri-
cally and required ideally very smooth trajectories and thus
large N . More illustrative plots for both examples can be
found online in the extended version of this paper.

A. Concatenating clothoids for path planning

For comparison, we consider a semi-analytical path plan-
ning method based on [6], where three path primitives
(straights, arcs and clothoids) were concatenated to plan
emergency lane changes up to the vehicle’s friction limits.
According to [28], path planning methods most applied in
real implementations by research groups worldwide are in-
terpolation-based. Clothoids, together with Bézier and poly-
nomial curves, belong to that class. Here, we treat the corners
of safety margin-adjusted obstacles as waypoints. Safety
margins are added to obstacle contours to account for vehicle
dimensions. Planning based on path primitives requires to
select multiple parameters, such as arc length, straight length
and symmetric point fractions [6]. These selections can
significantly affect results. To maintain simplicity, we focus
on clothoids, straights, and symmetric trajectory design when
performing lane changes (no “early” or “late” steering –
see [6] and the discussion of the symmetric point fraction).
In the following, the comparative method is abbreviated as
CPP (clothoid path planning). Clothoids can be fitted in
either the (x, y)-, or (s, ey)-domain before then requiring a
retransformation to the (x, y)-domain. For the first example,
for interest, we employ the latter method. For the second
example, the (x, y)- and (s, ey)-domains are identical (no
curved road). Ultimately, by first-order discretization and
inversion of (3), we reconstruct steering command δ(η) along
the traveled path coordinate η.

B. Example 1: roomy maneuvering space

A curvy road profile with large inter-obstacle distance is
considered (roomy maneuvering space). Specifically for a
comparison between CPP and SLPp, we add safety margins
to obstacles (admitting a safe overtaking in parallel) and
dismiss constraints (12j) and (12k) from (12). Results are
visualized in Fig. 4 and 5. Several observations can be made.
First, as desired, SLP yields a trajectory that simultaneously
maximizes the upper bound on maximal permissible velocity
within friction limits. This comes, however, at the cost
of reaching road boundary saturation and a non-parallel
overtaking of obstacles. Second, while SLPp overtakes the
obstacles in parallel as desired, the solution of (12) with (13)
produces a trajectory, that is laterally further displaced from
the second obstacle in comparison to CPP (which is enforced
to proceed along the waypoints). See Fig. 5 for the effects
on vmax,fric. Third, Fig. 4 depicts the distortions of obstacles,
resulting from the spatial coordinate transformation from
the (x, y)- to the (s, ey)-plane. These distortions are minor
for the given example. Note the difference between planned
trajectories in the (s, ey)- and (x, y)-plane after retransfor-
mation (from the curvilinear to the global coordinate system).
While obstacles are overtaken in parallel in the (s, ey)-plane
for CPP and SLPp, the resulting (x, y)-trajectories avoid
obstacles in a curved fashion after retransformation. Fourth,
required steering actuation is confined to a region close to 0.
Fifth, for SLP two SLP-iterations were required. For SLPp,
only one iteration was needed; this can be explained by
the fact that the initial PWA reference trajectory according
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Fig. 4. Example 1. Comparison of the resulting trajectories in the global and in the road-aligned plane, in which computations are conducted. The
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Fig. 5. Example 1. The maximum admissible traveling speed within vehicle
tire friction limits is overall significantly higher for SLP in comparison to
CPP and SLPp. For SLP, the lowest vmax,fric(η) along its traveled path
coordinate η is 121km/h. For CPP, the equivalent is 81km/h. Thus, the road
segment could in principle be traversed much faster for SLP while still
remaining in the safe vehicle tire friction domain.

to Section III-D here already served as a sufficiently good
reference.

C. Example 2: tight maneuvering space

For a second example, a tight maneuvering space is
assumed. Consider a planning scenario in a parking area. We
incorporate constraints (12j) and (12k) into (12). Results are
visualized in Fig. 6 and 7. Several observations can be made.
First, steering commands of CPP, which were recomputed
from planned trajectories according to Section IV-A, violate
actuator constraints, see Fig. 7. This has two causes: a)
the absence of explicitly accounting for actuator constraints
when trajectory planning according to CPP, and b) the en-
forcement of proceeding pairwise along waypoints, thereby
also enforcing parallel overtaking. In contrast, as Fig. 7
illustrates, SLP remains easily within actuation limits. This
is enabled by the fact that SLP accounts for the entire
obstacle constellation space (anticipative steering). Second,
a detail; as Fig. 7 illustrates, the final steering angle upon
reaching the end pose is turned at -22.1◦. This is entirely in
line with the formulation of (12) connecting the given start
and end pose (and not planning beyond these). Third, four
SLP-iterations were required overall to meet the termination
criterion of Section III-D. Here a remark can be made.
Note that it is distinguished between a) the (s, ey)-frame
and b) the reference trajectories {eref

ψ,j}
N
j=0, {eref

y,j}
N
j=0 and

{uref
j }N−1

j=0 on which linearized and discretized (12d) as well
as (12j) and (12k) are based on according to Section III-A.
Furthermore, note that the linearization of (4) yields a pole
at eref

ψ,j = ±90◦, ∀j. Accordingly, forward motion along

positive s is achieved only for eψ,j ∈ (−π
2 ,

π
2 ), ∀j. As

Fig. 6 illustrates, the obstacle avoiding trajectory is initially
exceeding eψ > 80◦. Despite such a large deviation (close
to the destabilizing 90◦) from the road centerline, the SLP-
algorithm is able to converge in only four iterations. This
implies good robustness of the method with respect to the
jaggedness-issue discussed in Section III-D.

D. Discussion and limitations of the method

First, for road navigation at most two SLP-iterations
appear to be sufficient. This also holds for intersection
navigation since detailed maps (typical for autonomous
vehicle applications) permit the formulation of suitable road
centerlines that naturally avoid the problem of jaggedness
discussed in Section III-D. In contrast, for zone navigation a
different approach must be taken. Namely, a suitable “road
centerline” must initially be set before two SLP-iterations
can be applied. This initial setting of the road centerline, i.e.,
the definition of the (s, ey)-frame, also requires the mapping
of all obstacles to it. In the simplest case, the initial road
centerline can be set as a PWA as long as wedges exceeding
the aforementioned 90◦ are avoided.

Second, the formulation of (12) is based on a kinematic
vehicle model (3). Dynamic vehicle models can be accounted
similarly [14]. It is not obvious to what extent this can
improve safety. Rather than incorporating tire-dynamics in
trajectory planning directly, the presented method simulta-
neously accounts for vehicle dimensions and plans trajec-
tories according to a minmax objective involving steering
angle; thereby already maximizing a stability measure in
the form of maximized vmax,fric(η). Any reference velocity
with vref(η) ≤ vmax,fric(η) ensures vehicle operation within
friction limits (for a given µ). Here, a reference velocity
planning scheme may be based on [32]. The employment of a
kinematic model for trajectory planning bears the advantage
of reduced computational complexity.

V. CONCLUSION

We proposed a spatial-based trajectory planning method
for automated vehicles. The main contribution was the
incorporation of linearized vehicle dimension constraints
within a sequential linear programming (SLP) algorithm and
the relation of the proposed minmax-objective to increased
bounds on admissible vehicle traveling speeds within tire
friction limits. Anticipative steering accounting for the entire
obstacle configuration space ranks among the main benefits.
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Fig. 6. Example 2. Resulting vehicle trajectories in the (x, y)-plane. To account for vehicle dimensions, trajectory planning with CPP assumed an obstacle
inflated by a safety margin of 1.1m. For SLP, the right plot visualizes vehicle dimensions (displayed every 5th sampling). According to the optimization
problem formulation, obstacles are avoided tightly. In practice, small safety margins may additionally be added to the obstacle contours.
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Fig. 7. Example 2. Actuator trajectories expressed along the traveled path
coordinate η. The dashed lines indicate absolute actuator constraints. See
Section IV-C for the discussion of constraint violations for CPP.

Future work comprises a) focus on zone navigation and the
setting of a suitable initial (s, ey)-frame, b) development
of a customized LP-solver, and c) the application within a
receding horizon control (RHC) scheme.

REFERENCES

[1] A. Al Alam, A. Gattami, and K. H. Johansson, “An experimental study
on the fuel reduction potential of heavy duty vehicle platooning,” in
IEEE ITSC, pp. 306–311, 2010.

[2] B. HomChaudhuri, A. Vahidi, and P. Pisu, “Fast model predictive
control-based fuel efficient control strategy for a group of connected
vehicles in urban road conditions,” IEEE CST, vol. 25, no. 2, pp. 760–
767, 2017.

[3] J. Gozálvez, M. Sepulcre, and R. Bauza, “IEEE 802.11p vehicle to in-
frastructure communications in urban environments,” IEEE Commun.
Mag., vol. 50, no. 5, 2012.

[4] C. M. Massera, M. H. Terra, and D. F. Wolf, “Guaranteed cost model
predictive control-based driver assistance system for vehicle stabiliza-
tion under tire parameters uncertainties,” in IEEE ITSC, pp. 322–327,
2016.
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APPENDIX

A. Supplementary material

Problem formulation according to Fig. 8: given a start
pose (blue), a path is sought avoiding any obstacles (red),
accounting for vehicle dimensions, traveling within corridor
boundaries, respecting physical actuator constraints, and pre-
ferring smooth trajectories, thereby enabling high maximum
traveling speeds within friction limits, such that an end pose
(green) is reached. The black dotted path connects start and
end pose traveling through obstacle corners in a piecewise-
affine (PWA) fashion. It is infeasible to track by a real-world
vehicle and, thus, requires smoothing: either spontaneously
by direct tracking under actuator constraints, or, alternatively,
using an explicit path planner preceding a tracking algorithm.
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Fig. 8. Problem visualization.
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Fig. 9. Example 1. The vehicle trajectories for SLP . Vehicle dimensions
are visualized (displayed every 5th sampling).
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Fig. 10. Example 1. The vehicle trajectories for SLPp. Vehicle dimensions
are visualized (displayed every 5th sampling).
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Fig. 11. Example 1. Resulting actuator trajectories. The dashed lines
indicate absolute actuator constraints. For l = 4.3m, the bound δmax = 40◦

corresponds to a minimal turning radius of Rmin = l/ tan(δmax) = 5.1m.
Because of the roomy maneuvering space, steering is confined closely to
the origin, i.e., far from the actuation limits.
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Fig. 12. Example 2. The result of the solution of (12). Note that in contrast
to Fig. 7, the abscissa indicates the discretization coordinate s.
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Fig. 13. Example 2. The maximum admissible traveling speeds within
vehicle tire friction limits. For SLP, the lowest vmax,fric(η) along the traveled
path coordinate η is 32km/h. For CPP, the equivalent is 19km/h.
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