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Abstract

Knowledge about the location of a vehicle is indispensable for au-

tonomous driving. In order to apply global localisation methods, a
pose prior must be known which can be obtained from visual odome-
try. The quality and robustness of that prior determine the success of
localisation.
Momo is a monocular frame-to-frame motion estimation methodology
providing a high quality visual odometry for that purpose. By taking
into account the motion model of the vehicle, reliability and accuracy
of the pose prior are significantly improved. We show that especially
in low-structure environments Momo outperforms the state of the art.
Moreover, the method is designed so that multiple cameras with or
without overlap can be integrated. The evaluation on the KITTI-
dataset and on a proper multi-camera dataset shows that even with
only 100-300 feature matches the prior is estimated with high accuracy
and in real-time.

1 A short story on monocular visual odometry

Visual odometry has been successfully applied for more than 20 years. Es-
pecially the work of Hartley and Zissermann in the late 1990s builds the
basis for modern visual odometry algorithms [8]. They introduced a new
normalization method for the then already well known 8-Point-Algorithm,
turning it into the standard frame-to-frame motion estimation algorithm.

For a calibrated camera the 8-Point-Algorithm is overdetermined. Therefore
Nister et al. [12] proposed the 5-point-algorithm, which reduces the motion
parameter space by an Eigenvalue decomposition. However, for robots with
non-holonomous motion patterns such as vehicles, the problem is still overde-
termined. There have been various attempts to adapt the problem to special
motion patterns (Hee et al. [10], Scaramuzza et al. [14]), however none of



Figure 1: Diagram illustrating Momo’s problem formulation. Assuming a
motion model in the motion center of the vehicle (red dots), an error metric is
evaluated including all cameras (green dots). Using this general formulation,
the required number of features for correct frame-to-frame motion estimation
can be reduced to 100-300.

them replaced the 5-point-algorithm as standard frame-to-frame motion es-
timation algorithm.

If a sequence of frames is used, the standard algorithm for estimating the
motion of vehicles is Simultaneous Localisation and Mapping (SLAM). By
building a map of the environment, temporal information can be added to
the problem in an effective way. Since map and motion have to be estimated
simultaneously, the amount of parameters for a full bundle adjustment is
very large and therefore time consuming. Possessing a good frame-to-frame
motion prior for the full bundle adjustment is hence crucial for real-time
performance.

In real-life environments, the main challenge is outlier handling, as shown
by recent advances in stereo vision. Observing the 10 best stereo vision al-
gorithms on the challenging KITTI dataset ﬂEl]EL it is striking that all of
them propose new methods for outlier rejection (Buczko et al. , Cvivsic
et al. ), while not using bundle adjustment. Impressively, without using
temporal inference, they can obtain results with less than 1% translation
error, which demonstrates how accurate such algorithms can become if cor-
rect feature matches are chosen. Outlier rejection for monocular systems is
more challenging since no depth information is available. In implementa-
tions such as libviso or the opencv library a RANSAC algorithm is
used for outlier rejection. Thereby, the main assumption is that most visible
features belong to the static scene. If big objects occlude the static scene
this assumption is violated. In the current state of the art, the focus of the
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Figure 2: Pipeline of the monocular visual odometry estimation procedure.

work on monocular visual odometry is mostly on effective ways of bundling
rather than on the careful selection of outliers during prior estimation — out-
liers are typically filtered by heuristics, such as their distance to the map.
However, if the proportion of outliers is high, the quality of the motion prior
becomes very important in terms of time consumption and accuracy.

The goal of Momo is the improvement of monocular visual odometry by
more careful outlier selection and more accurate estimation of the pose prior.
In order to increase robustness against rough weather conditions or occlu-
sion, the methodology is designed to be capable of estimating the motion
even if only few feature matches could be established. Furthermore multi-
camera setups are supported, as shown in fig. All available information
is integrated by Momo into one single optimization problem, resulting in a
reliable and accurate motion prior.

We publish the code and supplementary material such as a video showing the
system in action on GitHub (https://github.com/johannes-graeter/momo.git).

2 General problem formulation

In this section the approach proposed in this work is introduced and com-
pared to existing methods. The contribution of this work concerns the prior
estimation step, as shown in the visual odometry pipeline, fig. Careful
selection and tuning of feature matching methods are essential for a working
system and will be explained in section For bundling, various excellent
frameworks exist such as g2o [11] or gtsam [4].

The input of the prior estimation block is a set of matched features X be-
tween two frames of size N that is called z; , € X,i € [1...N], 7 € [19, 71].
This set can also be interpreted as sparse optical flow.

Our goal is the extraction of the motion M]" between these two consecu-
tive frames containing six degrees of freedom. Therefore, the solution of the
optimization problem

M’ = argmin(E(X, M)) (1)
M

is sought, where £(X, M) depicts the energy potential to be minimized.



2.1 Relation to the 8-point- and 5-point-algorithm

The 8-point- and 5-point-algorithm are linear solutions to equation In
these methods, the energy potential £(X, M) is the summed epipolar er-
ror, explained in section However, this error metric is non-linear.
Therefore, a non-normalized, linear variant of the epipolar error is used

N
E(X,M) = Zmz:TlF(M):UWO, with the fundamental matrix F' (see Hartley

7
and Zisserman [§]). Normalization is either applied on the input measure-
ments, as done by Hartley et al. [9] or directly applied on the fundamental
matrix, as proposed by Torr et al. [16].
This is a valid solution for an outlier-free environment, since the problem
is linear and therefore can be solved efficiently. However, its main disad-
vantage is that these solutions are very susceptible to outliers. In the state
of the art, sampling based outlier rejection models such as RANSAC [5]
or LMEDS [13| are wrapped around the problem in order to find the most
plausible solution. Therefore, many hypotheses must be tested that violate
the motion patterns of realistic systems.
Enforcing motion models on the linear approach of Hartley [8] is complicated
and limited to simple motion patterns. For example in order to reduce the
degrees of freedom from 8 to 5, a sophisticated Eigenvalue analysis is nec-
essary as shown by Nister et al. [12].

2.2 Advantages of the non-linearised system

As explained in section the linear formulation of problem makes
modelling non-holonomous movement by motion models difficult and out-
lier rejection more expensive.

Therefore, a different approach is proposed herein, dropping the linearisa-
tion. This results in the following advantages:

1. Implicit robustification of the problem by an M-estimator.

2. Optimization on manifolds of the motion space using a motion model
for the vehicle.

3. Generalization of the problem to calibrated multi-camera systems with-
out overlapping field of view.

4. Adaptation to general camera models.

5. Implicit scale estimation in curves.



3 Methodology

3.1 Formulation of the potential function

In this section a reconstruction-free error metric for the potential function
is formulated. Popular choices for this error metric take advantage of the
epipolar geometry defined by M and a point correspondence x; » between
two images. In this section a short overview of common error metrics con-
cerning the epipolar geometry is given. For more detail we refer to Hartley
and Zisserman [8]. In this work, the focus is on the following error metrics:

1. The geometric distance of x; -, to its corresponding epipolar line, called
GeoLine.

2. The angle between the line of sight of x;, and the epipolar plane,
called AnglePlane.

Note that GeoLine is evaluated in the image domain, whereas AnglePlane
is evaluated in Euclidean space. As a result GeoLine is only usable for pin-
hole camera models, but AnglePlane can be used for any camera model,
including highly non-linear camera models.

The distance of an image point to its corresponding epipolar line is defined
as

0,71 B

e ) =+ P B ?
where the denominator is used for normalisation. (-); denotes the i-th row
of the vector. F is the fundamental matrix defined as F = K- TEK!
Hereby, the camera intrinsics K have to be known by camera calibration.
The essential matrix E is fully defined by M = [R|t] with E(M) = [t]«x R,
with the skew-symmetric matrix [-]x. The metric d(z; 7, F'z; r,) is not sym-
metric. Therefore, the so called geometric distance is more commonly used:

N
GeoLine = Zd(xi,n JFxi ) + d(@ g, Fl 2y 0)2 (3)
i=1

However, GeoLine can only account for pinhole camera models. To gen-

eralize the potential function, a non-linear camera model is considered, for

which the lines of sight for each pixel in the image are known.

N (AT

AnglePlane = Z |
i=1

(4)

where Z; - denotes the line of sight corresponding to z; r. Note that for pin-
hole camera systems the line of sight can be calculated by Z; » = ”Ilf,lixx”nz



AnglePlane is therefore the generalization of GeoLine to non-linear, single-
view-point camera models.

3.2 Establishing a robust potential function

A great advantage of using non-linear estimation for frame-to-frame motion
estimation is the possibility to use robust loss functions in order to reduce
the influence of outliers on the potential function, thus turning the problem
into an M-estimator. The goal is to reduce the influence of outliers, which is
essential for finding the correct estimation. On that account, a robust loss
function p(x) is wrapped around the energy potential £. Since the growth
of p(z) becomes small with increasing x, outliers are weighted down. The
potential function becomes therefore

grobust(X7M) :p(g(Xa M)) (5)

Popular loss function choices are Tukey or Huber loss. In the proposed

system Cauchy loss is used. It neglects the influence of outliers, since
1' dp(x)cauchy
im ey
T—00 z
loss. Therefore the use of Cauchy loss helps to avoid local minima.

A big advantage compared to sampling-based outlier rejection schemes is
that no random samples are needed and a motion prior can be considered.
Using the previous estimation as a prior significantly increases efficiency,
since the motion transition is smooth in online scenarios. In addition to
that, only plausible solutions are tested. As a result, the assumption can
be dropped that the biggest amount of matches must belong to the static
scene.

= 0, but is not down weighting as aggressively as Tukey

3.3 Optimization on manifolds of the motion space

In a real world scenario the camera is mounted on a vehicle, which has non-
holonomous motion characteristics. Therefore, only a subspace of the full
6 degrees of freedom is used, the motion manifold. For linear approaches
such as the 8- and 5-point methods, great effort has to be done to reduce
the motion space. Introducing complex models is non-trivial.
Momo was specifically designed to serve as prior estimation on a broad
range of systems — we constructed it so that any motion model can easily
be integrated. In this work, we model the motion of the autonomous vehicle
with the well-known single-track-model. Neglecting slip, this motion model
describes a planar movement on a circle as shown in fig.

With the radius of the circle r = %, the motion P’ between the motion
centres can be formulated as

cos(y) —sin(y) 0 sin(y)r
PY = sin(y) cos(y) 0] (1 —cos(y)r |. (6)
0 01 0



Figure 3: Sketch of the frame-to-frame movement on a circle with a non-
centred camera. x and y are global coordinates, v is the change of yaw
angle, [ is the travelled arc length on the circle. Moreover the following
transformations are defined: P, from the motion center at 79 to the motion
center at 7; P.Y, from the motion center at 7y to the camera at 71; P? the
extrinsic calibration of the camera.

Furthermore, the 2d model can be enhanced by pitch and roll angles thus
resulting in a 3d model.

Equation [f] is an example how motion models of any complexity can be ap-
plied for Momo, since only the mapping from the manifold to the full 5d
motion space must be known.

In general, the point from which the motion is origins is not the mounting
position of the camera. In case of an autonomous car the center of motion
is usually the middle of the rear axis, whereas cameras need to be mounted
externally. With the general problem formulation, the extrinsic calibration,
i.e. the transform from the motion center to the cameras, can be trivially
taken into account by spatial transformation Pegmera = PY 71P§”Pc“ . This
formulation enables the implementation of various motion models and their
integration into the potential function in order to consider a-priori knowl-
edge.

3.4 Using multiple cameras

Section B.3] describes how the extrinsic calibration of the camera to the
center of motion can be included into the potential function. Using this
methodology, the problem can be expressed from the motion center to any
point in space. For usage on a multi-camera system with known extrinsic
calibration, the problem formulation is trivial - in order to include several



cameras into the problem, the excited motion is propagated from the motion
center to each camera. The minimzation problem of the total error therefore
becomes

N
arg}‘\I/[nin;S(Xj, Pt MPy), (7)

with the number of cameras IV, matches X; and extrinsic calibration P; for
each camera respectively. Using several cameras counteracts many of the
problems that monocular perception has:

e The surroundings can be perceived from many viewpoints, thus in-
creasing the variety of measurements.

e A camera that is occluded by rain drops or dirt can be detected if
most of the other cameras are still working.

e If the cameras are mounted on different sides of the vehicle, there is
at least one camera that is not blinded by sunlight.

4 Results

4.1 Selection of the error metric

In order to choose the most suitable cost function, we simulated sparse
optical flow. Since AnglePlane is the generalisation of GeoLine both show
almost identical error landscapes, with a well defined minimum and a convex
landscape. Additionally, we evaluated convergence speed, where Angle Plane
shows fastest convergence. The plots and more detailed information can be
found on GitHub (https://github.com/johannes-graeter/momo.git).

Both error metrics, GeoLine and AnglePlane, are suitable choices for the
potential function. In order to enable general camera models and obtain
fast convergence, we chose AnglePlane.

4.2 Evaluation on KITTI

The proposed methodology was evaluated on the challenging KITTI dataset [6].
The evaluation is effectuated on the public part of the dataset since the
groundtruth motion is needed as prior for the arc length. In order to account
for illumination changes the image was gamma corrected. Subsequently, we
used both blobs and corners as key points and the feature descriptor and
matching strategy from Geiger et al. [7] was executed in order to obtain the
feature matches X. In Momo we use the previously estimated motion as the
prior. We set the width of the Cauchy distribution employed in the loss func-
tion to 0.0065. No bundle adjustment was used, only frame-to-frame motion
estimation was evaluated. Two example trajectories from the dataset as well



as the average rotational errors over the first 11 sequences are shown in fig. [
and fig. [5| Here we want to show the robustness of our algorithm for rough
environments. For this objective, the matcher is tuned so that only 100-300
feature matches per image pair are computed, by choosing a large patch
size for non-maximum-suppression. Both, Momo and the 5-point-algorithm
with RANSAC of the opencv-library are evaluated. While the 5-point algo-
rithm is not able to deduce the correct motion from the given set of features,
Momo succeeds in correctly estimating a frame-to-frame visual odometry.

4.3 Evaluation on own dataset

To show the benefit of using multiple cameras, we evaluated the method
on a challenging image sequence in the city of Karlsruhe. We used four
cameras with viewing angle 110°, images of the setup are shown in fig. [6]
Scale was estimated in curves as illustrated in fig. [§] For straight movement
we employed the odometer of the vehicle. Since the GNSS pose estimate
is not accurate caused by multi-reflections inside the city, we evaluated the
accuracy by comparison with a map calculated by classical visual SLAM
with loop closure and offline post-processing (Sons et al. [15]). The results
and trajectories are shown in fig. [7] and fig. [

Even though this sequence is very challenging since the car drives at 0—72 kTm
and sun was standing low and blinding the cameras, the estimated trajec-
tory of Momo is very precise, even without using bundle adjustment. Con-
sequently, the method is usable as visual odometry with estimation runtime
between 5 ms and 20 ms on a consumer laptop.

5 Conclusion

In this work it was shown how dropping the linearisation for prior estima-
tion leads to a more reliable and more robust motion estimation. Taking
into account a motion model into the problem and thus optimizing not on
the full six dimensional motion space but on manifolds of this space is the
key to reject outliers without the need of randomized sampling and hence
obtaining precise frame-to-frame visual odometry. In order to enable its
use in realistic scenarios, the method is designed so that any number of
cameras can be included without the need of overlap. This redundancy en-
ables our method to tolerate malfunctioning or occluded cameras. On the
KITTI-dataset, it was shown that Momo can cope with a very low num-
ber of features of around 200, nevertheless estimating the motion correctly.
Additionally, the method was evaluated on a proper multi-camera dataset
of 5.1 km showing precise and robust results. This methodology estimates
a robust motion prior usable in various SLAM applications as well as for
localisation in an offline calculated map. A video with example scenes as
well as the implementation of Momo in C++ and the dataset can be found



on GitHub (https://github.com/johannes-graeter/momo.git).

Due to its modular structure, Momo is the fundament for further improve-
ment. Since complex motion models can be employed and only a small
number of features is needed for a good motion estimation, the next step is
to extend the framework to motion estimation of moving objects.
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Figure 4: Two examples of estimated trajectories from the KITTI dataset
shown as topview. Since the method is designed as a prior estimator, it
is evaluated frame-to-frame without drift reduction through temporal infer-
ence. Scale is taken from groundtrith. The feature matcher is tuned so
that only 100-300 feature matches per image are available. While the 5-
point-algorithm (dotted orange) cannot estimate the path correctly, Momo
(dashed blue) gives a very good frame-to-frame visual odometry.
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Figure 5: Error in rotation over travelled distance and speed from the eval-
uation on the KITTI dataset for Momo and the 5-point algorithm. Even
though for the 5-point-algorithm 1800-2500 matches per image pair are used
and for Momo 100-300, Momo performs considerably better. Especially at
high speed, the usage of the motion model stabilizes the method.
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Figure 6: Images corresponding to our own multi camera setup.
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Figure 7: Trajectory of the multi camera setup with 4 cameras on a tra-
jectory of 5.1 km length. Visual SLAM is used as groundtruth (double-line
brown). The estimated trajectory of Momo (solid red), operating frame-to-
frame, is very close to the groundtruth. The comparison to the trajectory
with only the left and the rear camera (dotted blue) shows the benefit of us-
ing a surround setup. Especially when the sun blinds the side cameras, the
multi camera setup stabilises the estimation substantially. Scale is obtained

by the wheel speed of the car.
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Figure 8: Error landscape of the problem in equation E with multiple cam-
eras as shown in fig. [6] during a curve. The error is given in percent of
maximum error. The minimum marked by a black cross is observable in
both yaw angle and arc length. The arc length is observable during the turn
since the two side cameras move on circles with different radii.
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Figure 9: Errors of the multi camera setup shown in fig. [7| using the error
metric of the KITTI-dataset, resulting in rotational error < 0.001 %. This
is in the league of the top performing stereo and LIDAR methods on the
KITTTI dataset.
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