
Testing of Autonomous Vehicles Using Surrogate
Models and Stochastic Optimization

Halil Beglerovic∗, Michael Stolz and Martin Horn

Abstract—Advancement in testing and verification methodolo-
gies is one of the key requirements for the commercialization
and standardization of autonomous driving. Even though great
progress has been made, the main challenges encountered dur-
ing testing of autonomous vehicles, e.g., high number of test
scenarios, huge parameter space and long simulation runs, still
remain. In order to reduce current testing efforts, we propose
an innovative method based on surrogate models in combination
with stochastic optimization. The approach presents an iterative
zooming-in algorithm aiming to minimize a given cost function
and to identify faulty behavior regions within the parameter
space. The surrogate model is updated in each iteration and is
further used for intensive evaluation tasks, such as exploration
and optimization.

I. INTRODUCTION

Autonomous driving is one of the most anticipated emerging
technologies in the automotive industry today. The big eco-
nomic impact of autonomous vehicles, predicted by various
studies, is evident as the major automotive companies are
adjusting their portfolio in order to prepare for the future.
For the commercialization and standardization of autonomous
vehicles, rigorous criteria on safety and reliability have been
set. As addressed by Winner et al. [1], autonomous vehicles
are expected to drive over 200 million kilometers to prove
that they are at least not worse than human drivers on
highways. This verification approach is unfeasible and can not
be used for development or system approval. However, current
methodologies used for verification of autonomous driving
components mainly rely on real world and proving ground
testing. In order to extend testing on real roads, Wachenfeld et
al. [2] proposed a redundant parallel system running alongside
the driver, which uses the sensor information in order to
generate adequate maneuvers. The maneuvers generated by
the autonomous systems are not executed. Instead, they are
verified and evaluated directly against the behavior of the
driver. Even with these methodologies, the complexity of var-
ious traffic scenarios, together with numerous variations in the
environment, pose clear limitations in conducting exhaustive
real world tests. Other issues, that arise when conducting real
world testing, are setup costs and repeatability, as it is hard
to recreate identical scenarios multiple times. In addition, the
need to cope with challenging environment influences and

Halil Beglerovic is with AVL List GmbH, Hans-List-Platz 1, 8020 Graz,
Austria, halil.beglerovic@avl.com

Michael Stolz is with Virtual Vehicle Research Center, Inffeldgasse 21a,
8010 Graz, Austria, michael.stolz@v2c2.at

Martin Horn is head of Institute of Automation and Control at
Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria,
martin.horn@tugraz.at

p1

p2

p3

p1

p2

p3

p1

p2

p3

Fig. 1. Iteratively locating a faulty behavior region inside the parameter space

various scenario types is increasing the complexity of algo-
rithms dealing with autonomous driving, i.e., decision-making,
perception, predicting human influence etc. This increased
complexity presents new challenges for testing because as the
complexity of systems goes up so does the effort to test those
systems.

A powerful tool that can address some limitations of real
world testing is simulation. Simulation allows reuse of existing
scenarios and ensures repeatability in each simulation run.
Several research groups have addressed the state-of-the-art
topics on autonomous vehicle testing using simulation or
mixed virtual and real setup. Stellet et al. [3] focus on the
taxonomy and high level approach, problem statement and
requirements regarding the testing of autonomous vehicles.
They propose a systematic methodology for testing, elaborat-
ing on the need for properly defined metrics, references and
scenarios. Huang et al. [4] present an overview on current
methodologies, tools, platforms and proving grounds used
for testing of autonomous vehicles. Zofka et al. [5] [6] [7]
and Jemma et al. [8] focus on developing new simulation
frameworks and validation methodologies for Advanced Driver
Assistance Systems (ADAS). Sieber et al. [9] conducted
research on driver perception and reactions when avoiding
collisions, and discussed the implications on the development
of ADAS systems.

Kapinski et al. [10] state that current verification method-
ologies can not prove that a hybrid system satisfies formal
specifications, as it is not possible to predict their behavior.
Automated vehicles, in particular their complex decision-
making algorithms, exhibit such hybrid behavior. As it is not
possible to test an autonomous vehicle in all possible scenarios
under all possible conditions, existing methods for testing rely
on the engineer’s expertise knowledge to find critical situations
with faulty behavior. Usually, full system simulations are time-
consuming, and it is not affordable to have many runs, leaving
most of the search space not covered. In addition, without
an a priori knowledge of all possible interactions between



components, it is hard to determine parameters or initial states
which will yield faulty behavior.

In this paper, we propose an iterative approach that guides
the testing towards faulty behavior regions in the parameter
space as shown in Fig.1. In order to identify the faulty behavior
regions, appropriate cost functions, which can be minimized
by various optimization methods, must be defined. As we are
interested in the region around the worst behavior, and we want
to avoid false positives in the form of local minima, global
optimization methods are needed. One drawback of global
optimization algorithms is that they require many function
evaluations (simulation runs) to find the global optimum. To
overcome this limitation in the proposed approach, we create
a surrogate model with inexpensive evaluations on which the
optimization algorithms can run. With each new iteration a
better model of the system is built around the faulty region.
The advantage of this method is that it can handle black box
systems with appropriate feedback cost function. In summary,
the main contribution of this paper is the development of
an approach based on surrogate modeling and stochastic
optimization used for the testing of autonomous vehicles.

The paper is structured as fallows. Section II summarizes the
related work with focus on optimization based testing. Section
III recapitulates the formal problem statement, while the main
approach is explained in section IV. Surrogate modeling and
optimization are addressed in section V. The test scenario and
evaluation is explained in section VI. Finally, a summary and
conclusion are given in sections VII.

II. RELATED WORK

Tuncali et al. [11] have proposed an approach based on
stochastic optimization techniques to automatically generate
test cases that lead to collisions. They start by sampling
the parameter and input space and generate an initial state
configuration. After selecting a proper robustness criteria and
using the parameter spaces as an input, the framework is
able to minimize a given cost function by applying various
optimization techniques and iteratively find faulty behavior
regions. The proposed framework is called S-TaLiRO [12].
Kapinski et al. [10] have given a great overview and compari-
son of other similar tools: Breach [13], RRT and S3CAM, that
utilize similar optimization methodologies to falsify embedded
control system. In the article, they give an in depth state-of-the-
art overview and problem statement for testing and verification
of ECUs, focusing on current and emerging approaches.

Another method has been proposed by Abdessalem et al.
[14]. They conducted research on a visual emergency breaking
ADAS system detecting pedestrians. The main idea was to
use neural networks to model the ADAS behavior and use
the model instead of the real simulation to get an evaluation
and confidence level output. By using genetic optimization
methods, they were driving the system to faulty behavior. In
addition, by utilizing the neural network model, they were able
to reduce the total number of simulation evaluations leading
to faster discovery of faulty behavior. However, one limitation
of this method is that an expert knowledge in neural network

construction is necessary to build a satisfactory model. Also,
the network needs to be trained and validated beforehand with
a significant amount of real simulation data, which presents a
time-consuming and sometimes unfeasible task.

The main difference between our proposed method and the
research described above is that we build a surrogate model
during the simulation runs by applying an iterative zooming-in
approach. No training, nor a priori knowledge of the system,
nor data preparation is needed. In addition, since we are
using the surrogate model as the input for the optimization
algorithms, the complexity of the real simulation will not
directly impact the optimization speed.

III. PROBLEM STATEMENT

For the problem statement we are using the notation pre-
sented in Kapinski et al. [10] and modify parts to better
fit our proposed algorithm. Firstly, we denote the model we
want to test with M . The model M is not necessarily a
simulation model; it can also represent a real system running
on the vehicle or on a HIL/VIL setup. Furthermore, it is
also not limited in complexity as it can represent the whole
autonomous driving system or any part of it. Next, we define
the parameter space P which contains all the environmental
(external) or model (internal) parameters and it represents
an infinite search space. Usually, a new set of inputs U
is introduced; however, we are going to assume that the
input signals can be parameterized and the shape can be
varied by changing the adequate parameters, in which case
the parameters space P contains U , i.e., P ⊇ U . Finally, the
testing criteria is denoted with ψ.

In general, each model M exhibits certain behavior during
the simulation or real world trial. This behavior is denoted
as Φ(M,p) of the model M with respect to the set of
parameters p ∈ P . Φ(M,P ) represents the behavior of
M in respect to all possible variations of parameters in the
parameter space P . If some behavior Φ(M,p) satisfies the
criteria ψ, the system is working correctly, and we can write
Φ(M,p) |= ψ. In contrast, if ψ is not satisfied, we write
Φ(M,p) 6|= ψ.

As we are not able to test the whole parameter space, either
because we do not know all the parameters or because of the
complexity of the problem, we need to define P̂ a subset
of the parameter space P̂ ⊆ P , on which the test is going
to be carried on. To test a system, we need to determine
whether Φ(M,p) |= ψ holds. However, this task turns out
to be very challenging. The main problems are the curse of
dimensionality - testing becomes exponentially more complex
with each new introduced parameter, the evaluation complexity
and evaluation time. One possible solution, proposed by [10]
[11] [14], is to find a set of parameters p ∈ P̂ such that the
Φ(M,p) 6|= ψ i.e., a testing instance where the evaluation
criteria is not satisfied. By limiting our search for a specific
set of parameters p ∈ P̂ , we can vastly improve the speed
and avoid exploring regions of the search space P̂ that are of
no interest.



M , P̂ ,ψ

P̂

M

pmin Add new
Zoom-in Samples

Execute new p on
Simulation Engine

Calculate
Cost function

Surrogate modeling
based on all simulations

Stochastic
optimization

on surrogate model

Terminated
with fault

Yes

No

itmax

ψ

[p1...pn]

Φ(M, [p1...pn])

c

[c1...cn]

ĉψ(p)

Terminated
with no fault

Yes

c<cthresh

No

Tests on
cost function

Fig. 2. Workflow of the proposed method

In order to evaluate the behavior Φ(M,p), we need to
introduce some kind of cost function, based on the evaluation
criteria ψ, which is going to generate numerical evaluations
based on the behavioral performance. We can denote such a
cost function with cψ(Φ(M,p)). By selecting an appropriate
cost function cψ , it is possible to guide the testing towards
regions where the behavior is not satisfactory and where the
evaluation criterion ψ is not satisfied.

It is also important to note that the selection of an ap-
propriate evaluation criteria ψ, cost function cψ(Φ(M,p)),
parameter space P̂ and initial state p0 ∈ P̂ is a non-trivial task
and all of them come with their own challenges. Nevertheless,
the outcome of the testing will heavily depend on the quality
of the chosen values.

IV. CONCEPT OVERVIEW

In the previous section, we gave an overall problem state-
ment and mentioned that a cost function cψ(Φ(M,p)) is
needed in order to evaluate the behavior of the model M .
However, because of the complexity of the model or long sim-
ulation duration, it is not always feasible to run the simulation
and evaluate the cost function directly. This limitation is a
big problem if we want to find a global minimum of the cost
function, as all the methods searching for a global minimum
require many function evaluations. In this paper, we propose an
approach that relies on a surrogate model which approximates

the cost function cψ(Φ(M,p)) with a new function ĉψ(p).
The new function ĉψ(p) takes a parameter set p as input and
outputs an approximated numerical value ĉ ≈ cψ(Φ(M,p))
and it is improved iteratively, giving a good representation of
the real cost function in the region of interest.

Fig.2 gives an overview of the proposed method. As an
input to the algorithm, we need to provide a search space
P̂ and the Zoom-in Sampler is going to make an initial
sampling of the space and invoke the Simulation Engine. The
number of initial samples is defined with the parameter ns and
together with the zooming factor zf , zooming iteration number
zin and sample randomness factor rf present the only input
parameters for the algorithm. Zoom-in Sampler will make an
initial ns x ns grid on the parameter borders and scale it
down using the zf for each iteration. The randomness factor
rf moves the sampling points in the vicinity of the original
position, if the simulation is run for more than one time,
leading to a better overall approximation. If rf is set to zero, the
Zoom-in Sampler samples the space in the exact same values
each time. Parameters selection for the proposed algorithm,
surrogate modeling and optimization will be discussed later
in more detail. The cost function cψ(Φ(M,p)) is going to
be evaluated for each parameter set [p1...pn] ∈ P̂ generated
by the sampler and an output vector of numerical values
[c1...cn] is going to be computed. For each iteration, we can
evaluate the numerical values min{[c1...cn]} < cthresh
and decide if a faulty region has been reached. Usually,
the cost function cψ(Φ(M,p)) can be modeled in such a
way that a negative value represents a faulty behavior, i.e.,
cthresh = 0; however, that is not mandatory and any kind of
value for cthresh can be used. If the faulty behavior has not
been found and if the maximum number of iterations has not
been reached, the numerical evaluations of the cost functions
[c1...cn] are passed to the Surrogate modeling block. The
surrogate model is iteratively extended using the values of
[c1...cn] and provides the approximation function ĉψ(p)
to the Stochastic Optimization where various optimization
algorithms can be used. The evaluation of the approximated
function ĉψ(p) is computationally much cheaper than the
original function and is suitable for the extensive evaluations
by the optimization algorithms. Stochastic Optimization block
outputs pmin representing the most likely location for the
global minimum of the approximated function min{ĉψ(p)}.
In the next iteration, the Zoom-in Sampler reduces the size of
the new sampling set [p1...pn] using the rf coefficient and
moves the center to the value of pmin, effectively zooming
into the region with the lowest value of the cost function. A
new evaluation is done with the new parameters and a better
model of the approximated function ĉψ(p) is built until the
algorithm reaches a faulty behavior or the maximum number
of iterations. After several zooming-in iterations, the size of
the sampling set ns x ns is significantly reduced and the model
accuracy does not increase. In order to further minimize the
number of function evaluations, only the most likely location
for the global minimum is considered for iterations higher than
zin without using the randomness factor rf .



p2

p1

θ

Fig. 3. Scenario setup

V. SURROGATE MODELING AND OPTIMIZATION

For the surrogate modeling, we decided to use the RBF -
Radial Basis Function approximation. The main idea of RBF is
to find an estimation f̂(x) of a real system or process f(x) by
sampling the function f(x) in samples xi ∈ Xs and assigning
a radial basis symmetrical kernel function φ for each sample.
By adding the influences of each kernel, the approximation
can be constructed. The equation of the estimation is given
as:

f̂(x) = WTΦ =

ns∑
i=1

wiφ(‖x− xi‖)

where wi ∈ W represent the weights corresponding to each
kernel function. The approximated function has the following
properties: f̂ is equal to f(x) for x ∈ Xs and the approx-
imation is worse as the distance from the sample increases.
Weights wi can be obtained by solving the system of linear
equations

W = Φ−1Y

where Y = f(x),∀x ∈ Xs and Φ = φ(‖xi − xj‖) , i, j =
1...ns where Φ is also called the Gram matrix. For the intro-
duction of RBF, we used notation consistent with literature and
the Gram matrix Φ should not be confused with the system
behavior Φ(M,p) from the problem statement.

There are many possibilities when choosing the kernel
function for the RBF surrogate modeling. However, in our
use case, we tested the Gaussian (φg) and Multiquadric (φmq)
kernel.

φg = e
−‖xi−x‖

2

2σ2 , φmq =
√
‖xi − x‖2 + h

When building a model with a Gaussian or Multiquadric
kernel, the user needs to manually assign the coefficients σ
or h. The selection of those coefficients is not a trivial task,
especially when new zoomed-in sampling points are added in
each iteration.

In order to overcome this limitation, we decided to use the
Kriging models [15] as they provide a way to use optimization
tools in order to find the appropriate coefficients. The Kriging
model also uses the Gaussian kernel function φg but a different
coefficient γ = 1

2σ2 and norm p (usually p ∈ [1, 2]) are
computed for each parameter. Even though Kriging models
are more complex and use more resources for construction,
the effort clearly pays off since no tuning is needed. Further-
more, the coefficients γ show which parameter has the higher
influence on the cost function. The higher the value of γ for

Surrogate model

Stochastic optimization

Next best search location

Cost

Parameters
ADAS

Vehicle
Dynamics

model M helper function proposed method

Fig. 4. Simulation setup using MATLAB

a particular parameter, the higher the influence on the cost
function. This can be useful in cases with high number of
parameters where the parameters with lower influence could
be fixed and excluded from the search.

An additional benefit of using Kriging models is that,
instead of searching for the global minimum of the model,
we can use a probabilistic approach in order to find the most
likely location of the global minimum [15]. The equation that
predicts the improvement of sample x is given below:

E[I(x)] = (ymin − ŷ)Φ
(ymin − ŷ

ŝ

)
+ ŝφ

(ymin − ŷ
ŝ

)
,

where ymin is the current minimum, ŷ is the model approx-
imation in point x, Φ is the cumulative distribution function,
φ is the probability density function and ŝ is the root mean
squared error in point x. The equation E[I(x)] is equal to zero
in the sampling points ensuring that by iteratively maximizing
E[I(x)] we will eventually find the global minimum.

Beside the most likely global minimum search, the Kriging
models require another optimization step for finding adequate
parameters γ and p. The value of p was fixed to p = 2,
as proposed in [15], leading to a simpler optimization task
for finding γ. It is important to state that the limitation of
all surrogate models is that the cost function needs to be
smooth in order to achieve the best modeling results and save
computation time.

For the optimization tasks, we use the Differential Evo-
lution (DE) genetic optimization algorithm [16] and Particle
Swarm optimization (PSO) algorithm [17] because of their
straightforward and simple implementation. It is important
to mention that the overall execution time of the proposed
algorithm depends strongly on the parameters, i.e number of
agents and number of iterations, as the optimizers are used
several times for each iteration.

VI. CASE STUDY

In order to validate the proposed method, a simple highway
scenario was used. The testing is done for an emergency brake
assist ADAS system. The scenario consists of a passenger car
driving on the highway and encountering an obstacle in its
path. The goal of the ADAS system is to avoid collisions by
braking, i.e., no evading maneuvers are used. To prove that our
system is able to detect faulty behavior inside the parameter
space, we introduce an error in the sensor’s field of vision.



A. Scenario description

A detailed overview of the scenario can be seen in Fig.3.
The vehicle starts from a still stand and accelerates with
constant acceleration until it reaches a maximum velocity
of 100kmh , moving along the x axis. Simulation duration is
10 seconds at which the car reaches 128 m. The parameter
space P̂ is represented by the obstacle’s (x, y) coordinates,
leading to a 2D search space. Static obstacles are placed on
the vehicle’s path within the following boundaries: P̂min =
[25, −12], P̂max = [165, 12]. The distance at which an
obstacle is detected is fixed to dsensor = 20 m and the sensor’s
detection angle is α = 30◦ ranging from [−15◦, 15◦]. An error
θ = 1, 5◦ is introduced ranging from [1◦, 2.5◦], and a search
for the worst case crash is going to be conducted.

B. Simulation setup

For the simulation setup Matlab and Simulink [18] are
used. The vehicle dynamics and ADAS model represent the
model M from the problem statement. The simulation setup
overview can be seen in Fig.4. In order to use the proposed
approach, only a helper function needs to be available to run
the simulation model with parameters p ∈ P̂ and receive back
the evaluated cost function c : cψ(Φ(M, [p1...pn]).

C. Cost function selection

As discussed before, the selection of the cost function cψ
is not a trivial task. Nicolao et al. [19] have introduced an
approach where they propose a risk assessment evaluation
based on the probability that a collision with a pedestrian will
occur. Ferrara et al. [20] have used a collision cone approach
where they explore necessary and sufficient conditions for a
collision to occur. Some good practices that can be considered
when constructing a cost function are: smoothness - as it will
enable a better approximation when using surrogate modeling
and convexity - this will ensure quicker convergence to the
global minimum. For our case study, we are going to use a
cost function based on the time to collision ttc between the
vehicle and obstacle. Additionally, the vehicle speed vveh is
added in order to give a higher cost value to the obstacle that
is out of the sensor range and poses no threat to the vehicle.
Crashes that occur at higher speed have lower evaluation
value then crashes at lower speeds. Similarly, test runs with
no crash at all will lead to higher valued cost. We used

cψ =

{
min(ttc+ vveh), ttc = d−dmin

vveh+ε
, no collision

−vveh , collision

where ε is a user defined value used to evaluate ttc when the
velocity is equal to zero. By minimizing the cost function, we
aim to find the most severe crash conditions.

D. Evaluation

In order to evaluate the results obtained from our algorithm,
we have simulated the same scenarios using the optimization
algorithms DE and PSO directly on the simulation model,
without building the surrogate. The aim of this paper has been

TABLE I
EVALUATION RESULTS

f-avrg f-best g-best found a-f-call time

Kri -5.27 -11.43 111.2, 0.24 97% 42.67 1785s

Rg -2.70 -13.78 106.7, 0.20 70% 57.70 689s

Rmq -3.29 -12.04 112.7, 0.23 84% 51.24 901s

PSO -5.08 -12.19 99.18, 0.21 86% 53.70 623s

DE -2.37 -13.03 92.20, 0.20 67% 59.90 345s

to reduce the overall number of function calls as they can
have a long execution time or could be expensive regarding
computation or other resources. Since we are dealing with
stochastic optimization algorithms, we can not be certain on
the number of function calls needed to find a global minimum.
Therefore, we have conducted our experiment for 100 runs
and gathered the average values for comparison. In addition,
the functions and parameter spaces are equal for all methods
used. Because the optimization algorithms do not save states
between evaluations, we built the surrogate model for every
test run, i.e, the samples were not saved between the test runs,
even though, in a real scenario, that would be beneficial. The
number of function evaluations was limited for all algorithms
and was set to 100 evaluations per test run. The optimization
algorithms were limited to use 5 agents and 19 iterations with
an additional 5 evaluations for the initialization. Coefficients
in the DE algorithm were set to c = 0.5 for the mutation
and f = 0.5 for the crossover. For the PSO, the parameters
were set to c1 = 1.05 for cognitive, c2 = 1.05 for social
and w = 1 → 0.1 for the particle speeds. The parameters
were chosen taking in account advice given in [21] and [17],
respectively.

Our proposed method was running using ns = 3 leading to
9 samples per zooming iteration for iterations below rin = 4
and was limited to maximum 100 function evaluations. The
zooming-in factor was set to zf = 0.35 and the random factor
was set to rf = 0.1. In general, a higher value of ns leads to
better surrogate model but it will also lead to higher number of
required real function evaluations per iteration. The zooming-
in factor zf should be chosen depending on the cost function. If
the cost function is convex then a lover value is better as it will
lead to faster convergence and a good interpolation around the
faulty behavior. However, if the cost function is unknown and
may have many local minima, a higher value is recommended
as the model will have better overall approximation of the cost
function. If several test runs are possible, it is better not to
sample the model at the same location and reasonable values
for the random factor are rf ∈ [0, 0.5].

For the surrogate model optimization tasks, we used the
PSO optimization algorithm. However, because we are not
calling the objective function and the computation is reason-
ably inexpensive, we used a higher number of agents (15) and
iterations (15).

The experiment was repeated for 100 times within the
parameter space P̂min = [25, −12], P̂max = [165, 12]. The



testing criteria is ψ : ttc ≤ 0 that collision has occurred.
Table I presents the obtained results. The columns of the
table are respectively: average evaluated global minimum; the
best global minimum; position of the best global minimum;
percentage of successfully found crashes from all test runs,
i.e., Krigin model found crashes in 97 out of 100 runs; average
number of simulation evaluations per test run; and computation
time for all test runs. The rows show the results for the
Kriging, RBF with Gaussian and Multiquadric kernel, DE and
PSO optimization algorithms.

We can conclude that the Kriging model managed to find
test cases with crashes with higher probability while using less
simulation evaluations. The higher computation time is directly
related to the two optimization steps needed in each iteration;
however, in our setup, one simulation run lasted on average
0.127s, and the benefits of a reduced number of function calls
could be seen on simulations with longer duration.

VII. SUMMARY AND CONCLUSION

In this paper we introduced an iterative testing approach
for autonomous driving, focusing on finding faulty behavior
inside the parameter space. Because of the simulation duration
or complexity, it is not always feasible to run the optimization
algorithms directly on the system. We proposed an approach
where a computationally inexpensive surrogate model of the
system behavior is built, and optimization algorithms are then
applied on the surrogate and not the real system. For the
surrogate modeling we used the Radial Basis Function approx-
imation, and we have explored models with different kernel
functions. For the optimization tasks the Differential Evolution
and Particle Swarm Optimization were implemented. The
testing evaluation was conducted on a highway scenario and
an Emergency Breaking Assist ADAS. The scenario consisted
of a passenger car driving in a straight line and an obstacle
position was varied. An error in the sensor’s field of vision
was introduced and the task of the algorithms was to find the
test case with the worst crash evaluation.

The aim of the research was to show that we can reduce
the number of real system evaluations, if we first build a
surrogate model and then run the optimization algorithms on
the surrogate and not on the real system. In the test runs,
the maximum number of real system evaluations was fixed
for all algorithms and the simulations were repeated for 100
times and the average outcomes were compared. In the end, we
have shown that the Kriging model produced the best results
leading to a lower number of real system evaluations and a
good approximation inside the faulty region.

ACKNOWLEDGMENT

The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under the Marie Skodowska-Curie grant
agreement No. 675999, and partially supported by the Austrian
COMET K2 - Competence Centers for Excellent Technologies
Programme.

REFERENCES

[1] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbook of Driver
Assistance Systems: Basic Information, Components and Systems for
Active Safety and Comfort. Springer, 2016.

[2] W. Wachenfeld and H. Winner, “Virtual assessment of automation in
field operation - a new runtime validation method,” in 10. Workshop
Fahrerassistenzsysteme., Walting im Altmühltal, September 2015.

[3] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels, and
J. M. Zllner, “Testing of advanced driver assistance towards automated
driving: A survey and taxonomy on existing approaches and open
questions,” in 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, Sept 2015, pp. 1455–1462.

[4] W. Huang, K. Wang, Y. Lv, and F. Zhu, “Autonomous vehicles testing
methods review,” in 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), Nov 2016, pp. 163–168.

[5] M. R. Zofka, S. Klemm, F. Kuhnt, T. Schamm, and J. M. Zllner,
“Testing and validating high level components for automated driving:
simulation framework for traffic scenarios,” in 2016 IEEE Intelligent
Vehicles Symposium (IV), June 2016, pp. 144–150.

[6] M. R. Zofka, R. Kohlhaas, T. Schamm, and J. M. Zllner, “Semivirtual
simulations for the evaluation of vision-based adas,” in 2014 IEEE
Intelligent Vehicles Symposium Proceedings, June 2014, pp. 121–126.

[7] M. R. Zofka, F. Kuhnt, R. Kohlhaas, C. Rist, T. Schamm, and J. M.
Zllner, “Data-driven simulation and parametrization of traffic scenarios
for the development of advanced driver assistance systems,” in 2015 18th
International Conference on Information Fusion (Fusion), July 2015, pp.
1422–1428.

[8] I. B. Jemaa, D. Gruyer, and S. Glaser, “Distributed simulation platform
for cooperative adas testing and validation,” in 2016 IEEE 19th Inter-
national Conference on Intelligent Transportation Systems (ITSC), Nov
2016, pp. 77–82.

[9] M. Sieber and B. Frber, “Driver perception and reaction in collision
avoidance: Implications for adas development and testing,” in 2016 IEEE
Intelligent Vehicles Symposium (IV), June 2016, pp. 239–245.

[10] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification
techniques,” IEEE Control Systems, vol. 36, no. 6, pp. 45–64, Dec 2016.

[11] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing s-taliro as
an automatic test generation framework for autonomous vehicles,” in
2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), Nov 2016, pp. 1470–1475.

[12] A. Donzé, Breach, A Toolbox for Verification and Parameter Synthesis
of Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[13] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 254–257.

[14] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2016. New
York, NY, USA: ACM, 2016, pp. 63–74.

[15] A. Forrester, A. Sobester, and A. Keane, Engineering design via surro-
gate modelling: a practical guide. John Wiley & Sons, 2008.

[16] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[17] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[18] MATLAB, version 9.1.0.4 (R2016b). Natick, Massachusetts: The
MathWorks Inc., 2016.

[19] G. D. Nicolao, A. Ferrara, and L. Giacomini, “Onboard sensor-based
collision risk assessment to improve pedestrians’ safety,” IEEE Trans-
actions on Vehicular Technology, vol. 56, no. 5, pp. 2405–2413, Sept
2007.

[20] A. Ferrara and C. Vecchio, “Collision avoidance strategies and coor-
dinated control of passenger vehicles,” Nonlinear Dynamics, vol. 49,
no. 4, pp. 475–492, 2007.

[21] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, Feb 2011.


