
Human-like Guidance for Driving Navigation in an
Urban Environment

Bihao Wang, Quentin Stafford-Fraser, Peter Robinson

Computer Laboratory, University of Cambridge, United Kingdom.
Email: {firstname.lastname}@cl.cam.ac.uk

Abstract—Driving is a cognitively demanding task, and many
current navigation systems present confusing guidance instruc-
tions that add to the distraction. Human navigators, by contrast,
schedule their advice to minimise distraction, and phrase instruc-
tions in terms of visible landmarks to avoid confusion. In this pa-
per, we present the basis for a ‘natural navigation’ system which
interprets distances as references to landmarks. We use Extended
Kalman Filtering to integrate visual odometry with other sensor
data in order to obtain precise vehicle motion, then, based on
the filtered motion parameters, we characterize recognised visual
landmarks as locations on the navigational map. The navigation
system can then use references to these landmarks in its driver
instructions rather than absolute distances. Experimental results
show that landmarks can be located on the navigational map
with sufficient accuracy using normal vehicle telemetry and a
dashboard camera.

I. INTRODUCTION

Turn-by-turn navigation is probably the most widely-used
driving assistance application. With the help of Global Posi-
tioning System (GPS) location information and accurate digital
maps, drivers are able to reach their destinations while driving
through unfamiliar areas. However, current in-vehicle naviga-
tion systems can lead to confusion and distraction as drivers try
to relate instructions involving distances and street names on
the displayed map to their surrounding physical environment,
a process which has been compared to assembling a jigsaw
puzzle [1]. In fact, humans tend to use landmarks, rather than
distances, when constructing spatial cognitive maps [2], and a
human-like guidance system that gives navigation instructions
in terms of landmark references – “turn right after the post
office” rather than “turn right in 100m” – should significantly
lower the driver’s cognitive load and reduce their navigational
errors [3].

We describe a prototype human-like guidance system for
driving navigation which uses landmark-based instructions.
Instead of using stored landmarks from a map [4], we de-
tect them in images captured by a dashboard camera. This
allows the use of temporary, moving or other non-map-based
landmarks, and may also enable us to bring in colour or other
information not often found in map data: “Follow the yellow
car turning left”. We hope to facilitate the driver’s acquisition
of spatial knowledge by moving some of the cognitive load
from the human to the navigation system.

In order for the navigation system to perceive and un-
derstand the surrounding environment, we employ a variety

of computer vision techniques. Selected landmarks can be
detected in real time using a deep learning algorithm described
by Wiles et al. [5], after which we need to establish their
position on the navigational map. First, the vehicle motion is
estimated from a Visual Odometry (VO) algorithm which is
tuned to fit the driving scenario. Then an Extended Kalman
Filter (EKF) is applied to fuse the VO estimation with multi-
sensor data to estimate the vehicle’s position and orientation
in each frame. Meanwhile, feature points based on recognized
landmarks are extracted and tracked between frames. Finally,
landmark positions are reconstructed from these feature points
using the rectified vehicle motion models, and can therefore
be located on the navigation map.

This paper is organized as follows: Section 2 presents an
overview of related work. Section 3 details the methodology
of the approach. In Section 4, we discuss experimental results
and, finally, conclusions and future perspectives are presented
in Section 5.

II. RELATED WORK

Despite their popularity, in-vehicle navigation systems have
a great deal of room for improvement in order to provide a
better driving experience. Landmark-based navigation has the
potential to offer more human-like guidance instructions.

There are generally two approaches to landmark-based nav-
igation. The first uses a geographic information system (GIS)
[4] where landmarks are stored in a annotated map. Based
on the user’s location, nearby landmarks, also called Points
of Interest (POIs), are presented on the displayed map, and
referred to in audio instructions. However, visual information
is often crowded on the display, making it hard to read at
a glance. Recently, an Apple patent [6] describes referring
to restaurants and other landmarks in Siri’s turn-by-turn in-
structions, to make them sound more like directions from a
passenger in the vehicle. Despite the increasing availability of
annotated POIs, this approach has some limitations. First, this
information may easily become outdated, and is usually only
available for limited urban areas. Secondly, since the infor-
mation is decoupled from the current driving environment, it
can confuse and frustrate drivers when POIs are invisible or
hardly noticeable.

Another approach is to use Computer Vision techniques.
Immediate visual information, which is tightly coupled with
the driver’s perception, offers more flexible and relevant



guidance. Robertson and Cipolla’s work [7] can accurately
estimate the user’s location and orientation with a mobile
camera by matching the user’s view against a pre-stored
database. However, maintaining such a database is non-trivial,
and querying it may require significant computation and a fast
network connection. By contrast, Visual-based Simultaneous
Localization and Mapping (V-SLAM) [8], does not rely on a
predefined database, since it locates the user in their surround-
ing environment while building a spatial map at the same time.
It is computationally expensive, though, and such systems are
generally not suitable for long-distance driving because of the
accumulation of errors. A more practical approach, adopted
in this work, is mapping the surrounding landmarks from the
driver’s view onto an accurate navigational map. So far, there
has been much work on landmark selection and detection in
a real environment [5], [9], but relating the visual perception
(landmarks) to a digital map (localization) for navigational
purposes has rarely been discussed.

III. HUMAN-LIKE NAVIGATION GUIDANCE PROTOTYPE

With the help of deep learning techniques, landmarks of
interest can be detected efficiently [5]. Our task is to place
these on a navigational map in order to use them as guidance
references, which we do in three main stages. First, Visual
Odometry (VO) is applied to estimate ego-motion parameters
and the vehicle’s trajectory. Secondly, an Extended Kalman
Filter (EKF) is introduced to correct accumulative errors from
the vision-based motion estimation using multi-sensor data.
Finally, landmarks are reconstructed and located in the map,
based on the filtered vehicle motion parameters.

A. Monocular Visual Odometry

Monocular Visual Odometry [10] uses multiple-view geom-
etry to estimate the position and orientation of the camera/host-
vehicle at each instant from a sequence of images. Two
problems need to be tackled beforehand: keyframe selection
and scale ambiguity.

Keyframe Selection: With images taken from multiple
views, the rotation R and translation t of camera position
P can be estimated from corresponding feature points. It
is important, on one hand, to ensure the images contain
overlapping areas where sufficiently many feature points can
be matched. However, it is impossible to recover the correct
3D position of features points if two views are very close.
In a real driving scenario, key frame selection is usually
related to the vehicle’s dynamics: when the host vehicle is
moving quickly, all the frames should be used as keyframes,
but when it is nearly stationary, keyframes must be selected
with sufficient spacing to maintain a reliable VO estimation.

In our approach, by default, all acquired images are pro-
cessed as keyframes and the camera motion is estimated
between each successive frame. After the inclusion of a new
frame, a depth check is applied after the triangulation of
feature points. If the median of the reconstructed feature
depths exceeds a threshold δ, (which will occur when all
the feature points in the new frame are very close to their

positions in the previous frame), the changes between the two
views are considered to be unlikely to provide accurate motion
estimation. Usually it happens when the vehicle is stationary
or is only moving slightly. In this case, the current frame is
not considered as a keyframe and the vehicle position is not
updated for the moment, we call it ‘on-hold’ stage. Features
from the last valid keyframe are kept and tracked through
successive frames until obvious vehicle movement is detected.
At this point, the frame is labelled as a valid keyframe and
the vehicle motion during the ‘on-hold’ stage is updated by
interpolating the estimation between the new keyframe and the
previous one. The algorithm continues on this basis.

The threshold δ is obtained by correlation analysis between
reconstructed scene distances and vehicle data obtained from
a speed sensor. This processing can be done on-line or off-
line. At present, we estimate this threshold off-line and use
it as a predefined parameter. Fig. 5 shows how the keyframe
selection scheme works with dynamic vehicle speed, where
a keyframe flag equal to 1 means the frame is selected as a
keyframe, and 0 means it is not a keyframe. As we can see,
when the speed of the host vehicle reduces, fewer frames are
selected.
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Fig. 1. Keyframe selection scheme result

Scale determination: In monocular VO, the estimation of
the camera motion is limited by scale ambiguity. Different
methods have been used to infer the scale relative to real world
coordinates, but usually a reference object of a known size is
set in the scene to solve the ambiguity. However, this is hard to
do in a dynamic driving scenario. Song and Chandraker [11]
obtain the scale information by estimating the ground plane
and using the height of the camera above the ground. Our
dataset, however, provides no accurate information about the
camera pose and position, so we infer the scale information
from the vehicle’s speed using an Inertial Measurement Unit
(IMU) which is more precise and allows the algorithm to work
with dash cameras which may be relocated. Knowing the speed
of the vehicle and the frequency of the video frames, we can
calculate the displacement of the host vehicle between two
frames. After normalizing the translation vector, this speed
per frame is used as the scale in our experiment. Because the
frame rate is constant the scale s then can be considered as
the accumulation of speed per frame between two successive
keyframes.

Finally, the instantaneous vehicle position estimated by the



visual odometry can be represented as:

Pk = RPk−1 + st (1)

if both k− 1th and kth frame are keyframes, where Pk is the
position of camera at kth frame, s is the scale as described
above, and Randt are respectively the rotation and translation
matrix of the camera motion from the previous to the current
keyframe.

Algorithm 1 illustrates the tuned monocular VO algorithm.

Algorithm 1 Visual Odometry
1: keyframe1 ← frame(1) first frame;
2: scale s← v0 initial vehicle unit speed ;
3: on-hold stage frame count n← 0;
4: for each new frame k with k > 0 do
5: keyframe2 ← frame(k);
6: detection of features;
7: motion estimation [R|t] from features;
8: 3D reconstruction of feature points Pts;
9: if scene depth d(Pts) < δ then

10: if n == 0 then
11: position estimation: Pk ← RPk−1 + st;
12: else
13: interpolate [R|st] on frames in on-hold stage;
14: position estimation: Pk−n+1..Pk;
15: end if
16: update keyframe1 ← keyframe2;
17: s← vk;
18: else
19: on-hold stage frame count: n = n+ 1;
20: scale accumulation: s← s+ vk;
21: end if
22: end for

Fig. 2 presents the translation distance of the host-vehicle at
each frame from a short trajectory. It compares the translation
distance obtained from regular VO estimation with our tuned
monocular VO estimation from Algorithm 1. The moving
displacement obtained from GPS and IMU are also plotted as
reference. As can be seen, the regular VO failed to estimate the
vehicle’s motion during two segments: the first occurs when
the host vehicle is following behind a bus which is making the
same turning manoeuvre. In some frames the relative positions
of the two vehicles remain constant; the second failing segment
is when the host-vehicle is moving very slowly at a speed of
around 0.2m/frame (approximately 2m/s). After applying our
keyframe selection scheme and interpolation, the motion of
the host-vehicle can be estimated continuously and smoothly.
(Similar results could be seen in a graph of the vehicle’s
orientation estimation.) However, as we can see, the tuned VO
estimation still presents some deviations from the reference
IMU and GPS data.

For navigational purposes, the estimated path from VO
should be matched with the map, and the camera motion
from VO is used to recover scene geometry. To improve the
accuracy, GPS data and IMU data are introduced to fuse with
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Fig. 2. Comparison of regular/tuned monocular VO

VO result. The camera rotation and translation obtained from
Algorithm 1 are used in the fusion process.

B. Data Fusion using Extended Kalman Filter

Camera motion estimation from VO can be inaccurate
because of accumulating errors as the driving session pro-
ceeds. Optimization solutions such as Bundle Adjustment are
often implemented for vision-only odometry applications, but
these can be computationally expensive. For our navigation-
orientated applications, the natural choice was to correct the
localization and motion errors with GPS and IMU data; we
do this with Extended Kalman Filtering (EKF) [12].

State Model and Measurement: For natural navigation, in
addition to the accurate localization of the host vehicle in the
map, we need a landmark’s position relative to the host vehicle
and the planned trajectory. It requires accurate camera pose
and scale information at each frame to reconstruct and locate
these landmarks correctly. Therefore, in addition to position,
the vehicle’s orientation and the motion scale should also be
rectified with reference sensors. The filtering model is defined
as:

X = [x, z, θ, s]T (2)

x, z are the first and third elements in the camera position
P in world coordinate, they represent the host vehicle’s 2D
location on the ground plane, θ is the yaw angle of vehicle
motion, s is the scale from Algorithm 1.

Relative, reference sensor observations are used for mea-
surement:

Z = [xgps, zgps, θimu, sgps]T + β (3)

where, xgps, zgps are the GPS-derived location of the vehicle,
θimu is the difference of heading angle estimated from the
IMU, sgps is the displacement distance estimated by the GPS
per unit time, and β ∼ N (0,W ) is the measurement noise
described in the sensor device’s manual. W is the covariance
matrix of measurement.

The GPS data is quite noisy as shown in Fig. 2. In the
absence of detailed signal strength information from the GPS
receiver in the VBOX, we estimate instant GPS accuracy from
the number of satellites being tracked. GPS needs at least
4 satellites to provide a precise location; the more satellites,
the more precise the localization. We introduced a conditional



measurement covariance matrixW ′: if the number of satellites
is less than 4, it is set to a big value; otherwise, it is negatively
correlated with the number of satellites within range around
W . Thus, when the satellite signals are blocked by clustered
buildings or dense forest, the navigation system can still work
based on VO.

State Prediction and Update: At each step, a prediction is
made based on the VO estimation from the last frame. The
evolution of the state therefore can be expressed as:

xk+1 = xk + skt
x

zk+1 = zk + skt
z

θk+1 = θ

sk+1 = s

Let uk+1 = [tx, tz, θ, s]T be the input derived from VO. tx, tz

are the position translations in x and z direction.respectively:
tk+1 = [tx, ty, tz]T . θ is derived from the rotation matrix R
of motion estimation, s is directly obtained from Algorithm 1.
Taking the model noise into consideration, the prediction of
the state can be expressed as:

Xk+1|k = f(Xk,uk+1) +α (4)

where, α ∼ N (0,Q) is model noise, and Q is covariance
matrix of estimation at frame instant k.

The state is then updated by measurement Z following
standard EKF update procedure:

Xk+1 =Xk+1|k +Kk+1(Zk+1 −Xk+1|k) (5)

where, Kk+1 is Kalman gain for each step.
After data fusion using EKF, accumulating errors from the

VO can be avoided. The rectified state parameters are also
ready to be used for landmark localization.

C. Landmark Localization

When a navigational instruction needs to be delivered, we
want the navigation system to give human-like guidance based
on landmarks, since drivers often have a poor intuitive under-
standing of numerical distances. For this reason, landmarks
must be located on the navigation map in order to be used as
references to the planning path.

For each frame, the landmark detection process can be ex-
ecuted in parallel with the VO. Most existing object-detection
methods present their results in bounding-boxes. For example,
Wiles et al. [5] detect the outline of selected landmarks such
as bus stops, corner shops, etc.

We extract SIFT feature points from each landmark’s
bounding-box and track them through subsequent frames.
Their position relative to the host vehicle is reconstructed using
the rectified camera motion from the EKF: the rotation and
translation used for triangulation are rectified using updated
yaw angle θ and scale s from the data fusion processing. The
average position of the feature points in each bounding box
represents the position of the landmark. Finally, by relating this
to the rectified host-vehicle position x, z, we can easily locate
the landmarks in the navigational map. The feature tracking

is done once a landmark is detected; the landmark location is
reconstructed and updated after each frame.

The navigation system can now use landmarks as references
to deliver human-like instructions: a process which will form
the next phase of this work.

IV. EXPERIMENT DESIGN AND RESULTS

Experiments were conducted using multi-sensor data col-
lected from real driving scenarios in a natural environment,
to verify the proposed approach. The data is collected from
a dash camera and a VBOX data logger installed inside the
host vehicle, and it was selected primarily from travel in built-
up areas and on city roads, since these scenarios generally
contain more meaningful landmarks. The experiments consist
of two parts: first, a 500m long trajectory is analyzed along
which three landmarks are presented. Second, a collection of
landmarks (i.e. traffic light and bus stops) at different locations
is analyzed and compared with Open Street Map labelling.

A. Data Acquisition and Correction

GPS and IMU data, including host-vehicle dynamics and lo-
cations, were collected by a VBOX data logger at a frequency
of 10Hz. A monocular camera installed behind the windshield
recorded the front view video at 30fps, with a resolution of
1280×720 pixels. To match the frequency of GPS, the frames
are extracted from the video at frame rate of 10fps. All sensor
data are time-synchronized before the experiment.

Fig. 3. Example frame with labelled traffic sign

In this dataset, Differential GPS is not used, and we can only
consider the GPS data as a reference, not as reliable ground
truth. Another difficulty about this dataset is that the height
and orientation of the camera are not strictly regulated. As
shown in Fig. 3, the camera orientation is not aligned with the
vehicle’s orientation, which means that the estimated camera
motion from VO does not represent the real motion state of
the host-vehicle. Thus, the orientation difference between the
camera and the host-vehicle must be estimated. Fortunately,
the GPS and navigation map indicate when the host vehicle
is moving straight forward on a planar road. Comparing this
trajectory segment with the estimated camera movement path
from VO, we are able to calculate an approximate yaw angle
of the camera pose with respect to the vehicle coordinates.
In addition, for this dataset, the roll angle of camera relative



to host-vehicle can also be inferred by extracting the edge of
windshield. (Another more general method that can be used
to solve this problem involves estimating the ground plane in
camera coordinates). However, the pitch angle of the camera
is hard to estimate since the car is vibrating all the time. In our
data analysis, no solid evidence indicates a specific pitch angle,
so we assume a pitch angle of zero during the experiment. All
pose angles are considered with estimation errors. The VO
estimation can then be transformed and aligned to represent the
vehicle’s movement. Despite all of these challenges, an ability
to cope with these variations rather than assuming a fixed
camera location in the vehicle has the benefit that portable
visual navigation devices could also be used for this kind of
natural navigation.

B. Experimental Results

A driving trajectory of 500 metres was selected for the
experiment. It contains two roundabouts; with a brief pause
before entering the second one. Three different landmarks are
selected manually along the trajectory, while the host vehicle
is moving at different speeds and in different orientations.

Fig. 4. Plots of heading and translation of host vehicle at each frame

Fig. 4 presents the host-vehicle’s estimated heading direc-
tion and translation in x-axis and z-axis along frame stamps.
The three vertical lines indicates when the landmarks are
detected and start being tracked. The half-transparent pink
blocks indicates the duration of two roundabouts. We compare
the estimations from regular VO, tuned VO, EKF-based data
fusion, and GPS data are also listed as references. The top sub-
figure shows the heading plots from different algorithms, and
they tend to have very small deviation. During the 500 metres
of driving, the standard deviation of the estimated heading
from reference data is around 15◦ for all algorithms.

The middle and the bottom sub-figures illustrate the trans-
lation deviation from the GPS reference. During most frames,
the estimated translation is relatively close to the reference.
However, there is a major deviation between frame 100 and
frame 150. Compared to regular VO, the tuned VO effec-
tively reduced the duration of deviation, but cannot remove

it completely. The reason is that a moving bus occupies the
major view of the dash camera during the period, leading to
unreliable ego-motion estimation. This is a common problem
in VO and Visual SLAM applications.

Fig. 5. Landmark localization result

Fig. 5 plots the estimated trajectories from tuned VO and
EKF-based data fusion, GPS trajectory is set as reference. As
expected from previous analyses, a major trajectory deviation
appears during the first roundabout using tuned VO based
estimation, and minor deviations accumulate along the driving
path. Data fusion using EKF, however, effectively reduced the
estimation deviation from the reference trajectory.

Taking the VBOX data as a reference, the first two columns
of Table I list the average differences of the estimated position
and yaw angle from reference data. It is clear that the fused
trajectory estimation is more precise than the tuned VO based
algorithm. The accuracy of the reference data in last column
which is provided from the device’s manual, which provides
a relative basis for the estimation accuracy.

Knowing where the host-vehicle is located and how it
moves, we can reconstruct landmarks accordingly. The three
landmarks we selected are: a traffic sign when entering a
roundabout, a direction sign, and a bus stop. Bounding boxes
on the landmarks were labelled manually in the frame when
the host vehicle is approaching from 50m away. Detected
SIFT features from these bounding boxes are then tracked and
triangulated during the next 2 seconds (20 frames). Means of
the estimated landmark locations are marked on the map in
Fig. 5. However, no ground truth is available with which to
compare this, so we used Google Street View to check whether
the landmarks can be observed at each estimated location.
Naturally, there are discrepancies because images in Google
Street View are captured at discrete intervals. Still all of the
landmarks are successfully found near their estimated location.
Despite the lack of ground truth, the standard deviation of the

TABLE I
ESTIMATION ERROR OF WITH REFERENCE DATA ACCURACY

Table VO Err. EKF Err. VBOX Acc.
position(m) 1.58 0.71 3.0

yaw(◦) 3.05 0.57 0.01



TABLE II
STANDARD DEVIATION OF ESTIMATED LANDMARK LOCATIONS

Landmark Roundabout Direction sign Bus stop
σx(m) 2.63 0.93 0.81
σz(m) 1.95 0.71 1.02

landmarks’ location estimation is quite small, as indicated in
Table II. It illustrates that our method can provide consistent
and stable estimation of landmarks’ location with only brief
visibility.

For the second part of experiment, we tried to localize
POI landmarks found in Open Street Map (OSM) using our
algorithm and compare the result with their location on the
map. During the data collection, we noticed that most of the
traffic lights in branch roads are not available in OSM. In
addition, those landmarks labelled as POIs are not always
visible from the dash camera because, for example, they get
blocked by other traffic. In the end, we selected five bus stops
for comparison. The result is shown in Table III. As can
be seen, the standard deviations for VO-based localizations
from different frames are mostly about 5m, except for bus
stop number 3 (BS3). The reason for such a big deviation
here could be a combination of the inaccurate ego-motion
estimation and the GPS data, since the GPS localization in
this segment is very noisy. Situation like this is difficult to
avoid, we are hoping to improve the result by adding filters
for the landmarks as well in the future.

By contrast, the distance between our VO-localized land-
marks and their positions in OSM have low estimation devi-
ation. Bus Stop number 1 (BS1) shows the biggest difference
from its OSM location. We cross-checked the position of
this landmark against Google Maps, and it appears that the
accuracy of some of the POI map locations in OSM is
decidedly weak. A robust general evaluation method of the
localization accuracy therefore remains to be found.

Despite this, the early experimental results from our method
suggest that it provides a promising prototype algorithm for
locating landmarks for human-like navigation guidance.

Our local processing platform is a standard PC running Ma-
cOS on a 2.66GHz Intel CPU. The computation environment is
MATLAB R2016b. The average run-time for EKF-based host-
vehicle localization and mapping is around 544ms per frame.
For landmark localization it costs 9.5ms per frame. Since the
experiments were done purely for prototype development, it
is likely that the algorithm would be able to run in real-time
after optimization.

TABLE III
LANDMARKS LOCALIZATION AGAINST OSM

Landmark BS1 BS2 BS3 BS4 BS5
σx(m) 5.27 1.02 23.81 1.75 0.87
σz(m) 0.57 1.43 13.74 1.72 1.21

dOSM (m) 19.22 10.24 16.11 4.27 8.93

V. CONCLUSION AND FUTURE WORK

We have presented a first step towards the development of a
natural, human-like navigation system using Computer Vision
techniques. We have demonstrated that the fusion of VO with
other sensor data effectively assists in converting a visible
landmark in the driver’s view to a position on a navigational
map. However, a full qualitative evaluation remains difficult
in the absence of reliable ground truth data.

The main contributions of this paper are:
• A tuned VO algorithm which is suitable for driving

navigation
• A landmark-localization-orientated EKF filter to fuse VO

with multi-sensor data
• Demonstrating the feasibility of landmark-based naviga-

tion.
Our next step will be to combine our landmark detection

method with a routing algorithm to build a complete human-
like guidance system. In the short term, we can approach
a pure vision-based navigation system by using landmarks
for partial bundle adjustment to improve the accuracy of
Monocular VO. Additionally, we are aiming to build a more
reliable landmark dataset from POIs stored in Open Street
Map, which will form a reference for detection training and
localization evaluation.
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