
An LSTM Network for Highway Trajectory Prediction

Florent Altché2,1 and Arnaud de La Fortelle1

Abstract— In order to drive safely and efficiently on public
roads, autonomous vehicles will have to understand the inten-
tions of surrounding vehicles, and adapt their own behavior
accordingly. If experienced human drivers are generally good
at inferring other vehicles’ motion up to a few seconds in
the future, most current Advanced Driving Assistance Systems
(ADAS) are unable to perform such medium-term forecasts,
and are usually limited to high-likelihood situations such as
emergency braking. In this article, we present a first step
towards consistent trajectory prediction by introducing a long
short-term memory (LSTM) neural network, which is capable
of accurately predicting future longitudinal and lateral trajec-
tories for vehicles on highway. Unlike previous work focusing
on a low number of trajectories collected from a few drivers,
our network was trained and validated on the NGSIM US-
101 dataset, which contains a total of 800 hours of recorded
trajectories in various traffic densities, representing more than
6000 individual drivers.

I. INTRODUCTION

In most situations, experienced human drivers are able to
properly infer future behaviors for the surrounding vehicles,
which is critical when making tactical driving decisions
such as overtaking or crossing an unsignalized intersection.
This predictive ability is often lacking in current Advanced
Driving Assistance Systems (ADAS) such as Adaptive Cruise
Control (ACC), which usually act in a purely reactive fashion
and leave tactical decision-making to the driver. On the other
hand, fully autonomous vehicles lacking predictive capacities
generally have to behave very conservatively in the presence
of other traffic participants; as demonstrated by the low-speed
collision between a self-driving car and a passenger bus [1],
reliable motion prediction of surrounding vehicles is a critical
feature for safe and efficient autonomous driving.

Many approaches to motion prediction have been proposed
in the literature, and a survey can be found in [2]. As in
many machine learning applications, existing techniques can
be split between classification or regression methods. When
applied to motion prediction, classification problems consist
in determining a high-level behavior (or intention), for in-
stance lane change left, lane change right or lane keeping
for highway driving or turn left, turn right or go straight in
an intersection. Many techniques have already been explored
for behavior prediction, such as hidden Markov models [3],
[4], Kalman filtering [5], Support Vector Machines [6], [7]
or directly using a vehicle model [8]; more recently, artificial
neural network approaches have also been proposed [9]–[11].

1 MINES ParisTech, PSL Research University, Centre for robotics,
60 Bd St Michel 75006 Paris, France [florent.altche,
arnaud.de_la_fortelle] @mines-paristech.fr

2 École des Ponts ParisTech, Cité Descartes, 6-8 Av Blaise Pascal, 77455
Champs-sur-Marne, France

0 20 40 60

8.5

9

9.5

10

t (s)

x
(m

)

(a) Lateral position

0 20 40 60

5

10

15

t (s)

v y
(m

s−
1
)

(b) Longitudinal velocity

Fig. 1. Example of a predicted trajectory (2 s forecast) for a vehicle in the
test set (in red); the thick green line corresponds to the reference.

The main advantage of predicting behaviors is that the
discrete outputs make it easier to train models and evaluate
their performance. However, they only provide rough infor-
mation on future vehicle states, which is not easy to use
when planning a trajectory for the self-driving ego-vehicle.
Some authors have proposed using a generative model, for
instance Gaussian Processes [3] or neural networks [9] based
upon the output of the behavior prediction, but this approach
requires multiple trainings and is only as robust as the
classifier accuracy. Regression problems, on the other hand,
aim at directly obtaining a prediction for future positions
of the considered vehicle, which can then be used for
motion planning. Many regression algorithms could be used
for this problem, for instance regression forests [12]; more
recently, artificial neural networks have attracted the most
attention in the field of trajectory prediction for cars [13],
[14], cyclists [15] or pedestrians [16], [17]. A potential
downside of such approaches is that the output of many
regression algorithms is a single “point” (e.g., a single pre-
dicted trajectory) without providing a measure of confidence.
To counter this issue, well-established approaches such as

ar
X

iv
:1

80
1.

07
96

2v
1

 [
cs

.R
O

]
 2

4
Ja

n
20

18

Monte Carlo sampling or k-fold validation [18] can be used
to provide error estimates; more recently, dropout estimation
techniques have also been proposed for applications using
neural networks [19].

In this article, we focus on trajectory prediction using long
short-term memory (LSTM) neural networks [20], which are
a particular implementation of recurrent neural networks.
Because they are able to keep a memory of previous inputs,
LSTMs are considered particularly efficient for time series
prediction [21] and have been widely used in the past few
years for pedestrian trajectory prediction [16], [17] or to
predict vehicle destinations at an intersection [11], [22]. Our
main contribution is the design of an LSTM network to
predict car trajectories on highways, which is notably critical
for safe autonomous overtaking or lane changes, and for
which very little literature exists.

A particular challenge for this problem is that highway
driving usually comprises a lot of constant velocity phases
with rare punctual events such as lane changes, which are
therefore hard to learn correctly. For this reason, many
authors rely on purposely recorded [7] or handpicked [23],
[24] trajectory sets which are not representative of actual,
average driving. Therefore, the real-world performance of
trained models can be significantly different. A second con-
tribution of this article is that we train and validate our model
using the entire NGSIM US101 dataset [25] without a-priori
selection, and show that we can predict future trajectories
with a satisfying average RMS error below 0.7 m (laterally)
and 2.5 m s−1 (longitudinally) when predicting 10 s ahead.
To the best of our knowledge, no other published learning
technique was demonstrated with similar results using a
dataset representative of real-world conditions.

The rest of this article is structured as follows: in Sec-
tion II, we define the trajectory prediction problem that we
are aiming to solve. In Section III, we detail the prepro-
cessing of the US101 dataset to extract the input features of
the model, which is presented in Section IV. In Section V,
we present the training procedure and outputs of the trained
model. Finally, Section VI concludes the study.

II. PROBLEM STATEMENT

We consider the problem of predicting future trajectories
of vehicles driving on a highway, using previously observed
data; these predictions can then be used to plan the motion
of an autonomous vehicle.

Formally, we consider a set of observable features I and
a set of target outputs O to be predicted. We assume that
the features can all be acquired simultaneously at regular
intervals, and that Kprev + 1 successive measurements are
always available; we let Tprev = {−Kprev, . . . , 0} and, for
x ∈ I and k ∈ Tprev , we denote by xk the value of
feature x observed |k| time steps earlier. Similarly, we define
Tpost = {0, . . . ,Kpost} and we denote by yk the value of
output y ∈ O, k ∈ Tpost time steps in the future. We use
uppercase X = (xk)x∈I,k∈Tprev and Y = (yk)y∈O,k∈Tpost

to respectively denote the tensors of the previously observed
features and corresponding predicted outputs. We propose

to use a machine learning approach, in which we train a
regression function f such that the predicted outputs Ŷ =
f(X) match the actual values as closely as possible.

In this article, our approach is to train a predictor for the
future trajectory of a single “target” vehicle; in order to only
use data which can realistically be gathered, we limit the
amount of available information to the vehicles immediately
around the target vehicle, as described in Section III. As
with many learning approaches, one difficulty is to design
models that are able to generalize well from the training
data [11]. A second difficulty, more specific to the problem
of highway trajectory prediction, is the imbalance between
constant velocity driving phases, which are much more
frequent than events such as lane changes.

III. DATA AND FEATURES

A. Dataset

In this article, we use the Next Generation Simulation
(NGSIM) dataset [25], collected in 2005 by the United States
Federal Highway Administration, which is one of the largest
publicly available source of naturalistic driving data and, as
such, has been widely studied in the literature (see, e.g., [9],
[11], [13], [26]). More specifically, we consider the US101
dataset which contains 45 minutes of trajectories for vehicles
on the US101 highway, between 7:50am and 8:35am during
the transition from fluid traffic to saturation at rush hour.
In total, the dataset contains trajectories for more than 6000
individual vehicles, recorded at 10 Hz.

The NGSIM dataset provides vehicle trajectories in the
form of (X,Y) coordinates of the front center of the vehicle
in a global frame, and of local (x, y) coordinates of the same
point on a road-aligned frame. In this article, we use the
local coordinates (dataset columns 5 and 6), where x is the
lateral position of the vehicle relative to the leftmost edge
of the road, and y its longitudinal position. Moreover, the
dataset contains each vehicle’s lane identifier at every time
step, as well as information on vehicle dimensions and type
(motorcycle, car or truck). Finally, the data also contains the
identifier of the preceding vehicle for every element in the
set (when applicable).

B. Data preparation

One known limitation of the NGSIM set is that vehicle
positioning data was obtained from video analysis, and
the recorded trajectories contain a significant amount of
noise [27]. Velocities, which are obtained from numerical
differentiation, suffer even more from this noise. For this
reason, we used a first order Savitzky-Golay filter [28]
– which performs well for signal differentiation – with
window length 11 (corresponding to a time window of 1 s)
to smooth the longitudinal and lateral positions and compute
the corresponding velocities, as illustrated in Figure 2.

In this article, we hypothesize that the future behavior
of a target vehicle can be reliably predicted by using local
information on the vehicles immediately around it; a similar
hypothesis was successfully tested in [29] to detect lane-
change intent. For a target vehicle, we consider 9 vehicles

0 5 10

1.4

1.6

t (s)

x
(m

)

(a) Lateral position

0 5 10

−0.2

0

0.2

t (s)

v x
(m

s−
1
)

(b) Lateral speed

Fig. 2. Smoothing of the lateral position and speed.

targ

l

r

f

fl

fr

b

bl

br

ff

y

x

Fig. 3. Vehicles of interest around the target vehicle and local axis system.
The blue arrow represents traffic direction.

of interest, that we label according to their relative position
with respect to the target vehicle targ, as shown in Figure 3.
By convention, we let r (respectively l) be the vehicle
which is closest to the target vehicle in a different lane
with x > xtarg (respectively x < xtarg). We respectively
denote by fl, f , fr and ff the vehicle preceding l, targ,
r and f ; similarly, vehicles bl, b and br are chosen so
that their leader is respectively l, targ and r. During the
data preprocessing phase, we compute the identifier of each
vehicle of interest and perform join requests to append their
information to the dataset. When such a vehicle does not
exist, the corresponding data columns are set to zero.

Note that the rationale behind the inclusion of information
on ff is that only observing the state of the vehicle directly
in front is not always sufficient to correctly determine
future traffic evolution. For instance, in a jam, knowing that
vehicle ff is accelerating can help infer that f , although
currently stopped, will likely accelerate in the future instead
of remaining stopped. The obvious limit to increasing the

number of considered vehicles is the ability to realistically
gather sufficient data using on-board sensors; for this reason,
we restrict the available information to these 9 vehicles..

C. Features

In this article, we aim at only using features which can be
reasonably easily measured using on-board sensors such as
GNSS and LiDAR, barring range or occlusion issues. For this
reason, we consider a different set of features for the target
vehicle (for which we want to compute the future trajectory)
and for its surrounding vehicles as described above.

For the target vehicle, we define the following features:
• local lateral position xtarg, to account for different

behaviors depending on the driving lane,
• local longitudinal position ytarg, to account for different

behaviors when approaching the merging lane,
• lateral and longitudinal velocities vxtarg and vytarg,
• type (motorcycle, car or truck), encoded respectively as
−1, 0 or +1.

For each vehicle p ∈ {bl, b, br, l, f, r, f l, f, fr, ff}, we
define the following features:
• lateral velocity vxp,
• longitudinal velocity relative to targ: ∆vyp = vytarg−

vyp,
• lateral distance from targ: ∆xp = xp − xtarg,
• longitudinal distance from targ: ∆yp = yp − ytarg,
• signed time-to-collision with targ: TTCp =

∆yp

∆vyp
,

• type (motorcycle, car or truck), encoded respectively as
−1, 0 or +1.

These features are scaled to remain in an acceptable range
with respect to the activation functions; in this article, we
simply divide longitudinal and lateral distances (expressed
in SI units), as well as longitudinal velocities by 10, which
results in values generally contained within [−2, 2]. Note that
in the case of missing data (e.g., when the left vehicle does
not exist), the corresponding values of ∆ can become higher
(in absolute value).

This choice of features was made to replicate the infor-
mation a human driver is likely to base its decisions upon:
the features from surrounding vehicles are all relative to the
target vehicle, as we expect drivers to usually make decisions
based on perceived distances and relative speeds rather than
their values in an absolute frame. Features regarding the
target vehicle’s speed are given in a (road-relative) absolute
frame as drivers are generally aware of speedometer informa-
tion; similarly, we use road-relative positions since the driver
is usually able to visually measure lateral distances from the
side of the road, and knows its longitudinal position. The
choice of explicitly including time-to-collision as a feature
comes from the high importance of this metrics in lane-
change decisions [30]; furthermore, neurosciences seem to
indicate that animal and human brains heavily rely on time-
to-collision estimations to perform motor tasks [31].

D. Outputs

In this article, our goal is to predict the future trajectory of
the target vehicle. Since the region of interest spans roughly

[,]

tanhsigm sigm sigm

×

+×

×tanh

Forget gate

Input gate
ht−1

mt−1

xt

Output gate
ht

mt

Wf Wi Wm Wo

Fig. 4. Internal structure of an LSTM cell as used in the Keras
framework. sigm and tanh respectively denote a sigmoid and hyperbolic
tangent activation functions; the [,] node on the lower right operates a
concatenation of the new input xt and the previous output ht−1.

1 km longitudinally, the values of the longitudinal position
can become quite large; for this reason, we prefer to predict
future longitudinal velocities v̂ytarg instead. Since the lateral
position is bounded, we directly use x̂targ for the output. In
order to have different horizons of prediction, we choose a
vector of outputs [x̂k

targ, v̂y
k
targ]k=1...K consisting in values

taken k seconds in the future.

IV. LEARNING MODEL

Contrary to many existing frameworks for intent or be-
havior prediction, which can be modeled as classification
problems, our aim is to predict future (x, y) positions for the
target vehicle, which intrinsically is a regression problem.
Due to their success in many applications, we choose to
use an artificial neural network for our learning architec-
ture, in the form of a Long Short-Term Memory (LSTM)
network [20]. LSTMs are a particular implementation of
recurrent neural networks (RNN), which are particularly well
suited for time series; in this article, we used the Keras
framework [32], which implements the extended LSTM
described in [21], presented in Figure 4. Compared to
simpler vanilla RNN implementations, LSTMs are generally
considered more robust for long time series [20]; future work
will focus on comparing the performance of different RNN
approaches on our particular dataset.

An interesting feature of LSTM cells is the presence of an
internal state which serves as the cell’s memory, denoted by
mt in Figure 4. Based on a new input xt, its previous state
mt−1 and previous output ht−1, the cell performs different
operations using so-called “gates”:
• forget: uses the inputs to decide how much to “forget”

from the cell’s previous internal state mt−1;
• input: decides the amount of new information to be

stored in memory based on xt and ht−1;
• output: computes the new cell output from a mix of the

previous states and output of the input gate.
This particular feature of LSTMs allows a network to learn
long-term relations between features, which makes them very
powerful for time series prediction.

Due to their recurrent nature, even a single layer of
LSTM nodes can be considered as a “deep” neural network.
Although such layers may theoretically be stacked in a

X1...N LSTM Dense Dense Output

X1...4

tanh tanh

N + 4 256 256 128 M

Fig. 5. Network architecture used as reference design. The four repeated
inputs X1...4 correspond to the current target vehicle states (positions and
speeds), and are directly fed to the (dense) output layer.

fashion similar to convolutional neural networks to learn
higher-level features, previous studies [11] and our own
experiments (see Section V) seem to indicate that stacked
layers of LSTM do not provide improvements over a single
layer in our application. In this article, we use the network
presented in Figure 5 as our reference architecture, and we
compare a few variations on this design in Section V. The
reference architecture uses a first layer of 256 LSTM cells,
followed by two dense (fully connected) and time-distributed
layers of 256 and 128 neurons and a final dense output
layer containing as many cells as the number of outputs.
In this simple architecture, the role of the LSTM layer is to
abstract a meaningful representation of the input time series;
these higher-level “features” are then combined by the two
dense layers in order to produce the output, in this case the
predicted future states.

Additionally, the first four input features of the network
– corresponding to the absolute state of the target vehicle –
are repeated and directly fed to the (dense) output layer, thus
bypassing the LSTMs. The motivation behind this bypass is
to allow the recurrent layer to focus on variations from the
current states, rather than modeling the steady state of driving
at constant speed on a given lane. In practice (see Section V),
the use of this bypass seems to slightly improve prediction
quality.

V. RESULTS

In this section, we use the previously described deep
neural network to predict future trajectories sampled from
the US101 dataset. To assess the learning performance of
the model and its ability to generalize over different drivers,
we first randomly select 80% of vehicles (4892 trajectories)
for training, and withhold the remaining 20% of vehicles
(1209 trajectories) for testing; these later 20% are not used
during the training phase.

In this article, we aim at designing a network which is
capable of understanding medium-term (up to 10 s) relations
for prediction. To avoid backpropagation-related issues that
can arise with long time series, we trained the network using
windows of 100 inputs, representing a total of 10 s past
observations. One such window is taken every 10 data points;
therefore, two consecutive windows have 9 s of overlap.
Additionally, vehicles are grouped by batches of 500 (except
for the final batch), and data is shuffled within batches. As
a result, the data actually fed to the network for a batch of

vehicles is a tridimensional tensor of shape B × 100 × N
where B ≈ 20000 and N ≈ 50 are respectively the total
number of time windows in the batch, and the number
of features. The training is performed on GPU using the
TensorFlow backend with a batch size of 32; the model is
trained for 5 epochs on each set of 500 vehicles and the
whole dataset is processed 20 times, resulting in 100 effective
epochs.

For the test set, we directly feed the input features for
the whole trajectory, without processing the data by time
windows. For each vehicle, we then compute the Root
Mean Squared error (RMSE) between the network prediction
and the actual expected value. In Figure 1, we present the
prediction outputs of the network of Figure 5 for one of the
vehicles in the test set. For comparison purposes, we tested
the following variations of the reference design:
• Reference design of Figure 5,
• Using vehicle type information,
• Without using information on vehicle ff ,
• Without using a bypass,
• Using bypass before the first dense layer (only bypass

the LSTMs),
• Using a linear activation for the 128 dense layer,
• Adding another LSTM layer after the first,
• Adding a third dense layer of 64 nodes;

Table I presents the average RMS error across all networks
for various prediction horizons. In an effort to further im-
prove accuracy, we used a light bagging technique consisting
in using the average of the outputs from the four best models
(denoted by a * in Table I); this bagged predictor almost
always perform best over the testing data. For comparison
purposes, we also report results from [14] which chose a
related approach using a multi-layer perceptron (which does
not have a recurrent layer). The higher prediction errors
for longer horizons seem to show that the use of LSTMs
provides better results for longer prediction horizons.

As can be seen in Table I, the architecture of Figure 5 pro-
vides the best overall results for lateral position prediction,
but is less precise for velocity prediction. Interestingly, pro-
viding vehicle type information does not improve predictions
of lateral movement but allows more precise forecasting of
longitudinal speed, probably due to the difference in acceler-
ation capacities. In what follows, we focus on this reference
design to provide more insight on error characterization.
Figure 6 presents the distribution of prediction error over
the test set for the bagged predictor.

Note that the above results mostly use the RMSE and error
distributions to evaluate the quality of prediction. However,
such aggregated metrics may not be the best suited for this
particular application, notably due to the over-representation
of straight driving at constant speed, which highly outnumber
discrete events such as lane changes or sudden acceleration.
An illustration of this limitation is that we sometimes observe
that the prediction reacts with a delay, such as shown in
Figure 7; this effect mostly happens for longer prediction
horizons, and is not properly accounted for using RMSE. In
the worst cases (such as depicted in Figure 7), this delay

TABLE I
RMS ERROR FOR THE TESTED MODELS

Prediction horizon

Model 1 s 2 s 3 s 4 s 6 s 8 s 10 s

Reference* 0.11 0.25 0.33 0.40 0.53 0.60 0.73
Type* 0.39 0.39 0.44 0.48 0.53 0.63 0.69
No ff* 0.14 0.24 0.33 0.41 0.54 0.65 0.76
No bypass 0.80 0.82 0.85 0.88 0.93 0.97 1.03
Bypass before 0.33 0.38 0.43 0.46 0.52 0.61 0.68
Lin. activ. 1.38 1.39 1.40 1.42 1.46 1.51 1.56
2 LSTMs 1.25 1.26 1.28 1.29 1.33 1.37 1.41
3 dense* 0.34 0.38 0.44 0.50 0.59 0.70 0.72
[14] 0.11 0.32 0.71 not available

Bagged 0.17 0.25 0.33 0.40 0.46 0.57 0.65

(a) Lateral position (errors are in m)

Prediction horizon

Model 1 s 2 s 3 s 4 s 6 s 8 s 10 s

Reference* 0.71 0.99 1.25 1.49 2.10 2.60 2.96
Type* 0.65 0.88 1.05 1.25 1.75 2.28 2.74
No ff* 0.67 0.91 1.16 1.44 1.98 2.43 2.84
No bypass 1.50 1.50 1.55 1.66 2.05 2.50 2.89
Bypass before 0.78 0.90 1.06 1.26 1.76 2.30 2.78
Lin. activ. 0.77 1.10 1.34 1.56 2.08 2.58 2.94
2 LSTMs 0.76 1.14 1.42 1.71 2.22 2.72 3.17
3 dense* 0.73 0.87 1.04 1.25 1.76 2.30 2.77

Bagged 0.64 0.81 0.98 1.18 1.63 2.08 2.48

(b) Longitudinal speed (errors are in ms−1)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0%

25%

50%

75%

100%

Prediction error (m)

Pr
ob

ab
ili

ty

2 s
4 s
6 s
8 s
10 s

(a) Lateral position

0 1 2 3 4 5

0%

20%

40%

60%

80%

100%

Prediction error (m)

Pr
ob

ab
ili

ty

2 s
4 s
6 s
8 s
10 s

(b) Longitudinal velocity

Fig. 6. Distribution of error on the test set for the bagged predictor.

0 20 40 60 80

10

12

14

16

t (s)

x
(m

)

(a) Lateral position

0 20 40 60 80

0

5

10

15

t (s)

v y
(m

s−
1
)

(b) Longitudinal speed

Fig. 7. Delay between prediction (in red) and reference (in green, thick
line) for a prediction horizon of 10 s. Note that although a large delay is
observed on lateral position prediction, it is much smaller for longitudinal
speed.

can reach up to 8 s or 9 s for a prediction horizon of 10 s,
thus demonstrating that the model is sometimes unable to
interpret observed behaviors.

Experimentally, separately training each network output
seems to yield better results, at the cost of an increased
overall training time; training one model per vehicle type,
or using wider networks could also be possible ways of
improvement, as well as using different time windows du-
rations for training. Besides providing improvement to the
model, future work will focus on designing better suited
metrics related to correct detection of meaningful traffic
information, for instance lane changes, overtaking events or
re-acceleration and braking during stop-start driving, which
could help further improve predictions. Moreover, a more
careful analysis of cases showing large deviations should be
performed to compare model predictions with human-made
estimations.

VI. CONCLUSION

In this article, we proposed a neural network architecture
based on LSTMs to predict future vehicle trajectories on
highway using naturalistic driving data from the widely
studied NGSIM dataset. This network was shown to achieve
better prediction accuracy than the previous state-of-the-art,
with an average RMS error of roughly 70 cm for the lateral
position 10 s in the future, and lower than 3 m s−1 for the
longitudinal velocity with the same horizon. Contrary to
many previous studies which used handpicked trajectories for
training and testing, thus adding a selection bias, our results

were obtained using the whole US101 dataset, which should
make the model more apt to deal with real-world scenarios.

Although this work is highly preliminary and some limi-
tations – notably the observed delayed response – should be
addressed, we believe that these results constitute a promis-
ing basis to compute probable trajectories for surrounding
vehicles. The use of the actual predictions alongside with
precise statistics on error distribution could, in turn, be used
to significantly improve current motion planning algorithms.
Provided the discussed limitations can be overcome, our
results open many perspectives for future research, first by
studying their generalizability to other highways, then other
driving scenarios such as in intersections and roundabouts.
To this end, a proper study of selected features should
be performed, both to determine a good inputs scaling
technique and to study which features are the most relevant.
Moreover, more in-depth investigation of error distribution
using application-specific metrics should be performed to
properly validate the proposed models. Finally, our current
approach does not consider stochasticity or confidence levels,
although this information is essential to correctly use the
predictions; future work will investigate possible techniques
to output probability distributions instead of single values.

REFERENCES

[1] Google, “Google self-driving car project monthly report,”
https://www.google.com/selfdrivingcar/files/reports/report-0216.pdf,
Tech. Rep., Feb. 2016.

[2] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion
prediction and risk assessment for intelligent vehicles,” ROBOMECH
Journal, vol. 1, no. 1, p. 1, dec 2014.

[3] C. Tay, K. Mekhnacha, and C. Laugier, “Probabilistic Vehicle Motion
Modeling and Risk Estimation,” in Handbook of Intelligent Vehicles.
Springer London, 2012, pp. 1479–1516.

[4] T. Streubel and K. H. Hoffmann, “Prediction of driver intended path
at intersections,” IEEE Intelligent Vehicles Symposium, Proceedings,
pp. 134–139, 2014.

[5] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic predictive
control of autonomous vehicles in uncertain environments,” in 12th
International Symposium on Advanced Vehicle Control, 2014.

[6] H. M. Mandalia and M. D. D. Salvucci, “Using Support Vector
Machines for Lane-Change Detection,” Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 49, no. 22, pp.
1965–1969, sep 2005.

[7] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in 2013 IEEE
Intelligent Vehicles Symposium (IV). IEEE, jun 2013, pp. 797–802.

[8] A. Houenou, P. Bonnifait, V. Cherfaoui, and Wen Yao, “Vehicle
trajectory prediction based on motion model and maneuver
recognition,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, nov 2013, pp. 4363–4369.

[9] S. Yoon and D. Kum, “The multilayer perceptron approach to lateral
motion prediction of surrounding vehicles for autonomous vehicles,”
in 2016 IEEE Intelligent Vehicles Symposium (IV), vol. 2016-August.
IEEE, jun 2016, pp. 1307–1312.

[10] A. Khosroshahi, E. Ohn-Bar, and M. M. Trivedi, “Surround vehicles
trajectory analysis with recurrent neural networks,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, nov 2016, pp. 2267–2272.

[11] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable
Intention Prediction of Human Drivers at Intersections,” 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 1665–1670, 2017.

[12] B. Volz, H. Mielenz, R. Siegwart, and J. Nieto, “Predicting pedestrian
crossing using Quantile Regression forests,” in 2016 IEEE Intelligent
Vehicles Symposium. IEEE, jun 2016, pp. 426–432.

[13] R. S. Tomar and S. Verma, “Safety of Lane Change Maneuver
Through A Priori Prediction of Trajectory Using Neural Networks,”
Network Protocols and Algorithms, vol. 4, no. 1, pp. 4–21, 2012.

[14] Qiang Liu, B. Lathrop, and V. Butakov, “Vehicle lateral position
prediction: A small step towards a comprehensive risk assessment
system,” in 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC). IEEE, oct 2014, pp. 667–672.

[15] S. Zernetsch, S. Kohnen, M. Goldhammer, K. Doll, and B. Sick,
“Trajectory prediction of cyclists using a physical model and
an artificial neural network,” in 2016 IEEE Intelligent Vehicles
Symposium (IV). IEEE, jun 2016, pp. 833–838.

[16] Yanjie Duan, Yisheng Lv, and Fei-Yue Wang, “Travel time prediction
with LSTM neural network,” in 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, nov
2016, pp. 1053–1058.

[17] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded
Spaces,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, jun 2016, pp. 961–971.

[18] T. Fushiki, “Estimation of prediction error by using k-fold cross-
validation,” Statistics and Computing, vol. 21, no. 2, pp. 137–146,
2011.

[19] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, vol. 48. PMLR, 20–22
Jun 2016, pp. 1050–1059.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:
Continual Prediction with LSTM,” Neural Computation, vol. 12,
no. 10, pp. 2451–2471, oct 2000.

[22] A. Zyner, S. Worrall, J. Ward, and E. Nebot, “Long Short Term

Memory for Driver Intent Prediction,” 2017 IEEE Intelligent Vehicles
Symposium (IV), pp. 1484–1489, 2017.

[23] C. Ding, W. Wang, X. Wang, and M. Baumann, “A neural network
model for driver’s lane-changing trajectory prediction in urban traffic
flow,” Mathematical Problems in Engineering, vol. 2013, 2013.

[24] J. Zheng, K. Suzuki, and M. Fujita, “Predicting driver’s lane-
changing decisions using a neural network model,” Simulation
Modelling Practice and Theory, vol. 42, pp. 73–83, 2014.

[25] U.S. Federal Highway Administration. (2005) US Highway 101
dataset.

[26] J. Morton and T. A. Wheeler, “Project Report Deep Learning of Spatial
and Temporal Features for Automotive Prediction,” pp. 1–9, 2016.

[27] M. Montanino and V. Punzo, “Making ngsim data usable for studies on
traffic flow theory: Multistep method for vehicle trajectory reconstruc-
tion,” Transportation Research Record: Journal of the Transportation
Research Board, no. 2390, pp. 99–111, 2013.

[28] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[29] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K.-d.
Kuhnert, “A lane change detection approach using feature ranking
with maximized predictive power,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings. IEEE, jun 2014, pp. 108–114.

[30] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K. D.
Kuhnert, “When will it change the lane? A probabilistic regression
approach for rarely occurring events,” IEEE Intelligent Vehicles Sym-
posium, Proceedings, vol. 2015-August, pp. 1373–1379, 2015.

[31] D. T. Field and J. P. Wann, “Perceiving time to collision activates the
sensorimotor cortex,” Current Biology, vol. 15, no. 5, pp. 453–458,
2005.

[32] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

https://github.com/fchollet/keras

	I Introduction
	II Problem statement
	III Data and features
	III-A Dataset
	III-B Data preparation
	III-C Features
	III-D Outputs

	IV Learning model
	V Results
	VI Conclusion
	References

