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Abstract—This paper proposes a new framework based on
joint statistical models for evaluating risks of automated vehicles
in a naturalistic driving environment. The previous studies on the
Accelerated Evaluation for automated vehicles are extended from
multi-independent-variate models to joint statistics. The proposed
toolkit includes exploration of the rare event (e.g. crash) sets and
construction of accelerated distributions for Gaussian Mixture
models using Importance Sampling techniques. Furthermore, the
monotonic property is used to avoid the curse of dimensionality
introduced by the joint distributions. Simulation results show that
the procedure is effective and has a great potential to reduce the
test cost for automated vehicles.

I. INTRODUCTION

As Automated Vehicles (AVs) entering the market, it is
important to form a systematic evaluation procedure for safety
testing. The Naturalistic Field Operational Test (N-FOT) [1],
which is adopted by many companies, is inefficient due to the
rareness of safety critical scenarios.

In [2], we proposed a brand new concept, the Accelerated
Evaluation, and used the procedure to evaluate Automated Ve-
hicles crash risks in a natural driving environment. We mainly
explored the application on models of interaction between AVs
and human-controlled vehicles. In [3], [4], we modeled the
frontal crash with a lead vehicle using single variable Gaussian
process. We also explored different approaches to tackling the
evaluation of lane change scenario [2], [5].

In previous work, our studies on the lane change scenario
are based on the independence of random variables. We
managed to decompose the density distribution and model
the randomness using single variate distributions. In [2], we
used single parametric distribution to model the variables
and we proposed the piecewise mixture distribution [6] to
increase the accuracy of model and evaluation efficiency. Cross
Entropy method was used to optimize the importance sampling
distribution. While the independence of variables is concluded
from data observation, it is not strictly proved. Ignoring the
dependence between variables might lead to some estimation
error. Moreover, the independence of variables is not a general
condition. The requirement of independence restraints the
application domain of the Accelerated Evaluation procedure.

In this paper, we proposed an Accelerated Evaluation proce-
dure using Gaussian Mixture Model (GMM). Gaussian Mix-
ture Model is suitable and flexible for multivariate data. Data
fitting using the Gaussian Mixture Model not only enabled us
to capture the dependency between variables, but also provide
accuracy if the number of mixture components is appropriate.

Due to the numbers of parameters, using the Cross Entropy
method to construct Importance Sampling distribution can
be inefficient. The Cross Entropy method requires solving a
stochastic optimization problem for several iterations. When
the number of parameters is large, we need more samples
to obtain a reasonable solution. This largely increases the
required number of samples in the overall procedure. To avoid
the inefficiency of the Cross Entropy method, We develop a
new procedure based on the monotonicity property of rare
event set, which we define in this paper. We derive a rare event
set learning procedure to construct Importance Sampling dis-
tribution using both monotonicity property of rare-event sets
and efficiency of change of measure for Gaussian distributions.

We note that classification techniques such as support vector
machine does not suit this problem, because the construction
of Importance Sampling distribution requires specific proper-
ties for the form of the approximated rare-event set. While the
proposed learning procedure obtains approximation of rare-
event set with the required properties.

Section II reviews the setting of the lane change scenario. In
Section III, we review the truncated Gaussian Mixture Model
fitting. The definition of monotonicity rare event sets and the
set learning algorithm are present in Section V. We introduce
how to construct an efficient Important Sampling distribution
for Gaussian Mixture Model in Section IV and show the
specific procedure for monotonic rare events in VI. We present
the simulation results for the lane change scenario in Section
VII. Section VIII concludes the paper.

II. THE LANE CHANGE SCENARIO

The scenario studied in this paper is the defined as the
following: a human-controlled vehicle driving in front of
an automated vehicle start to cut into the lane where the
automated vehicle is running. We want to evaluate the risk
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Fig. 1. Lane change data collected by SPMD vehicle.

of a crash in this scenario. Since the scenario is initialized by
humans, we can take it as a random environment. Then we
can use the Automated Vehicle model to simulate the output
(crash or not) for a given initial condition.

To model the initial condition of lane changes, we ex-
tracted data from the Safety Pilot Model Deployment (SPMD)
database [7]. The database includes over 2 million miles of
vehicle driving data collected from 98 cars over 3 years. we
identify 403,581 lane change events and use 173,692 events
with a negative range rate to build statistical models. Three
key variables can capture the effects of gap acceptance of the
lane changing vehicle: velocity of the lead vehicle v, range
to the lead vehicle R and time to collision TTC. TTC was
defined as:

TTC = −R
Ṙ
, (1)

where Ṙ is the relative speed.
The simulation of Automated Vehicle model is based on

Adaptive Cruise Control (ACC) and Autonomous Emergency
Braking (AEB) [8] regarding the surrounding environment.
With an initial condition, the simulator returns an output of
the scenario. We consider as an event indicator function Iε(x)
that returns 1 (crash) or 0 (safe) depending on the event of
interest.

III. GAUSSIAN MIXTURE MODEL FITTING

In this section, we review the truncated Gaussian Mixture
Model (GMM) fitting studied by Lee and Scott [9].

The fitting of Gaussian Mixture Model is well studied and
generally used. In the lane change scenario, the data need to be
considered as truncated. For instance, the range of two cars
will not be negative. For this reason, we use the truncated
GMM to model the initial condition.

For a d dimensional dataset with truncated as a hyper-
rectangle with vertices s and t, observations yn satisfies
s ≤ yn ≤ t. Note that we can have si = −∞ or ti = ∞,
which indicates the ith coordinate is not truncated below or
above.

For a truncated GMM with K components, we use obser-
vation to estimate parameters in

g(y) =

K∑
k=1

ηkgk(y), (2)

where ηk is the mixing weights,
∑K
k=1 ηk = 1, gk is truncated

Gaussian with support [s, t], mean µk and covariance Σk.
Similarly as the vanilla GMM fitting, we use an Expectation-
Maximization (EM) algorithm to estimate the parameters.
With a proper initial value for the estimated parameters, we
use the following algorithm to iterate for converged estimators.

The E-step is:

〈znk 〉 =
ηkgk(yn)∑
l ηlgl(y

n)
, (3)

where we define 〈znk 〉 = P (znk = 1|yn) to denote the
probability that yn is generated from the kth component.

The M-step is also similar to the ordinary GMM fitting
except some correction terms:

η̂k =
1

N

∑
n

〈znk 〉, (4)

µ̂k =

∑
n〈znk 〉yn∑
n〈znk 〉

−mk, (5)

Σ̂k =

∑
n〈znk 〉(yn − µ̂k)(yn − µ̂k)T∑

n〈znk 〉
+Hk, (6)

where
mk =M1(0,Σk; [s− µk, t− µk]), (7)

Hk = Σk −M2(0,Σk; [s− µk, t− µk]). (8)

M1(µ,Σ; [a, b]) andM2(µ,Σ; [a, b]) denote the first and sec-
ond moment of truncated Gaussian distribution with truncating
vertices a, b, mean µ and covariance Σ.

The choice of number of components K can be determined
by some criteria for goodness of fitting, for example, we can
use the Bayesian Information Criterion (BIC).

IV. IMPORTANCE SAMPLING DISTRIBUTION FOR
GAUSSIAN MIXTURE MODELS

In this section, we first review the concept of Importance
Sampling and some known Importance Sampling schemes for
rare events with Gaussian distribution. We derive the scheme
for GMM based on these background knowledge.

A. Importance Sampling for Gaussian Distribution

Importance Sampling is a technique to reduce the variance
in simulation.

Consider a random vector x with distribution F and a rare
event set ε ⊂ Ω on sample space Ω. Our goal is to estimate
the probability of the rare event

P (X ∈ ε) = E[Iε(X)] =

∫
Iε(x)dF, (9)

where the event indicator function is defined as

Iε(x) =

{
1 x ∈ ε.
0 otherwise.

(10)

The crude Monte Carlo using the sample mean of Iε(x)

P̂ (X ∈ ε) =
1

N

N∑
n=1

Iε(Xn), (11)



where Xi’s are drawn from distribution F .
The Importance Sampling [10] technique is derived from

E[Iε(X)] =

∫
Iε(x)dF =

∫
Iε(x)

dF

dF ∗
dF ∗, (12)

which gives the estimator using the sample mean of the above
expectation (use ref)

P̂ (X ∈ ε) =
1

N

N∑
n=1

Iε(Xn)
dF

dF ∗
, (13)

where Xi’s are generated from F ∗, which has the same support
with F . We note that this is an unbiased estimation of P (X ∈
ε). By appropriately selecting F ∗, the evaluation procedure
obtains an estimation with smaller variance. F ∗ is called the
IS distribution. We define the likelihood function

L(x) =
dF (x)

dF ∗(x)
. (14)

The analysis of asymptotic efficiency [10], [11] is a bench-
mark to determine whether an IS distribution is proper. Let
Z = L(x)Iε(x) be an IS estimator, it is efficient if

lim
ε→∞

log
(
EF∗ [Z2]

)
log (EF∗ [Z])

≤ 2, (15)

where ε→∞ denotes that the rare event set ε diverges to ∞
in a suitable sense (e.g., infx∈ε ‖x‖2 →∞).

When x follows Gaussian distribution with mean µ and
covariance matrix Σ and the rare event set ε satisfies the
convexity assumption, there is a simple scheme that obtains an
efficient IS distribution. Here, we introduce the scheme with
assumptions satisfied in the lane change scenario.

For a convex set rare event set ε, we define the dominating
point of ε on φ(·;µ,Σ) to be

a∗ = arg max
a∈ε

φ(a;µ,Σ), (16)

where φ(·;µ,Σ) is the density function for Gaussian distribu-
tion with mean µ and covariance matrix Σ. The dominating
point contributes the highest density among all points in ε. By
shifting the mean µ of the Gaussian distribution to a∗, we can
obtain an IS distribution that provides a effecient estimator for
P (x ∈ ε) [12], [13].

B. IS Scheme for Gaussian Mixture Model and Union of
Convex Rare Event Sets

Based on the IS scheme for Guassian distribution on convex
rare event set, we propose an IS scheme for Gaussian Mixture
Model on the union of convex rare event sets.

Assume x follows a Gaussian Mixture Model with k com-
ponents, the density of x is

f(x) =

k∑
i=1

piφ(x;µi,Σi). (17)

The rare event set ε is consisted with l convex sets, we denote
as ε = ∪lj=1εj .

Fig. 2. Scheme of constructing accelerated distribution for Gaussian Mixture
Model with convex rare event set.

Fig. 3. Scheme of constructing accelerated distribution for single Gaussian
Model with union of convex rare event sets.

For each convex set εj , we find the dominating point of εj
on the Gaussian component φ(x;µi,Σi) by

a∗ij = arg max
a∈εj

φ(a;µi,Σi). (18)

We propose to use the IS distribution as following:

f∗(x) =

k∑
i=1

l∑
j=1

piqjφ(x; aij ,Σi), (19)

where the qj can be arbitrary positive number that satisfies∑l
j=1 qj = 1. We use qj = 1/l.
Note that this scheme can be viewed as the combination of

two basic schemes shown is Fig. 2 and Fig. 3. For each mixture
component, we find the dominating points for the convex sets
in the union of sets and form a IS distribution based on the
dominating points. We use the mixture of IS distributions of
all mixture components as the IS distribution for the model.

V. MONOTONIC RARE EVENT SETS LEARNING

In this section, we first define the monotonicity for rare
event sets. Then we propose a learning algorithm to obtain an
outer approximation set, which contains the rare event set, and
an inner approximation set, which is a subset of the rare event
set, based on the monotonicity property. The approximation
sets we obtain are unions of convex sets, which suit in the IS
scheme we proposed in Section IV.

A. Definition of Monotonic Rare Event Sets

For a rare event set ε on d dimensional space, if x1 ∈ ε
and x1 ≤ x2 implies that x2 ∈ ε, we define the set ε non-
decreasing. We note that non-increasing set can be defined
by flipping inequality as x1 ≥ x2. Both non-decreasing and
non-increasing set are defined to be monotonic.



Fig. 4. An illustration of the monotonic set learning.

For example, in the lane change scenario, if a crash occurs
for initial condition (v, TTC,R), then if any of these variable
is smaller, we can determine that a crash will happen. The set
for crash is non-increasing. This can be explained intuitively,
because a smaller v, TTC and R means that there is less room
for the following Automated Vehicle to make adjustments.

B. Learning Algorithm

Since our goal for learning the approximation set of rare
event is to construct an IS distribution, we want the approxi-
mated set to satisfy the assumption in the scheme we proposed
in Section IV. Therefore, we want the approximation set to be
an union of convex sets.

Let us consider a non-decreasing rare event set ε on a
d dimensional space. We denote S1 = {a1, ..., an1} as the
observed data in the rare event set and S0 = {b1, ..., bn0} as
the observed data not contained by the rare event set. We use
S1 to construct an inner approximation set ε and use S0 to
construct an outer approximation set ε̄.

For each data point ai in S1, we construct a set Ii = {x :
x ≥ ai}. By the definition of non-decreasing set, we have
Ii ⊂ ε. Therefore, we have ε = ∪n1

i=1Ii ⊂ ε as the inner
approximation set of ε.

For each data point bj in S0, we construct sets Ojk =
{x : xk ≥ bjk} for k = 1, ..., d, where xk denotes the kth
element in x and bjk denotes the kth element in bj . We have
ε ⊂ ∪dk=1Ojk, which indicates that ε ⊂ ∩n0

j=1 ∪dk=1 Ojk.
We define ε̄ = ∩n0

j=1 ∪dk=1 Ojk as the outer approxima-
tion set of ε. We can express ε̄ as union of convex sets
∪dm1=1...∪dmn0

=1 (∩n0

k=1Okmk
). Fig. 4 illustrates the key idea

of this learning procedure.
We note that Ii’s and Ojk’s are convex, the approximation

sets are unions of convex sets. We also note that using the min-
imums of S1 or maximums of S0 (also known as Pareto fronts)
of the dataset provides the same inner or outer approximation
set. Here, minimums are defined as points that are greater in
all dimensions than no other points; whereas maximums are
defined as points that are smaller in all dimensions than no
other points.

Additionally, to use the result for non-decreasing sets, we
can simply flip all coordinates of data (take negative value)
when we have a non-increasing set. For sets that is non-

decreasing on some of the coordinates and non-increasing on
the rest coordinates, we can flip the value of data those non-
increasing coordinates. The approximation sets obtained will
still be unions of convex sets after flipping any coordinate.

We note that we can directly obtain a lower probability
bound and an upper probability bound for the rare event
probability.

VI. IS DISTRIBUTION CONSTRUCTION SCHEME FOR A
GAUSSIAN MIXTURE MODEL OF A MONOTONIC RARE

EVENT SET

Combining the discussion in Sections IV and V, we propose
an iterative procedure that provides IS distributions for a
Gaussian Mixture Model with a monotonic rare event set.

Here, we consider a non-decreasing rare event set ε on
d dimensional space and the variable vector x is generated
from a k components GMM with density (17). To clarify the
notations, for each Gaussian component i, we construct a set
of dominating points AiI using the inner approximation set ε
and AiO using the outer approximation set ε̄ for i = 1, ..., k.
|A| denotes the number of elements in the set A. ε and ε̄
are constructed based on S1, which contains the minimums of
observed data in ε, and S0, which contains the maximums of
observed data that not in ε. The procedure iterates to update
these sets, which will provide two IS distributions f∗I and f∗O
based on the inner approximation and the outer approximation
of ε respectively.

The procedure is presented as the following:
1) Initialize AiI = AiO = {µi} and S1 = S0 = ∅.
2) Construct the sampling distribution

f∗I (x) =

k∑
i=1

∑
a∈Ai

I

pi
1

|AiI |
φ(x; a,Σi) (20)

and

f∗O(x) =

k∑
i=1

∑
a∈Ai

O

pi
1

|AiO|
φ(x; a,Σi) (21)

3) Sample N data points D = {x1, ..., xN} from the
density

f(x) = ρf∗I (x) + (1− ρ)f∗O(x), (22)

where ρ is on [0, 1]. We suggest to use ρ =
1/2 I{S1 6={µi}}.

4) Input D to the simulator Iε(x) and use the outcome
to update S1 and S0. We add the new data points to S1

and S0 regarding the outcome of Iε(x). Then we discard
non-minimum data points in S1 and non-maximum data
points in S0.

5) For each Gaussian component i, we use each data points
a ∈ S1 to solve

max
x

φ(x;µi,Σi) subject to x ≥ a. (23)

We obtain n1 = |S1| solutions and the solution set is
our new AiI .



Fig. 5. The BIC regarding to different number of components K.

6) For each Gaussian component i, we use each data points
bj ∈ S0 to solve

max
x

φ(x;µi,Σi) subject to xmk
≥ bkmk

, k = 1, ..., n0

(24)
for m1 = 1, ..., d, ..., mn0 = 1, ..., d. xm ≥ bm denotes
the mth element of x is greater or equals to the mth
element of b. We obtain dn0 = d|S0| solutions and the
solution set is our new AiO.

7) Iterate from 2) to 6).

The stop criterion can either be a maximum iteration number
or a maximum number of elements in either set if reached. A
recommended IS distribution is in the form of (22). Since the
optimal ρ is case-by-case, we need to observe the elements
in AiI ’s and AiO’s to decide the value of ρ. If there elements
in AiI ’s and AiO’s are very different (in the sense of variable
values) or there are few elements in , we recommend to use
ρ = 0. If AiI ’s and AiO’s are similar, then we use ρ = 0.5.

VII. SIMULATION ANALYSIS ON LANE CHANGE
SCENARIO

In this section, we present the GMM fitting of the lane
change model and use the IS distribution construction scheme
proposed on the model. We show simulation results to justify
the validity of the scheme.

A. Truncated Gaussian Mixture Model Fitting

We use the EM algorithm in Section III to fit the lane change
data (v, TTC−1, R−1). The important part for GMM fitting
is the selection of the number of components K. Fig. 5 shows
the BIC regards to different K. We could observe that we
obtain a local minimum at K = 9, where it means that the
model with K = 9 provides a balance between the number of
parameters and the fitting.

We note that the different scale of the variables might cause
some numerical issues in implementing the algorithm pre-
sented in Section III, we can normalize (subtract by marginal
mean and then divided by marginal standard deviation) the
data before we fit the model.

Fig. 6. The crash probability estimation with increasing number of samples.

Fig. 7. The confidence interval of the crash probability estimation with
increasing number of samples.

B. Importance Sampling Results

The IS distribution construction scheme we proposed in this
paper is based on the assumption of ordinary Gaussian Mixture
Model. Since the distribution of variables in the lane change
scenario is truncated, we need to make small modifications on
the scheme.

Shifting the sampling mean to dominating points still works
in for truncated Gaussian, because the truncated coordinate
does not have asymptotic behavior. In this case, we only need
to worry about those untruncated coordinates, which will be
the same as untruncated Gaussian Distribution.

For the monotonic set learning part, note that if we directly
use (23) and (24) for truncated variables, we might obtain
in the infeasible region. We add the truncated boundary as
constrains for these optimization problems.

After we obtain the dominating point sets AiI ’s and AiO’s
from the proposed algorithm, we observe that the elements in
AiI and AiO are tend to be very different. Therefore, we use
ρ = 0 for the IS distribution.

Fig. 6 presents the estimated probability with different
number of experiments. The probability converges around
1.15 × 10−6. Fig. 7 shows the 95% confidence interval
half width of the probability estimation. For 106 samples,
we have the 95% confidence interval for the estimation as
(1.02×10−6, 1.97×10−6). Using the formula for the standard



deviation of the crude Monte Carlo estimation P̂ (x ∈ ε) by

std(P̂ (x ∈ ε)) =

√
P̂ (x ∈ ε)(1− P̂ (x ∈ ε))

n
, (25)

we can estimate that the crude Monte Carlo method requires
about 2.56×107 samples to reach a confidence interval with a
similar scale. The IS distribution constructed by the proposed
algorithm increases the efficiency of the estimation by roughly
25 times.

VIII. CONCLUSION

This paper proposes using Gaussian Mixture Model to
model stochastic variables in Automated Vehicle evaluating
problems. We provide an algorithm for constructing Impor-
tance Sampling distribution based on the property of Gaussian
Mixture model and monotonic rare events. The proposed al-
gorithm can provide a valid Importance Sampling distribution.

A further direction for our research is to find a scheme to
refine the elements in the dominating point sets.
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