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Abstract—Betweenness centrality is an important measure in
network sciences that reflects the extent a node lies in between
any pairs in a graph. The measure has been used by urban
studies, to discuss the relationship between urban mobility and
the spatial street network of a city, using Dijkstra shortest path
betweenness centrality to describe human wayfinding procedures.
As in reality, wayfinding is a more complex endeavor, results of
studies using both random path or the most optimal shortest
path approach might be misleading.

In this paper we propose with the exploratory betweenness
centrality (EBC) a more realistic set of measures that uses an
exploratory path in calculating centrality rather than an optimal
path in studying pedestrian movement. In particular we calculate
EBC where the agent selects the longest street nearest to the
destination (App-EBC) or any random street that is approaching
the destination (Ran-EBC)

In doing so, we compare how EBC and GBC correlate with
aggregate pedestrian movement for two case studies in London.
The result shows the EBC measures explains equal or greater
variation of aggregate pedestrian movement than the GBC
measure for both of the case studies, indicating the potential
of using measures of EBC in modeling urban mobility.

keywords - Street networks, space syntax, wayfinding, shortest
path, spatial cognition, betweenness centrality, urban mobility

I. INTRODUCTION

Betweenness centrality (BC) [1], measures for a particular
node the number of overlaps between every pair of origin
and destination in a graph. The descriptive measure has been
important for identifying the person that is between many
others in a social network or the node that has the greatest
risk for congestion in a communication network. Applied on
the street network, the centrality measure found strong corre-
spondence with aggregate pedestrian movement distribution
[2]. Despite its descriptive importance, limited research in
pedestrian navigation and movement analysis has been done on
the shortest path approach most work grounds its findings on.
One common algorithm for solving the shortest path problem
is the Dijkstra [3] algorithm which finds in a weighted graph
the shortest path between any pair of origin and destination
assuming global knowledge of the system. Recent research
have also suggested the use of random walk in calculating
betweenness through a markov chain process[4]. However
this type of measures is also unrealistic in the majority of
wayfinding activities. Pedestrians might not have complete
knowledge nor zero knowledge of the system when navigating
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but rather partial knowledge, hence where the shortest path is
limited. To verify this, a simple correlation was conducted
between pedestrian movement and current flow betweenness
[4] for one of the case studies in London. As expected, the
result shows a poor association between the two which suggest
that pedestrian movement is closer to optimal and further than
random.

Inspired from spatial cognition and space syntax research,
we propose the exploratory betweeness centrality measure of-
fering statistically stronger results, which takes an exploratory
path rather than an optimal path when calculating between-
ness centrality. This paper is structured as follows: First, we
outline previous research on pedestrian navigation, including
a description of the exploratory betweenness centrality (EBC)
and the global betweenness centrality (GBC) measure. Then,
we describe our empirical method to explore the difference
through two case studies in London. Last, we present our
results and discuss limitations and opportunities.

II. BACKGROUND
A. Literature

Wayfinding [5][6] involves a complex cognitive process
for identifying the paths between origins and destinations
that are influenced by its spatial configuration, signage, built
environment and visual access [7].

In this work, we focus on the aspect of spatial network
configuration from the field of space syntax into applying the
graph perspective on street networks into understanding pedes-
trian movement and navigation [8]. From the spatial network
perspective, two general strategies are often employed. One
strategy is to take the least—effort metric shortest path to reach
its destination and the other strategy is to take the simplest
path such as minimizing the number of turns or preserving
linearity to reaching its destination [9][2]. In reality wayfinding
is a complex process and sits somewhere between the two, as
pedestrians, not familiar to an urban area, are more likely to
take a least turn path using less information while people more
familiar with an area are likely to use a more complex strategy,
such as backroads.

In addition, previous work also shows that pedestrians are
not necessarily taking an optimal path [10] but actually are
in a constant process of routes evaluation based on both



the local information, their bearings to the destination and
the user knowledge of the system. These findings have been
supported by research in spatial cognition such as our homing
instinct in giving us a natural sense of direction [11]. We
are also constantly retrieving topological information from
our hippocampus informing these wayfinding decisions [12]
[13] [14]. Furthermore, outcome can also be related to the
concept of bounded rationality [15] in behavioural economics
where users might not have full information to make a utility—
maximised decision. From this evidence, the use of an optimal
path in calculating betweenness centrality to study pedestrian
movement can therefore be unrealistic.

Recent pedestrian wayfinding research generally supported
this sub-optimal strategy that includes looking at anchor-based
strategies [16] and hierarchical strategy [17]. A recent study
from the author [18] began to compare the difference between
a suboptimal path and an optimal shortest path. The result
shows the two matches approximately 70-80% of the time.
Inspired from spatial cognition and space syntax research, this
research propose the exploratory path betweenness centrality
in studying aggregate pedestrian movement.

B. Betweenness Centrality

The idea of centrality was first applied to social network by
Bevelas [19]. Since then, various centrality measures had been
proposed including degree, closeness, betweenness centrality
[20]. In the field of space syntax, angular betwenness (BC) of
the street network have been found to correlate significantly
with aggregate pedestrian movement [2]. For a weighted graph
G=(V,E) made up of nodes (V) and edges (E). The set V
represent the streets and the set E represent the junctions.
BC measures the number of shortest paths overlap on street
segment (v) from all origin and destination pairs in a graph.
Higher BC indicates a greater probability a street segment
is traversed or passed through. More formally, BC can be
described as:

BC(v) = 04(v)/0x (1)

s#t

where 6, denotes all the shortest path from s € V and t €
V and 6, (v) denotes the shortest path from s and t that lies
on v € V. [1] BC is furthermore differentiated in Global and
Exploratory Betweenness Centrality.

Global Betweenness Centrality: Brandes [1] proposed the
use of the Dijkstra shortest path algorithm in calculating BC
for a weighted graph. Adapted from the Breadth-first-search
(BFS) algorithm, the Dijkstra shortest path algorithm [3] starts
from the origin and it searches every neighbours and then
every neighbor’s—neighbors recursively until it reaches the des-
tination. A shortest path is then identified by minimising the
global shortest path length between the origin and destination.
This research calls the Brandes algorithm here the Global
Betweenness Centrality (GBC) as it finds a global optimal
path. This can be applied on any weighted graph. Following
previous pedestrian movement research [2], we use both the
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Fig. 1. Diagram highlighting the path selected by GBC on the right, App-EBC
in the centre and Ran-EBC on the right for an abstract graph.

metric and angular costs between streets as edge weights in
calculating the GBC measure.

Exploratory Betweenness Centrality: Exploratory Between-
ness Centrality (EBC) is here defined as a set of measures
that uses an exploratory path in calculating centrality. A key
characteristic of the exploratory path is it does not back-track.
In another words, there is a single path between s and t where
an agent trims the path tree after making a decision even if
it is not necessarily the shortest. The denominator of EBC is
therefore set to 1. This can simply be a random-walk path,
a locally optimal path or simply a path that approaches the
destination. This research uses the latter in calculating EBC
for the study where the agent has the knowledge if it is closer
to the destination or not while walking. This is as oppose to
a pure random walk.

We call the first variation APP-EBC where the exploratory
agent at each step is selecting the longest street nearest
to the destination. This is repeated at every node until it
reaches the destination. This strategy is based on the intuition
that the pedestrian is afforded limited visual information and
that taking the longest street can possibly bring you closer
to the destination at the next wayfinding-point. The second
variation is Ran-EBC where the exploratory agent is picking
randomly any street that is approaching the destination. This
is repeated at every node until it reaches the destination.
This strategy is based on the intuition that pedestrians do not
have a strong preference in path selection as long as it is
homing towards the destination. We use both the metric and
angular distance between streets as edge weights in calculating
both EBC measures. Figure 1 shows an abstract example to
demonstrate the difference between GBC, App-EBC and Ran-
EBC where the aim is to find a path from node ”Origin” to
node “Destination” according to the edge weights. The picture
on the left shows the shortest path taken by the GBC measure.
The picture in the middle shows the path taken by the APP-
EBC measure. The picture on the right shows both paths as
either paths could be selected at random by the Ran-EBC
measure.



Fig. 2. Map of Barnsbury and Kensington. Contains Ordnance Survey data
Crown copyright and database right [2016]

III. CASE STUDY AND DATASETS

We follow the general empirical procedure from Penn [21]
and Hillier and Iida [2] in correlating aggregating pedestrian
movement and street network centrality. We select two of the
case studies from the dataset namely Barnsbury and Kensing-
ton in London. Barnsbury is a predominately residential area
to the north of London and Kensington is a retail, mixed—use
residential area in West London. Figure 2 shows the two case
study areas where the orange lines indicate the street network
for the Barnsbury study area and the green lines indicate
the street network for the Kensington study area. To study
the correlation between centrality and movement patterns, we
need information describing the road network and pedestrian
movement. Next we will describe our two datasets at hand,
providing this information.

A. Street Network Dataset

Our first dataset describing the street network is the Merid-
ian Line Street network dataset, open source for London and
publicly available through Ordinance Survey (OS) open data
framework. (OS open data 2016) We have manually added the
pedestrian paths and missing links for the empirical analysis.
In order to calculate the BC measures on the street network,
the dataset is converted into first a dual graph or a line graph
where the node is the street and the edge is the junction
following the standard procedure in space syntax research [2].
We then calculate two versions of the App-EBC, Ran-EBC and
GBC algorithm for each of the case study. The first uses metric
distance as edge weights. The second uses the angularity as
edge weights. This results in six measures being calculated for
the two case studies.

Figure 3 shows the histogram of the six BC measures for
the Barnsbury study area. The histogram shows all six mea-
sures of betweenness centrality are rightly-skewed suggesting
that there are many low betweenness streets and fewer high
betweenness streets. Figure 4 shows in a GIS mapping the
spatial distribution for the six BC measures in Barnsbury as a
heatmap where red denotes higher betweenness centrality and

Bamsbury

Fig. 4. Betweenness centrality of the Barnsbury Street network. Contains
Ordnance Survey data Crown copyright and database right [2016]

blue denotes lower betweenness centrality. The visualisation
shows Betweenness centrality captures the structure of the
street network system where the main routes are highlighted
in red and the least used routes highlighted in blue. Despite
the differences in individual paths, the result shows GBC and
EBC are visually similar. This is expected on aggregate as the
path which approaches the destination one step at a time will
also likely use the main routes in reaching the destination.
The angular weight measures show greater concentration on
the main streets while the metric weights measure is clearly
more distributed where the back roads are also highlighted.
Due to similar observations, histograms and visualisations are
not repeated in Kensington for brevity reasons.

B. Pedestrian Movement Dataset

The second is the pedestrian movement dataset collected
from a previous study [21]. The pedestrian movement dataset
contains the average hourly pedestrian movement for a par-
ticular street segment. Figure 5 is a histogram showing the
pedestrian movement distribution for the Barnsbury area on
the left and the Kensington area on the right. The pedestrian
movement distribution is rightly-skewed which suggests that
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Fig. 6. Pedestrian movement mapped for Barnsbury and Kensington

there are many low pedestrian movement streets and few high
pedestrian movement streets. Figure 6 maps the pedestrian
movement for the Barnsbury area on the left and the Kens-
ington area on the right respectively. Pedestrian movement is
visualized in a heatmap where red denotes higher pedestrian
movement and blue denotes lower pedestrian movement. As
can be seen from the two figures, there are high pedestrian
flows along the straightest and most continous routes such as
Knightsbridge and Brompton Road in the Kensington area and
Caledonian Road in the Barnsbury area. While the other streets
are much quieter. This corresponds visually to the betweenness
centrality. The result also shows the Kensington area has
generally a higher and more distributed pedestrian flow pattern
that is influenced by both the transport attraction such as the
London Underground station and the urban attraction such as
the various museums in the area. Barnsbury on the other hand
is a more residential area with a line of shops along Caledonian
Road.

IV. METHODS

The aim of the study is to empirically test to what extent
GBC, App-EBC and Ran-EBC differ when correlating with
aggregate pedestrian movement. To do so we run an ordinary
least square (OLS) linear regression model between the log
of the aggregate pedestrian movement and the log of the
betweenness centrality measures, as shown in Equation (3).
This is repeated for GBC, App-EBC and Ran-EBC. For each
model both angular weights and metric weights are tested.
This results in six regression models. Basic statistics such as
goodness of fit (R2) and P-value are reported.

Log(Pedmov;) = $1Log(BC;) + ¢; )

Let Pedmov to denote the hourly pedestrian movement of
segment (i) and BC to denote the betweenness centrality of
segment (i).

V. RESULTS

Table I and table II shows the descriptive statistics for the
empirical analysis. This includes for each street, the pedestrian
flow, the angular and metric GBC, App-EBC and Ran-EBC.

Statistic N Mean St. Dev. Min Max

id 109 55.0 31.6 1 109

Pedmov 109 92.1 79.1 6 446

Ang_GBC 109 73,414.6 105,649.8 1 524,041

Met_GBC 109 87,007.5 86,637.1 748 322,100

AngApp_EBC 109 153,524.5 199,237.5 3,321 876,776

MetApp_EBC 109 172,407.9 163,862.6 9,337 670,136

AngRan_EBC 109 161,319.9 204,269.0 3,559 898,613

MetRan_EBC 109  212,144.0 137,139.8 8,929 604,559

TABLE I
BARNSBURY DESCRIPTIVE STATISTICS
Statistic N Mean St. Dev. Min Max
id 155 78.1 45.0 1 156
Pedmov 155 331.0 399.8 7 2,538
Ang_GBC 155 201,212.0 364,981.1 0 1,854,038
Met_GBC 155 197,5744  253,018.8 91 1,069,253
AngApp_EBC 155 403,430.9 705,387.2 5,528 3,806,522
MetApp_EBC 155  409,635.9  522,723.3 9,519 2,562,309
AngRan_EBC 155 4235413  733,362.0 5,528 3,960,129
MetRan_EBC 155 498,811.6  457,7629 30,563 2,336,595
TABLE II

KENSINGTON DESCRIPTIVE STATISTICS

Figure 7 shows the log-log scatterplot between pedestrian
movement and betweenness centrality for the Barnsbury area
and Table III shows the regression results. In accordance to
the F-statistics, all six models are significant at the P-value
0.01 level and the R2 is between 58-74% for the Barnsbury
area. The result shows in all six models betweenness centrality
can explain the majority of the pedestrian movement variation
using strictly the street network properties. The R2 for App-
EBC improves by 6-12% in comparison to GBC. The R2
for Ran-EBC improves by 12% using angular weights but
reduce by 11% using metric weights in comparison to GBC.
In general EBC measures have stronger fit to the data than
GBC where Ang-Ran-EBC achieves the highest R2.

Figure 8 shows the log-log scatterplot between pedestrian
movement and betweenness centrality for the Kensington area
and table IV shows the corresponding regression results. In
accordance to the F-statistics, all four models are significant at
the P-value 0.01 level and the R2 is 48-55% for the Kensington
area and hence, can explain the majority of the pedestrian
movement variation. The R2 for App-EBC improves by 2-8%
and the R2 for Ran-EBC improves by 1-3% in comparison
to GBC. Similarly, this shows clearly EBC measures have
stronger fit to the data than GBC measures where Ang-Ran-
EBC achieves the highest R2.
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Fig. 7. Log-Log plot between pedestrian movement and BC for Barnsbury

Dependent variable:

Beta Estimates
@ ) 3) @ ®) ©6)

Ang_GBC 0.255%**

(0.019)
Met_GBC 0.438***

(0.030)
AngApp_EBC 0.418%
0.024)
MetApp_EBC 0.556***
(0.034)
AngRan_EBC 0.443%**
(0.025)
MetRan_EBC 0.750%**
(0.062)

Constant 1.747*** —0.417 —0.337 —2.134%** —0.666** —4.757**

(0.196) (0.327) (0.269) (0.392) (0.283) (0.751)
Obs 109 109 109 109 109 109
R? 0.617 0.659 0.735 0.715 0.741 0.575
Adj R? 0.613 0.656 0.732 0.712 0.739 0.571
F Stat (df = 1; 107)  172.243***  207.145***  296.496***  268.601***  306.771***  144.521***
Note: *p<0.1; **p<0.05; ***p<0.01

TABLE III

BARNSBURY REGRESSION RESULTS

In summary, we can see the potential of betweenness cen-
trality using the street network information to explain pedes-
trian movement variation [2]. We can also see betweenness
centrality was able to explain greater pedestrian movement
variations for the Barnsbury area in comparison to the Kens-
ington area. This is logical as Barnsbury is more dominated
by natural movement while Kensington is more dominated
by functional movement. Betweenness Centrality assumes a
relatively homogeneous distribution of origins and destinations
in the study area. Therefore differences in attraction density
is not considered from a pure spatial network perspective.
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Fig. 8. Log-Log plot between pedestrian movement and BC for Kensington

Dependent variable:

Beta Estimates

@ 2 3) () ) ©)

Ang_GBC 0.262%**

(0.020)
Met_GBC 0.391%**

(0.033)
AngApp_EBC 0.424%**
(0.032)
MetApp_EBC 0.538%**
(0.039)
AngRan_EBC 0.449%***
(0.033)
MetRan_EBC 0.706***
(0.060)

Constant 2.631%** 0.956** 0.431 —1.208** 0.079 —3.670%**

(0.215) (0.373) 0.371) (0.478) (0.384) 0.761)
Obs 155 155 155 155 155 155
R? 0.517 0.474 0.532 0.550 0.550 0.476
Adj R? 0.514 0.470 0.529 0.547 0.547 0.473
F Stat 163.915%**  137.759***  174.228%**  186.725***  187.107***  139.071***
Note: *p<0.1; **p<0.05; ***p<0.01

TABLE IV
KENSINGTON REGRESSION RESULTS

Our findings also show that EBC explains generally greater
pedestrian movement variation than GBC for both case studies
in London, while Ang-Ran-EBC achieves the highest R2.
This indicates that pedestrians might be taking a path that
is approaching the destination but not necessarily the global
optimal path.

VI. DISCUSSION

In this paper we propose the exploratory betweenness
centrality, a set of measures that takes an exploratory path
rather than an optimal path when calculating betweenness
in studying pedestrian movement. For the empirical study
we tested App-EBC that selects the longest street nearest to
the destination, Ran-EBC that selects any random street that
approaches the destination and GBC that takes an optimal
path to the destination in calculating different versions of
betweenness centrality. We compare the three measures by
correlating it with aggregate pedestrian movement for the
two case studies in London. The result shows firstly that the
network measures using street information can explain a great
proportion of movement variation. The result also shows
EBC explains statistically greater variation of aggregate



pedestrian movement than GBC and are consistent for both
case studies in London. Interpreting these initial results, there
is a possibility we may be taking an exploratory path that is
always heading closer (metric distance) or heading towards
(angular distance) the destination when navigating but not
necessarily the global optimal path at the aggregate level
[10]. One interpretation is related to our homing instinct in
navigating towards our destination [11]. Another interpretation
is we might have partial knowledge [15] of the urban network
as humans evaluate their decision tree one branch at a time
[22]. The difference between App-EBC and Ran-EBC is
greater for metric weights as oppose to angular weights.
In particular the result shows Ang-Ran-EBC achieves the
highest R2 for both case confirming previous finding that
angular distances is an important factor describing aggregate
pedestrian movement [2]. It also suggests that on aggregate,
pedestrians may not be taking the optimal angular path in
reaching the destination as long as it is preserving linearity
and heading towards it [9].

Besides its potential, there are a number of limitations
to the research. The research uses a simple empirical
method in correlating aggregate movement behaviour and
centrality indices. The improvement in goodness of fit is
significant and consistent for both cases. However it is
unclear if these differences are related to the actual processes
of path selections or to the case study selections or to
other unobserved missing factor. Thus, these results can
serve as evidence for further research to consider a more
exploratory approach in calculating centrality measures
for pedestrian analysis. More empirical research especially
at the disaggregated level and the neurological level is
needed to understand the processes of the results. The
second limitation is the research uses two simple exploratory
path when calculating EBC. Future research shall consider
other wayfinding strategies such as a multi-weights strategy
(angular-metric), the anchor-based strategy, the hierarchical
strategy, the scenic path strategy and the local optimal strategy
when calculating betweenness centrality measures in studying
pedestrian movement. Future research can also considered the
notion of memory where agents can have different amount of
knowledge when traversing.

Despite these limitations, these findings imply graph cen-
trality measures can be useful as a descriptive measure to
explain pedestrian movement variations with minimal data
requirement. This is useful in countries where data is less
complete. These findings also imply the concept of exploratory
path is worth examining and that the adoption of a global
optimum path should not be assumed when calculating cen-
trality measures in studying pedestrian movement. Confir-
mation of these results can be used in expanding the path
selections in pedestrian route choice models which can help
pedestrian movement predictions. The results can also be used
in refining pedestrian navigation applications such as routes
recommendation and in robotics on navigation in complex

urban environments. Most importantly, the results can also
potentially contribute to the planning of more pedestrian-
centric cities, precisely on how people move and on how cities
can be design to respond to it.
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