
Cloud-Assisted Distributed Control System
Architecture for Platooning

Umberto Montanaro
and Saber Fallah

Connected and Autonomous Vehicle Lab
Department of Mechanical Engineering

University of Surrey
Guildford, UK, GU2 7XH

Email: s.fallah@surrey.ac.uk

Mehrdad Dianati
WMG, International Manufacturing Centre

University of Warwick
Coventry, UK, CV4 7AL

David Oxtoby
Tom Mizutani

and Alexandros Mouzakitis
Jaguar Land Rover Limited

Coventry, UK, CV3 4LF

Abstract—This paper presents a functional architecture for
controlling and managing platoons of vehicles assisted by a
cloud computing platform for passenger vehicles in mixed
traffic scenarios. The architecture modules are distributed in
the three separate logical layers suggested by the on-going
CARMA (Cloud-Assisted Real-time Methods for Autonomy)
research project which aims to develop and test cooperative
automated driving technologies and distributed control systems.
The architecture also exploits the potential of the CARMA
platform both in terms of computing and data sharing.

I. INTRODUCTION

A vehicle platoon is a group of two or more consecutive
Connected Autonomous Vehicles (CAVs), traveling along a
highway in the same lane and at the same velocity with
a short inter-vehicular distance. Platooning of vehicles can
offer benefits such as safety, efficient road usage, efficient
fuel consumption and passenger comfort [1]. The achievable
benefits promised by this cooperative driving vision have
been investigated by research projects such as SARTRE [2],
COMPANION [3], Energy-ITS [4], Connected & Drive [5],
just to name a few. To guarantee a coordinated motion of the
vehicles in the platoon, cooperative adaptive cruise control
(CACC) algorithms are used to compute the acceleration of
each vehicle based on on-board measurements and infor-
mation gathered from the other platoon members through
Vehicle-to-Vehicle (V2V) communication systems [1]. How-
ever, for the practical implementation of a vehicle platoon,
the use of the sole CACC systems and V2V communication
technology is not sufficient. Other platoon functionalities,
such as those required to execute basic platoon manoeuvres
(e.g. merging/leaving the platoon), must be integrated and
properly orchestrated to guarantee the correct cooperation
of the platoon members. Furthermore, off-board information
such as road regulations and roadway conditions should be
provided to platoons through Vehicle-to-Infrastructure (V2I)
communication systems to increase the perception of the
surrounding environment and improve safety [6]. To achieve

the desired platoon vision, functional architectures are often
used to describe platoon functionalities and to define the
data-flow among the system control components. Functional
architectures usually are composed of different layers which
are distributed between on-board vehicle systems and a
roadside infrastructure such as servers, cloud, etc. Each
layer of the architecture is built up of different functional
modules and is responsible for a set of activities. The earliest
platoon architecture was proposed within the PATH program
[7], which consists of five layers: physical, regulation, co-
ordination, link and network layers. The first three layers
reside in the vehicles, while the link and network layers are
distributed to the infrastructure. The physical layer consists
of control modules for the vehicle, such as steering, brakes,
transmission control and local sensors. The regulation layer
is used to plan and execute local manoeuvres required by the
upper layer. The coordination layer plans the manoeuvres
to be actuated and is supported by information gathered
from the other vehicles and the infrastructure. The link and
network layers are used to control the traffic flow. The link
layer is devoted to control traffic over sections of the highway
(up to 5 km), while the network layer controls traffic flow
over the entire highway network and plans vehicle routes
to maximise the capacity or minimise the average vehicle
travel time. Another example of architecture for platooning
was proposed in [8] where the architecture was structured
in three layers, i.e. traffic control layer, vehicle management
layer and vehicle control layer. The vehicle control layer is
responsible for sensing the environment and controlling the
vehicles whereas the vehicle management layer coordinates
movements of vehicles in platoons and the traffic control
layer provides instructions for optimising the traffic flow
along the highway. Similarly, a three-layered architecture
was suggested in [9] to develop either a centralised man-
agement or a decentralised management. The former refers
to a platoon system in which the platoon leader, i.e. the



first vehicle in the platoon, takes decision and coordinates
the other platoon members during platoon operations while
the latter refers to platoons in which platooning decisions,
such as those required for merging/leaving manoeuvres, are
distributed among platoon members without the need of the
platoon leader. It should be noted that all abovementioned
architectures have been developed based on the assumption
of automated highways in which all vehicles are assumed to
be connected and autonomous. However, the hypothesis of
having all road vehicles to be CAVs is not realistic for the
short-term future [10]. Consequently, platoon architectures
suitable for mixed traffic scenarios (i.e. traffic scenarios that
in addition to CAVs include autonomous vehicles, connected
vehicles and conventional vehicles) are of utmost importance.
Recently, a platoon functional architecture that can be op-
erated in mixed traffic has been proposed in [3] for goods
transportation. The architecture is composed by three layers:
strategic, tactical and operational layers. The strategic upper-
layer assists a dispatcher at a carrier company to schedule
the trip of the vehicles of the company such that goods are
delivered within a desired time and with the minimum fuel
consumption. To achieve these targets, the strategic layer
optimises the route and speed of each connected vehicle
and organise, when possible, sets of vehicles in platoons
while considering real time traffic data which can be obtained
without assuming that all road vehicle are CAVs. It is noted
that the computation of the routes allowing organisation
of vehicles in platoons was possible because the transport
assignment of all vehicles (i.e. start and destination of the
trip and desired time of delivery) was assumed to be known
before an actual transport occurs. The tactical layer handles
short term goals, such as refinement of speed profile either
for fuel minimisation or for guaranteed platoon formation.
Finally, the operational layer performs activities similar to
those provided by the coordination and regulation layers of
the architecture proposed in the PATH program [7]. In the ar-
chitecture proposed in [3], the strategic layer is implemented
in the infrastructure while the operational layer resides on-
board the vehicle and the tactical layer is partitioned in both
the off-board and the on-board systems.

In the framework of platoon architectures, the aim of this
paper is to present a distributed functional control platoon
architecture for passenger CAVs that has the potential to
be assisted by the cloud computing framework under de-
velopment within of the on-going CARMA (Cloud-Assisted
Real-time Methods for Autonomy) research project [11].
The platoon architecture is designed for CAVs connected to
the CARMA platform and can be used for a mixed traffic
highway. Moreover, the architecture is intended to support
passenger vehicles while on highways to create, form and
maintain platoons. Drivers can decide at any time to initiate

or end platooning with other CAVs connected to the platform,
thus extending the highway scenario presented in [3], where
the formation and duration of platoons in the platform can
be scheduled offline and before the actual trip of vehicles.
Furthermore, the architecture is designed to be distributed
over the layers of the CARMA architecture to benefit from
the computational power and information available within
the CARMA framework. The paper is devoted to present
an overall view of the entire platoon control architecture
under investigation in the CARMA project together with its
fundamental blocks and it is organised as follows. In Section
II, an overview of the CARMA project with a description
of the layers of the CARMA architecture as provided in
[11] is given to clarify how the platoon architecture is
distributed through the CARMA framework. In Section III,
the highway scenario which includes the organisation of the
CAVs connected to the CARMA platform in platoons is
provided with the aim to give the reader an overall description
of the functionalities to support cooperating driving in high-
ways. Components required to implement such a scenario are
provided in Section IV, where the architecture for platooning
is presented and distributed through the CARMA layers.
Finally, conclusion and future research lines are drawn in
Section V.

II. THE CARMA PROJECT: AN OVERVIEW

CARMA is a research project co-funded by the UK’s En-
gineering and Physical Sciences Research Council (EPSRC)
and Jaguar Land Rover under a programme of five projects
collectively called ”Towards Autonomy - Smart and Con-
nected Control” where the automation focus is BASt Level
3+. The aim of CARMA is to develop and test cooperative
automated driving technology, based on a distributed control
system, which is enabled by an ultra-low latency and highly
reliable cloud-based infrastructure accessed through 5G. The
CARMA approach is that of a distributed control system in
which the executions of autonomous functions are distributed
between the on-board system and a cloud-based high perfor-
mance shared back-end system. The CARMA architecture is
logically divided into three layers, as depicted in Figure 1, i.e.
the CARMA Vehicle, the CARMA Edge and the CARMA
Core [11]. The CARMA Vehicle connects various on-board
sensors, infotainment equipment, on-board embedded pro-
cessors, Human-Machine Interface (HMI) equipment, and
actuators to apply control commands. The on-board control
components operate in cooperation with the CARMA Edge
while assuring fault-tolerance of the system in cases when
the connection is disrupted. Furthermore, since vehicle safety
is of paramount importance, on-board controllers are also
responsible to assess and potentially override the remotely
computed instructions (from cloud/edge) to ensure safety of



Fig. 1. CARMA 3-tier logical architecture (taken from [11]).

the vehicle. The CARMA Edge hosts off-board processes
and information that require tight access (low latency) with
the vehicles. This will include information collected from
around the vehicle and processes that require cooperation
with roadside equipment and other vehicles. This concept
is borrowed from ETSI Mobile Edge Computing (MEC)
framework, where MEC servers can be installed at Road
Side Units or cell sites. The CARMA Core is a cloud-based
back-end system, based on commercially available public
cloud resources. This also provides interfaces for a variety of
stakeholders that provide or use information from CARMA
vehicles.

III. HIGHWAY SCENARIO

This section describes a CARMA vehicle’s trip through
a highway network from entry to exit. During the trip,
the vehicle can join one or more platoons, thus it will
be also described how platoons are formed and managed
within the CARMA platform. For the sake of simplicity, the
highway scenario is detailed in the nominal case in which
there is no loss of connection or failure of on-board vehicle
sensors/actuators. It is also assumed that conventional vehicle
cutting in to enter in the platoon will not happen. The high-
way system can be represented as a set of highway segments
where each is composed by the highway name, entry and exit
gates [7]. Each segment is divided in sections, where each
section is defined as a piece of a highway segment belonging
to the coverage area of a CARMA edge. It is assumed that
each highway segment is a sequence of either consecutive
or overlapping sections, thus guaranteeing that the CARMA
vehicle is always connected to the CARMA platform. A
schematic representation of a highway segment composed of

Fig. 2. Highway scenario.

three sections is given in Figure 2. Upon entering a highway
gate, the CARMA vehicle announces its destination together
with a set of driver’s preferences for the computation of the
vehicle route. In respond, the CARMA platform computes,
according to some criteria (e.g. minimum path, minimum
fuel consumption, etc.), the best route connecting the entry
gate to an exit gate. The route is described as a sequence
of highway segments and their sections. For each section
the CARMA platform provides to the CARMA vehicle the
speed profile that minimises the fuel consumption over the
entire trip (i.e. global optimal speed). This speed is actuated
through an on-board longitudinal control. A CARMA Vehicle
travelling along road sections and following the suggested
global optimal speed is said to be operated in ACC mode
by definition. During the trip, the driver of the CARMA
vehicle can decide to initiate platooning with other CARMA
vehicles sharing with it a sequence of road segments. Hence,
the driver sends to the platform the request either to create
a new platoon or to merge to an existing one. If the driver
has requested the creation of a platoon, a new platoon is
created in the CARMA platform and the CARMA vehicle is
set as leader of the new platoon and the state of the vehicle
changes from ACC mode to Platoon Leader (PL) mode. If
the driver has requested to join a platoon, the state of the
vehicle changes from ACC mode to Free Agent (FA) mode
by definition. In this state, the CARMA platform provides the
vehicle with a set of platoons available in the system that are
compatible with the speed profile of the CARMA vehicle, i.e.
platoons which are reachable according to the speed profile
previously computed. Furthermore, each platoon in the list
is characterised by a set of features (e.g., achievable fuel
reduction driving in that platoon, expected time to reach the
platoon, etc.) which supports the driver in the selection of a
platoon to join (such platoon is referred in the rest of paper
as target platoon). It is noted that, due to the variability of
the traffic, the platform continuously checks if the selected
platoon is reachable, if not, it informs the driver and suggests
possible alternatives. When the CARMA vehicle in FA mode
is close enough to the target platoon, a pre-merging phase
is initiated. In this phase, the CARMA platform supports
the CARMA vehicle to perform a set of activities that must



precede the merging of the new member in the platoon, such
as (i) the selection of the correct lane, (ii) selection of the
position of the new member within the platoon (e.g., to keep
vehicles in the target platoon sorted according to a given
criteria), and (iii) the computation of suitable speed profiles
to reduce the gap between the CARMA vehicle and the target
platoon. It is noted that, in this phase both the velocity of
the CARMA vehicle and that of the target platoon can be
adapted to guarantee that their relative position is adequate
before the merging starts [12], [13]. Furthermore, the platoon
can be configured either by considering the destination of
each vehicle in the platoon so as to maximise the time the
platoon stays intact [14], or by the ability of each vehicle
to actuate acceleration/deceleration so as to put vehicles
with poorer capability at the end of the vehicle string [15].
The subsequent operations that the CARMA vehicle and
the target platoon perform are similar to those presented in
[16], i.e. merging platoon, platooning, and leaving platoon.
Briefly, during the merging phase, the FA vehicle reduces
further the relative distance with respect to the platoon1 and
performs a lane change in the case of a side merging after
the target platoon has prepared a suitable gap for the new
member. After the merging phase is completed, the state
of the CARMA vehicle shifts from the state FA-mode to
either PL mode (if it is the first vehicle in the platoon)
or Platoon Follower (PF) mode (if the vehicle is not the
first in the string). During platooning, all the vehicles in the
string move at the same speed of the leader with a precise
control of the inter-vehicular distance guaranteed through the
use cooperative adaptive cruise control (CACC) algorithms
[1]. Finally, during the leaving phase, the CARMA vehicle
exits from the platoon by performing a lane change when
its lead and following vehicles have created a suitable gap
for executing this manoeuvre. A CARMA vehicle leaves the
platoon either on the request of the driver or when its route
becomes different from the platoon route. It is noted that, the
CARMA platform supports all these manoeuvres by orches-
trating their activation and providing ambient data (e.g. road
parameters, information on possible adjacent vehicles etc.)
for the correct and safe execution of manoeuvres. Moreover,
during platooning, the CARMA platform optimises the speed
and inter-vehicular distance of the platoon to reduce fuel
consumption during the cooperative driving [17]. After a
CARMA vehicle leaves the platoon, it remains connected
to the platform and receives from CARMA platform the
speed profile that minimises fuel consumption for the rest
of the journey until it reaches its highway exit or the driver
requests to merge to another platoon. It is noted that, as the
CARMA platform continuously monitors all the connected

1For instance in [12], for merging form the back, the relative distance is
reduced form 300 m to 15 m.

Fig. 3. Operation mode of a CARMA vehicle during a highway trip.

vehicles, if a CARMA vehicle or platoon is not able to
follow its speed profile, e.g. due to traffic-jams, adverse
road conditions, etc. the speed profile and/or route of the
CARMA vehicle/platoon can be recomputed to accommodate
the surrounding environmental changes.

The operating mode for a CARMA vehicle in the scenario
described above are depicted in Figure 3 which also shows
the events determining the changes for one mode to another.

IV. SYSTEM ARCHITECTURE

The logical architecture for the platoon control and man-
agement and its distribution in the CARMA platform is
shown in Figure 4. The architecture is composed by three
layers, i.e. Trip-Planner, Road Section Manager, and Coor-
dination Control.

The top layer, Trip-Planner computes the global optimal
route and speed profile for the minimisation of the energy
consumption on each section of the highway system and for
all CARMA vehicles operating in any vehicle mode (ACC-
mode, FA-mode and PL/PF-mode). For vehicle operating in
platoons the Trip-Planner also provides a suggested inter-
vehicular distance. To perform these tasks the Trip-Planner
requires information with a spatial horizon that stretches
all the way to the vehicles’ destination, i.e. profile of the
altitude for each highway segment, traffic condition, weather
condition, road condition, etc. [18]–[20]. It is noted that
algorithms for searching global optimum energy consumption
are not easily tractable, because of their complexity in terms
of computational burden which increases exponentially with
the number of control variables and states. This drawback is
known in the optimisation literature as ”curse of dimension-
ality” [21], [22]. The need to access to information collected
from a wide area and high computation demand for comput-
ing global optimal speed profiles suggest that Trip-Planner is
implemented in CARMA Core Cloud as depicted in Figure 4.
Notice that the use of cloud computing to solve global
optimisation problem is also in accordance with the current
literature in vehicle energy management systems [3], [18],
[19], [23]. Usually, simplifying assumptions are used to solve
optimisation problems, e.g., simple vehicle fuel consumption
models, absence of traffic or simplified traffic models etc.



Fig. 4. Logical architecture for the platoon control and management.

Consequently, the Trip-Planner provides coarse references
for the vehicles speed and inter-vehicular platoon distance.
The Road Section Manager (RSM) is responsible for refining
vehicle local speed profiles and inter-vehicular distance (for
platoons already formed) in order to adapt them to the current
road section state, such as road condition, real time traffic
data, average vehicle speed on that section, length of the
vehicle queue ahead etc. [17]. Furthermore, the RSM can
also modify locally the speed profile of CARMA-vehicles in
FA-mode and the speed of the corresponding target platoons
to guarantee merging (i.e., the control algorithms for the pre-
merging phase introduced in Section III is implemented in the
RSM). The RSM is also used to support vehicle platoons by
orchestrating activation of cooperative manoeuvring control
algorithms running in the lowest layer of the architecture
(i.e., the Coordination Control layer) and provide to them
parameters for their correct planning and execution. It is
noted that, when platoons are implemented through the sole
use of V2V communication systems, platoon control tasks are
usually coordinated by the platoon leader (i.e., centralised
platoon management [9]). Followers take orders and send
requests from/to the platoon leader. In so doing, only the
platoon leader stores and manages sensible platoon data (e.g.,
list of the vehicle in the platoon, vehicle destination, vehicle
acceleration/deceleration capability), thus enhancing privacy
in situations where followers should not have access to the
platoon configuration [16]. However, for centralised platoon
management, the leader must have access to information that
followers might not want to share (e.g. their destination or
vehicle models for sorting vehicles in the platoon). Further-
more, information is sent from one vehicle to another any
time the leader vehicle leaves the platoon, thus reducing the
effectiveness of the centralised approach to preserve privacy
of the platoon members. The use of the RSM in the proposed
architecture can mitigate such a drawback as all the sensible
data of the platoon are stored and used in the RSM, thereby
preventing the information sharing to any platoon vehicles.
It is noted that to perform tasks within the RSM, real-time
traffic data needs to be provided. Furthermore, latency for

providing the speed trajectories to the connected vehicle
should be small to avoid loss of performance, i.e., unexpected
increase of the fuel consumption due to a delay to compute
and actuate the optimal speed profiles [19]. For these reasons,
the RSM is suggested to be implemented within the CARMA
Edge as it can provide required communication latencies
through the use of 5G communication technologies and a
better description of the surrounding traffic by exploiting
real-time traffic data collected from all vehicles sharing
the road section. In the lowest level of the architecture,
i.e., Coordination Control, there are controllers for imposing
vehicle speed profiles, implementing cooperative adaptive
cruise control methods (platooning), and planning/executing
merging and leaving manoeuvres. It is noted that, to safely
perform merging, platooning and leaving operations, a tight
coordination of the movements of the platoon vehicles is
required [1]. Such synchronised movements are achieved
through feedback control systems based on real-time data
of the states of the platoon vehicles (i.e. position, velocity
and acceleration), thus, a sufficiently small communication
latency for vehicle data exchanges must be guaranteed [24].
Furthermore, as the control variable of such control systems
(e.g., demanded vehicle acceleration and steering) directly
affect the vehicle motion, for safety reasons they must be
implemented on-board, thus they are sited in the CARMA
vehicle layer of the architecture in Figure 1. It is remarked
that in Figure 4, the horizontal arrows among CARMA
vehicles represent data and messages (e.g. commands and
acknowledging for operations completed [16]) exchanged
among vehicles of a platoon for successfully completing
cooperative manoeuvrings and cooperative driving. Vehicles
in a platoon might exchange such data and messages through
CARMA edges, i.e., by continuously uploading/downloading
such information to/from the CARMA edges. However, if the
resulting latency is too large to guarantee platoon stability
or communication with the CARMA edges is lost, a V2V
communication system might be adopted and integrated in the
CARMA architecture to ensure an acceptable communication
delays.

A. Platoon Architecture: Trip-Planner Block

The functionality modules of Trip-Planner block are shown
in Figure 5. The block named CORE Vehicle Manager
(CVM) accesses and updates data for the correct management
of the vehicles and platoons. At the cloud level, each vehicle
connected to the CARMA is characterised by a set of
information such as its identifier (ID), vehicle destination,
optimal route and a course optimal speed profile, current
vehicle position, macro vehicle state (e.g., ACC, FA, PF
and PL mode), etc. Similarly, each platoon in the CARMA
platform is characterised by a platoon ID, ID of the leader



Fig. 5. Trip-Planner: fundametal blocks.

and followers, actual number of vehicle in the platoon,
maximum length of the platoon that can preserve stability,
a course optimal speed and inter-vehicular profiles, etc. The
information is provided as input to the CVM by the driver
through the on-board HMI (such as destination, platoon
to join, etc.), CARMA Edges (e.g. current vehicle/platoon
location and speed), and other modules implemented within
the CARMA Core cloud (e.g. optimal vehicle route, optimal
vehicle/platoon speed profile etc.). The outputs of the CVM
block are information to the driver (e.g., the list of possible
platoons on the vehicle route) and to the RSM layer (e.g.,
optimal route, speed profile to be refined, the controller to
be selected, etc.). For the computation of the optimal route,
optimal vehicle/platoon speed profile and optimal platoon
inter-vehicular distance the CVM is supported by the Op-
timiser block as shown in Figure 5. The events at which
CVM triggers the optimiser block can be for instance: (i)
when the vehicle enters in the highway system and it is in
ACC mode where the Optimiser is executed to compute the
optimal route of the vehicle and its speed profile over the
entire trip; (ii) when a vehicle in FA mode has completed
the merging manoeuvre to join a platoon where the Optimiser
is executed to compute the optimal speed profile and inter-
vehicular distance for that platoon from the merging point to
the next leaving point, or (iii) when a vehicle in PF and PL
mode has completed the leaving manoeuvre to exit a platoon
where the Optimiser is executed to compute the optimal speed
profile and inter-vehicular distance for that platoon until the
next leaving point and the optimal speed profile of vehicle
exiting the platoon until its exit gate. Furthermore, to consider
the variability of the surrounding conditions (e.g., traffic, road
condition etc.), the CVM triggers the optimisation block if

the vehicles and platoons connected to the CARMA platform
do not follow the optimal speed plan or if the discrepancy
among the actual speed profile and the optimal one is above
a given threshold. The Optimiser block is composed by two
sub-modules, i.e. Route Optimiser and Speed/Inter-Vehicular
Distance Optimiser. The Route Optimiser module computes
the path on the highway system from the entry gate to
the exit gate that minimises a criterion (e.g., length of the
path, travel time etc.). Instead, the Speed/Inter-Vehicular
Distance Optimiser computes references for single vehicle
and platoons connected to the CARMA platform with the
aim to minimise fuel consumption. For vehicles operated in
the ACC and FA modes, this block computes the most energy
efficient speed profiles. For vehicles operated in platoons, in
addition to the reference platoon speed, the block provides
also the best inter-vehicular distance to further reduce the
platoon fuel consumption [23]. It is noted that, the knowledge
of the vehicle and fuel consumption models are fundamental
to compute feasible speed profiles and estimate the fuel
consumption [3], [18], [19], [23]. In the architecture shown in
Figure 5, these models are provided by the Vehicle and Fuel
Consumption models block. Besides, it is remarked that the
accuracy of the optimisation procedures for the minimisation
of the fuel consumption can be further enhanced if traffic data
and upcoming road parameters (e.g., road surface friction,
maximum speed velocity, variation of the altitude along the
road etc.) are known [25]. In the architecture in Figure 5,
and in agreement with the general CARMA architecture, this
additional data is provided by third parties and is collected
in the block Third Party Components block which include
(i) the traffic centre block to provide current and forecasted
traffic data; (ii) the Geography Information System block to
provide the altitude profile over the selected optimal path;
(iii) Weather centre block which provides weather forecasts
for the computation of the road condition and (iv) the Road
Manager System block which provides additional information
about segments of the highways system such as unavailable
road segments, status of the road [6], etc.

B. Platoon Architecture: Road Section Manager

The architecture for the RSM is depicted in Figure 6. The
main components are the EDGE Vehicle Manager (EVM)
and the Speed Planner (SP) blocks. The EVM block ac-
cesses and updates data for the correct management of the
vehicles and platoons like those managed by the CVM
module in Section IV-A. However, it retains only data for
the management of the highway section covered by the
CARMA Edge where it is implemented. Also the EVM
block communicates with the Coordination Control layer, and
provides to each vehicle connected to the CARMA platform
the speed profile that must be actuated while travelling



Fig. 6. Road Section Manager: fundametal blocks.

that highway section. In addition, for vehicles organised in
platoons, the EVM block provides also the inter-vehicular
distance to be maintained. Finally, the EVM module sends
commands to the underlying level of the architecture for
the orchestration of the platoon manoeuvres, e.g. the start
of the merging manoeuvre when the free agent vehicle is
in the right position to merge in its target platoon. Time
for the generation of such commands, e.g. start merging/exit
to/from the platoon, can be computed by the EVM as this
block continuously monitor the state of the vehicles and
platoons connected to the CARMA platform and compare
them to the travel plan of each vehicle. It is noted that, in the
case of a side merging, the EVM also decides the position
of the new platoon member in the string in accordance to
some criteria which is not revealed to all platoon members
for privacy reasons. The speed profile provided to vehicles
and platoons is computed by SP block which is composed
by two sub-modules, Segment Optimiser and Pre-Merging
controller. According to the vision described in Section 2,
on a highway section, there are mainly three categories of
vehicles connected to the CARMA platform, i.e., vehicle in
ACC mode, vehicles organised in platoons, and vehicles in
free agent mode travelling on the same road section of their
target platoon. For the first two categories, the SP block
uses the algorithms implemented in the Segment Optimiser
to generate speed variations around speed profile given by
the upper layer for further reducing fuel consumption on the
road section [26]. To this aim, in addition to vehicle dynamics
and fuel consumption models, the Segment Optimiser uses
real-time local traffic information, such as the average speed
on the segment or the length of vehicle queue ahead [17].
Such local traffic information is provided to the optimiser by
the Segment Traffic block. In the case a free agent and its
target platoon share the same road segment, the SP block
uses control algorithms within the sub-block Pre-Merging

Fig. 7. Coordination Control: fundametal blocks.

controller to modify their speeds so as to create a point over
the section where the merging phase can initiate [12].

C. Platoon Architecture: Coordination Control

The architecture for the Coordination Control block of
Figure 4 is shown in Figure 7. Similar to the architecture
proposed in [13], three layers can be identified, e.g., Per-
ception layer, Supervisory layer and Control Layers within
Coordination Control block. The Perception layer provides
data describing the surrounding environment of a CARMA
vehicles, such as localisation of the subject vehicle and
adjacent vehicle (including position of the vehicle in the
target platoon) on a digital map, lane markers, road con-
dition etc. It is noted that, in addition to on-board sensory
information from such as Camera, radar, Lidar etc., off-board
data can be used to improve the accuracy of the knowledge
of the surrounding environment by enabling cooperative
perception [27] (see for instance [28] for a detailed review
about cooperative localisation through V2X communication
systems). The control layer contains the control modules to
generate vehicle accelerations and steering to execute platoon
manoeuvres (i.e. merging and leaving platoons) and control
modules for maintaining the platoon (i.e. modules for actu-
ating CACC). In addition an ACC module is included in the
control layer to control vehicle speed for vehicles in ACC and
FA mode. The activation/deactivation of the control modules
are orchestrated by the Supervisor block within Supervisory
layer, which also provides to the underlying control layer
control settings, such as required speeds and inter-vehicular
distances, lane to move for a side platoon merging, etc. for
the correct functioning of feedback control algorithms of the
Control Modules. To this aim, the Supervisor communicate
both with the EVM and the other vehicles. From the EVM,
it receives the vehicle/platoon speed, required inter-vehicular
distance, and high level commands, such as the command



enabling the switching from the ACC System to Merging
Control. Vehicles in a platoon communicate to exchange
vehicle states and messages for the correct execution of
platoon manoeuvres. These messages can be commands (such
as creating additional gap between consecutive vehicles for
a side merging [13]) or acknowledge when a command has
been executed.

V. CONCLUSION

This paper has presented a three layer functional platoon
architecture to be potentially assisted by the cloud computing
framework under development within the CARMA project.
The architecture has been designed for passenger vehicles
and can be used in mixed traffic scenarios. The functionalities
distributed in the upper and middle layers aim to support fuel
efficient control and management of vehicles and platoons
within the systems, while the lowest layer is used to actuate
commands and local platoon manoeuvres. Future work on the
platoon will investigate the functionalities to be implemented
in detail and propose fault tolerant distributed control systems
that take advantage of the CARMA platform.

ACKNOWLEDGMENT

This work was supported by Jaguar Land Rover and
the UK-EPSRC grant EP/N01300X/1 as part of the jointly
funded Towards Autonomy: Smart and Connected Control
(TASCC) Programme and is subject to UK patent under
UKIPO GB1804663.1 (under review).

REFERENCES

[1] U. Montanaro, S. Dixit, S. Fallah, M. Dianati, A. Stevens, D. Oxtoby,
and A. Mouzakitis, “Towards connected autonomous driving: review
of use-cases,” Vehicle System Dynamics, available online, 2018.

[2] SARTRE, “Safe road trains for the environment; developing strategies
and technologies to allow vehicle platoons to operate on normal public
highways,” 2012. [Online]. Available: http://www.sartre-project.eu

[3] S. Eilers, J. Martensson, H. Pettersson, M. Pillado, D. Gallegos
et al., “COMPANION-Towards Co-operative Platoon Management of
Heavy-Duty Vehicles,” IEEE Conference on Intelligent Transportation
Systems, pp. 1267–1273, 2015.

[4] S. Tsugawa, “An Overview on an Automated Truck Platoon within
the Energy ITS Project,” IFAC Symposium on Advances in Automotive
Control, pp. 41–46, 2013.

[5] J. Ploeg, A. F. A. Serrarens, and G. J. Heijenk, “Connect & Drive:
design and evaluation of cooperative adaptive cruise control for con-
gestion reduction,” Journal of Modern Transportation, vol. 19, no. 3,
pp. 207–213, 2011.

[6] Volvo, “Volvo Cars puts 1000 test cars to use: Scandinavian
cloud-based project for sharing road-condition information becomes a
reality,” 2014. [Online]. Available: https://www.media.volvocars.com

[7] P. Varaiya and S. Shladover, “Sketch of an IVHS systems architecture,”
Vehicle Navigation and Information Systems Conference, 1991, vol. 2,
pp. 909–922, 1991.

[8] S. Tsugawa, S. Kato, T. Matsui, H. Naganawa, and H. Fujii, “An
architecture for cooperative driving of automated vehicles,” IEEE
Intelligent Transportation Systems, pp. 422–427, 2000.

[9] S. Halle, J. Laumonier, and B. Chaib-Draa, “A decentralized approach
to collaborative driving coordination,” IEEE International Conference
on Intelligent Transportation Systems, pp. 453–458, 2004.

[10] T. Litman, “Autonomous Vehicle Implementation Predictions: Implica-
tions for Transport Planning,” Transportation Research Board Annual
Meeting, vol. 42, pp. 36–42, 2014.

[11] A. Stevens, M. Dianati, K. Katsaros, C. Han, S. Fallah, C. Maple,
F. McCullough, and A. Mouzakitis, “Cooperative automation through
the cloud: The CARMA project,” in ITS European Congress, 2017.

[12] G. M. A. Arnaout and J.-P. C. Arnaout, “Exploring the effects of
cooperative adaptive cruise control on highway traffic flow using mi-
croscopic traffic simulation,” Transportation Planning and Technology,
vol. 37, no. 2, pp. 186–199, 2014.

[13] E. S. Kazerooni and J. Ploeg, “Interaction Protocols for Cooperative
Merging and Lane Reduction Scenarios,” IEEE Conference on Intelli-
gent Transportation Systems, pp. 1964–1970, 2015.

[14] R. Hall and C. Chin, “Vehicle sorting for platoon formation: Impacts
on highway entry and throughput,” Transportation Research Part C:
Emerging Technologies, vol. 13, no. 5-6, pp. 405–420, 2005.

[15] A. Mihály and P. Gáspár, “Control of platoons containing diverse vehi-
cles with the consideration of delays and disturbances,” Transportation
Engineering, vol. 40, no. 1, pp. 21–26, 2013.

[16] M. Amoozadeh, A. Raghuramu, C. N. Chuah, D. Ghosal, H. Michael
Zhang, J. Rowe, and K. Levitt, “Security vulnerabilities of connected
vehicle streams and their impact on cooperative driving,” IEEE Com-
munications Magazine, vol. 53, no. 6, pp. 126–132, 2015.

[17] I. Johansson, J. Jin, X. Ma, and H. Pettersson, “Look-ahead speed
planning for heavy-duty vehicle platoons using traffic information,”
Transportation Research Procedia, vol. 22, pp. 561–569, 2016.

[18] E. Ozatay, S. Onori, J. Wollaeger, U. Ozguner, G. Rizzoni, D. Filev,
J. Michelini, and S. Di Cairano, “Cloud-based velocity profile opti-
mization for everyday driving: A dynamic-programming-based solu-
tion,” IEEE Transactions on Intelligent Transportation Systems, vol. 15,
no. 6, pp. 2491–2505, 2014.

[19] C. Qiu, H. Shen, A. Sarker, V. Soundararaj, M. Devine, A. Rindos,
and E. Ford, “Towards green transportation?: Fast vehicle velocity
optimization for fuel efficiency,” in International Conference on Cloud
Computing Technology and Science, pp. 59–66.

[20] C. Sun, S. J. Moura, X. Hu, J. K. Hedrick, and F. Sun, “Dynamic
Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid
Electric Vehicles,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 3, pp. 1075–1086, 2015.

[21] M. Ansarey, M. Shariat Panahi, H. Ziarati, and M. Mahjoob, “Optimal
energy management in a dual-storage fuel-cell hybrid vehicle using
multi-dimensional dynamic programming,” Journal of Power Sources,
vol. 250, pp. 359–371, 2014.

[22] R. Bellman, Dynamic Programming. Princeton, 1957.
[23] N. Murgovski, B. Egardt, and M. Nilsson, “Cooperative energy man-

agement of automated vehicles,” Control Engineering Practice, vol. 57,
pp. 84–98, 2016.

[24] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin,
and T. Weil, “Vehicular Networking: A Survey and Tutorial on Re-
quirements, Architectures, Challenges, Standards and Solutions,” pp.
1–33, 2011.

[25] C. Zhang, “Predictive Energy Management in Connected Vehicles:
Utilizing Route Information Preview for Energy Saving,” Ph.D. dis-
sertation, Clemson University, 2010.

[26] H. Lim, W. Su, and C. C. MI, “Distance-based ecological driving
scheme using a two-stage hierarchy for long-term optimization and
short term adaptation,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 3, 2017.

[27] S.-W. Kim, W. Liu, M. H. Ang, E. Frazzoli, and D. Rus, “The
Impact of Cooperative Perception on Decision Making and Planning
of Autonomous Vehicles,” IEEE Intelligent Transportation Systems
Magazine, vol. 7, no. 3, pp. 39–50, 2015.

[28] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localisation techniques
and their potentials for autonomous vehicle applications,” IEEE Inter-
net of Things Journal, vol. 5, no. 2, pp. 829 – 846, 2018.


