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Abstract— A transport system with passengers traveling be-
tween stations in periodically arriving cabins is considered.
We propose and evaluate an access control algorithm that
dynamically limits the number of passengers who are allowed to
board the current cabin. Simulation of a ski lift using empirical
passenger data suggests that such access control can balance out
the average waiting times at different stations. The algorithm
works well with estimated values of the passengers’ arrival and
de-boarding rates.

Index Terms— Boarding, access control, automated trans-
port, queuing, lifts, waiting, load balancing.

I. INTRODUCTION

Public transport systems have a broad range of design

options and control mechanisms for improving the passenger

throughput and travel experience. For example, they can be

either schedule-based or on demand, fixed or adaptive to

passenger load, and may or may not provide feedback to pas-

sengers and implement travel redirection. Regardless of the

requirements and constraints, a passenger flow control can be

an effective and economical method of reducing congestion

and deadlock, while guaranteeing reliability and safety.

To contribute to this domain, we propose and evaluate an

access control algorithm for implementation in the boarding

areas of ski resorts, where customers use fixed-capacity,

fixed-speed cabins between stations. Based on real-time

knowledge of passenger arrival and queuing conditions at all

the stations, the algorithm adaptively reports as to how many

passengers are allowed to enter the next cabin. Metaphori-

cally speaking, it acts as a guard for the cabins. The objective

is to automatically improve passenger comfort and fairness

by having waiting times in the same order of magnitude at all

stations. The concept is evaluated by simulation using real

passenger data obtained from the Austrian ski resort Bad

Gastein, where it was tested by an industrial partner.

The algorithm computes the maximum number of passen-

gers who can enter the next cabin based on the measured

arrival rates, so that the stability thresholds are equalized.

To this end, it utilizes the queuing model and analytical

expressions derived in [1], in which each station is mod-

eled as a queue with Poisson arrivals and bulk services

with deterministic service time. There are many studies on

queuing systems with Poisson arrivals, where the queue is

served in batches with a given maximum size and a random,

independently-distributed time between consecutive services

P. Grippa and C. Bettstetter are with the Institute of Networked and Em-
bedded Systems, Alpen-Adria-Universität Klagenfurt, Austria. E. Yanmaz,
P. Ladinig, and C. Bettstetter are with Lakeside Labs GmbH, Klagenfurt,
Austria. Email: pasquale.grippa@aau.at.

(see [2]–[6]). However, in those papers, the server is assumed

to serve a fixed batch size. Extensions exist such that queue

length expressions can be derived for lifts, where part of the

capacity is already in use [7]. In our model, we considered a

generic distribution of the capacity. Based on the arrival rate

and capacity at a station, we derived stochastic properties of

the waiting time and queue length [1].

The performance of the access control algorithm is com-

pared to that of no control and static control. The latter

reserves a fixed number of seats at the ground station for use

at succeeding stations. Our results show that the algorithm

achieves the best balance of waiting times at the stations.

In real scenarios, the parameters of the stochastic processes

regulating passengers’ arrival and leaving are not known and

have to be estimated. According to our results, the algorithm

is robust with respect to the estimation of these parameters.

The paper is organized as follows. Section II discusses

related work. Section III introduces the system model and no-

tation. Section IV explains the algorithm. Section V presents

and discusses the results.

II. RELATED WORK

The access control of passengers to ski lifts or similar

systems has not been investigated in the scientific literature.

Although the problem is related to ramp metering control on

highways, which is well investigated, there are some impor-

tant differences between the two problems. An overview and

literature review on ramp metering is presented in [8] and

[9], and some algorithms are evaluated in [10]. A common

solution for ramp metering is ALINEA [11], which seeks to

keep the highway occupancy to a desired value and contains

a feedback law developed using classical control theory. It

regulates a single ramp but does not consider queue length

and waiting time on the ramp. Other approaches consider

the transport network and seek to minimize the total time

spent in the system including the waiting time on the ramps.

These approaches use non-linear programming [12], neuro-

fuzzy algorithms [13], and model-predictive control [14].

The main differences between ramp metering and our

problem are the system model and the performance metric.

Highway traffic is usually modeled [14] using a set of

equations relating to traffic density (vehicles per unit space),

vehicle mean speed, traffic flow (vehicles per unit time),

and other values. Equations for modeling the ramps include

traffic demand (vehicles per unit time), queue length (vehi-

cles), and metering rate (control variable). These quantities

are not modeled stochastically, i.e., are not associated with

probability distributions. Another difference is that it is
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Fig. 1: Transport system model.

usually possible to measure the traffic flow on highways but,

in our experience, not always on ski lifts. For this reason, we

do not track cabin occupancy but have based our algorithm

on a stochastic model [1]: The free places in cabins are

represented with a random variable (capacity), and the access

control changes the distribution of this variable.

The performance of ramp metering is usually evaluated by

the total time spent in the system, i.e., the sum of the periods

on the highway and ramp. Highway congestion must be

avoided to keep this time low. In contrast, in our problem, the

number of passengers riding in the cabins does not influence

the cabin speed, i.e., there is no congestion on the transport

line. For this reason, we have not focused on the total time

spent in the system but on achieving a fair waiting time at all

the stations. To be precise, we are not interested in having

exactly the same waiting time at all stations, as this would not

translate into a higher quality of service for the passengers.

Instead, we want to have waiting times of the same order

of magnitude, to avoid passengers at one station waiting for

hours and those at other stations waiting for only minutes.

Many papers on transit networks focus on the transit

assignment problem, in addition to passenger flow modeling

(see [15]–[17]). However, the main goal in such networks is

to find the best routes for passengers (e.g., with minimum

travel time, most comfort, least cost), given the passenger

load, preferences, and demands. Furthermore, there typically

are many alternative paths to certain destinations via different

modes of transportation that run on schedule [18], whereas

in our problem, the passenger behavior is not directly con-

sidered, and the access decisions are made by the transport

system itself. In particular, the system being studied here

has periodically arriving (always available) cabins and the

goal of assigning the passengers to cabins in a seamless way

throughout the transport line via an access control algorithm.

III. SYSTEM MODEL AND PRELIMINARIES

A transport network as shown in Figure 1 is composed of

stations connected by transport lines. Cabins move along the

lines to carry passengers from one station to the next. Some

stations act as junctions, enabling passengers to change lines.

Stations on the same line share cabins.

The system operator can reserve cabin seats at certain

stations, with the goal of avoiding passenger congestion

at other stations. Such a reservation mechanism can be

implemented using a boarding gate that displays the number

of passengers allowed to enter an incoming cabin [19]. We

propose an algorithm, called Gamora, for such access con-

trol; it computes the number of passengers allowed to enter

a certain cabin and adapts this output to the passenger load.

Some of the ideas behind Gamora arose from our modeling

of the transport system as a queuing network [1] and the

associated analysis of stability and waiting times in stationary

conditions for a single transport line with Poisson arrivals

of passengers. At the core of Gamora is, however, the

equalization of the scaled stability thresholds, which are

computed in closed-form for general arrivals. The algorithm

can therefore be applied for all lines of the system.

We indicate stochastic variables and processes with capital

Latin letters, system parameters with Greek letters, and

vectors in boldface. At station m, passengers arrive with rate

λm. Cabins with γ seats (cabin size) move along the line

stopping at stations at constant time intervals β. Whenever

a cabin stops at station m, each passenger in the cabin

leaves with probability σm, making a seat available for the

passengers waiting at the station. Before the nth service,

the boarding buffer is filled with at most ηm,n passengers,

which is computed by the algorithm. The passengers waiting

at station m see a number of free seats, which is a realization

of the stochastic process Cm,n = min[ηm,n, γ−Sm,n], where

Sm,n is the number of passengers remaining in the cabin after

others leave. The number of passengers entering the cabin

Tm,n depends on both the capacity Cm,n and the number of

waiting passengers Qm,n. One objective is to have waiting

times Wm,n of the same order of magnitude at all stations.

The service index n is omitted for simplicity in the following.

IV. ALGORITHM

Gamora’s task is to compute, for each incoming cabin,

the number of passengers allowed to board. As input, it

takes the average number of passengers in the cabins arriving

at the first station, arrival rate at all stations, number of

passengers waiting at all stations, probability of leaving at all



stations, interarrival time between cabins, and cabin capacity.

It computes the scaled stability thresholds, determines which

stations need additional capacity, and returns the maximum

number of passengers who can enter the next cabin, given the

measured arrival rates, so that the scaled stability thresholds

are equalized. The parameters are summarized in Table I. It

is important to note that the average number of passengers

waiting at all stations is an output from the system which

is used as an input into the algorithm, according to λm,in =
Qm/β + λm. This is done to create a negative feedback

loop, which counteracts variations in the arrival rate: If λ2

decreases, λ2,in decreases, η1 increases, which over time

increases Q2, which in turn increases λ2,in.

TABLE I: Gamora Parameters
Input

r0 average number of passengers in the cabins arriving
at the first station (r0=E [R0])

λ arrival rates at all stations
Q number of passengers waiting at all stations
σ probability of leaving at all stations
β interarrival time between cabins
γ cabin size

Output

η maximum accesses per service at all stations

Others

ν fraction of arrivals at all stations (ν=λ/λtot)
c̄ average capacity at all stations
λ∗

s scaled stability threshold at all stations
T number of passengers entering one cabin all stations

Before we present the algorithmic details, let us explain

why we use scaled stability thresholds as decision criteria.

A. Scaled Stability Thresholds and Waiting Time

Consider the transport line connecting the first three sta-

tions in the transport network in Figure 1. Passengers can

leave their cabins at each station with a certain probability

(empirical values are provided) and can transfer to the other

line at Station 3. The arrival rate at station m can be

expressed as a fraction of the total arrival rate, λm = νmλtot,

and the expected waiting time can be plotted over the total

arrival rate (see Figure 2 showing stationary performance).

The scaled stability threshold λ∗

s,m is the smallest arrival

rate (total) such that station m is unstable, i.e., the expected

waiting time never reaches a stationary value but steadily

increases over time. If the system is neither underutilized nor

unstable (trivial conditions), the total arrival rate at which the

system operates is near λ∗

s,2, i.e., W2 ≫ W1. As proved in

[1], it is impossible to reduce W2 by orders of magnitude

without reducing the stability of the whole system. However,

it is possible to reduce W2 to an extent that is interesting for

a real application. For instance, as shown in Figure 2, W2 is

reduced by up to 50% if two seats are always reserved (η1 =
6). This is achieved by decreasing λ∗

s,1 as much as possible

without crossing λ∗

s,2. Since, in non-stationary conditions, the

fraction of arrival rate at the stations νm changes over time,

the scaled stability thresholds must be continuously adapted.
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Fig. 2: Relative gain in expected waiting time at Station 2

by reserving one or two seats at Station 1. Parameters:

β = 10, γ = 8, r0 = 0, [ν1, ν2, ν3, ν4] = [0.5, 0.2, 0.3, 0],
[σ1,σ2,σ3,σ4] = [0, 0.04, 0.46, 1]. Figure taken from [1].

B. Access Control Algorithm: Gamora

The idea described in the section above is implemented

in two steps (see Algorithm 1): First, the transport line is

divided into blocks such that the scaled stability threshold of

the last station in each block is the smallest within the block

and is smaller than all succeeding scaled stability thresholds

(while loop). Second, the scaled stability thresholds in each

block are adjusted (for loop).

In Algorithm 1, b[1] is always zero, while b[i] is the index

of the last station included in the block i. For instance, if

b = [0, 3, 5, 8], the system is divided into three blocks: 1 to

3, 4 to 5, and 6 to 8.

The function STABILITY(r0,ν,σ,β, γ) computes the ex-

pression (see [1])

λ∗

s [m] =
γ − r0

∏m

i=1(1− σi)
∑m

j=1 νjβ
∏m

i=j+1(1− σi)
. (1)

This expression is only exact for the smallest scaled stability

threshold in the system. Since we have a division into blocks,

the expression is always used correctly.

The function GAMORAB(r0,ν,σ,β, γ,λ
∗

s ) in Algo-

rithm 2 controls the maximum number of accesses per

service η[k1+1, k2] within the block. It evaluates the stability

of the stations with respect to the last station in the block,

starting from η[m] = 1 and increasing it until the station is

more stable than the last one. This evaluation requires the

computation of the expected capacity.

The function CAPACITY(r̄0,ν,σ,β, γ,λ
∗

s ,η) iteratively

applies the following equation (see [1]) from the first to the



Algorithm 1 Access Control Line

1: function GAMORA (r0,λin,σ,β, γ)

2: η ← [γ, γ, . . . , γ]
3: ν ← λin/TOTAL(λin)
4: λs ← [ ]
5: b ← [0]
6: k ← 1
7: while k ≤ Length[λin] do

8: if k=1 then rin ← r0
9: else rin ← γ

10: end if

11: λtmp ← STABILITY(rin,ν[k, end],σ[k, end],β, γ)

12: λs
append
←−−−− min[λtmp]

13: b
append
←−−−− argmin[λtmp] + k − 1

14: k ← b[end] + 1
15: end while

16: for i ∈ [1,Length[b]− 1] do

17: if i=1 then rin ← r0
18: else rin ← γ

19: end if

20: k1 = b[i]
21: k2 = b[i+1]
22: ν′ ← ν[k1+1, k2]
23: σ′ ← σ[k1+1, k2]
24: η[k1+1, k2] ←GAMORAB(rin,ν

′,σ′,β, γ,λs[i])
25: end for

26: return η

27: end function

Algorithm 2 Access Control Block

1: function GAMORAB(r0,ν,σ,β, γ,λ
∗

s )

2: η ← [γ, γ, . . . , γ]
3: for m ← 1,Length[ν] do

4: η[m] ← 1
5: c̄ ← CAPACITY(r̄0,ν,σ,β, γ,λ

∗

s ,η)
6: while c̄[m] < ν[m]λ∗

s β and η[m] < γ do

7: η[m] + +
8: c̄ ← CAPACITY(r0,ν,σ,β, γ,λtot,η)
9: end while

10: end for

11: return η

12: end function

last station of the block:

E [Cm] = min



ηm, γ − r0

m
∏

i=1

(1−σi)−

m−1
∑

j=1

E [Tj ]

m
∏

i=j+1

1−σi





with E [Tm] = min[νmλtotβ,E [Cm]].

V. RESULTS AND DISCUSSION

The algorithm performance is evaluated using a discrete-

event simulator. Passenger arrivals are generated by a Poisson

process with a rate that varies over time, according to data
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Fig. 3: Average waiting time over the day for arrival rates

collected at the Bad Gastein ski resort. The Gamora algo-

rithm best balances out the waiting times at the two stations.

collected from the Bad Gastein ski resort. All the simulation

results are averaged over 35 simulation runs.

A. Expected Waiting Times

We first analyze the impact of access control on waiting

times. The top plot in Figure 3 shows the arrival rates over a

day from 8:00 to 15:00. At the beginning of the day, all the

passengers queue at the entrance to the ski resort (Station 1).

A second peak occurs at noon, due to half-day skiers. The

arrival rate at Station 2 is very low because few people

ski back to this station. The second and third plots show

the average waiting times at Stations 1 and 2, respectively.

Access is studied without control, with static control, and

with Gamora. The static control reserves one seat (η1 = 7)

or two seats (η1 = 6) at Station 1 for use at Station 2.

In the first two hours, the arrival rate at Station 1 is so high

that the system becomes unstable. Thus, without control, the

cabins arriving at Station 2 are almost always full, which

means that passengers experience long waiting times there.

This waiting time can be shortened drastically if the system

operator applies static control by reserving one or two seats

at Station 1, but this greatly increases the waiting time at

Station 1, since the waiting passengers are constantly denied

boarding. Using Gamora instead of static control yields much

more balanced waiting times across the stations.
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Fig. 4: Performance for true and estimated λm. The algo-

rithm is robust regarding the estimation of this parameter.

Confidence intervals are computed with a confidence of 95%.

B. Impact of Parameter Estimation

In a real system, neither the arrival rates λm nor the

probabilities of leaving σm are known and must be estimated

during operation. We thus investigate Gamora’s robustness to

errors in the estimations.

Figure 4 compares the performance when using true versus

estimated arrival rates. The arrival rate is estimated by

counting the number of passengers arriving over β and

normalizing to β. Then, for the estimated case, the input

of the algorithm λm,in = Qm/β + λm is averaged over the

last 20 minutes. The first plot shows the true arrival rates at

each station. The second and third plots show that estimating

these rates has little influence on the queue length, algorithm

output, and number of passengers boarding. The last plot

shows that average waiting times do not suffer because of

an estimate being used.
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Fig. 5: Performance for true and estimated σm. The algorithm

is robust regarding the estimation of this parameter. Confi-

dence intervals are computed with a confidence of 95%.

Figure 5 shows that Gamora is also robust if the leaving

probability σm is estimated. The easiest way to estimate σm

would be to count the number of passengers leaving the cabin

at each service. Typically, counting sensors for individual

cabins are not installed; it is more common to have sensors

at the entrance and exit to the entire station. We thus estimate

σ2 as the number of passengers leaving Station 2 divided by

the number of passengers entering at Station 1 over four

minutes (these two values are sampled taking into account

the transport delay). Estimating σm results in only minor

changes in the average waiting time of the system.
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