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Abstract— This work deals with the design of a supervisory
module for the motion control of autonomous vehicles. The su-
pervisor’s goal is to monitor the behavior of a trajectory track-
ing controller (TTC), introducing corrective control actions to
prevent violations of safety and input constraints. It relies on
the combination of control barrier functions and optimization
methods, and considers Lyapunov-based constraints and costs
to penalize performance degradation due to supervisor’s correc-
tive actions. Simulation results of a collision avoidance scenario
demonstrate the effectiveness of the proposed supervised TTC.

I. INTRODUCTION

Autonomous driving is seen as a promising technology
that could increase overall transportation efficiency, reduce
road accidents and improve comfort of future mobility sys-
tems. For the successful deployment of this technology sev-
eral technical areas need to be addressed, including reliable
perception of the environment, safe trajectory generation
and accurate vehicle control. This paper focuses on the
vehicle motion controller. Because of non-linear vehicle
dynamics, uncertain parameters (e.g. the tire-road friction
coefficient), and input and state constraints, designing the
motion controller is a challenging task [1].

To cope with these challenges, several types of motion
controllers have been investigated in the literature. They
can be classified based on control objective (e.g., path
stabilization vs trajectory stabilization), vehicle modeling
assumptions and control method. The objective of trajectory
stabilization is to follow a time parameterized reference,
e.g. geometric path with an associated timing law, while in
the path stabilization a time-independent geometric path is
tracked with a pre-defined velocity [1]. Since the former
has stricter time constraints, it is normally preferable for
time-critical tasks, such as emergency maneuvers [2], and
is adopted in this work. In terms of motion control methods,
kinematic-based controllers [3] are simple to implement and
numerically well behaved at standstill. However, their perfor-
mance degrades when the vehicle significantly deviates from
pure-rolling assumptions [2]. To overcome this issue, motion
controllers based on dynamic vehicle models, which take into
account inertial and tire-slippage effects, are adopted. They
can be designed based on a wide variety of methods, includ-
ing linear control [4], immersion and invariance (I&I) [5],
flatness [6], input-output linearization [7], sliding modes [2],
and optimization-based controllers such as model-predictive
control (MPC) [8]. As discussed in recent benchmarking
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studies [2], [5], these methods offer robustness against model
uncertainty (sliding modes), good noise rejection (I&I), pre-
diction and constraint handling capabilities (MPC), but can
also suffer from sensitivity to parameter uncertainties (I&I),
high computation effort (MPC) or chattering (sliding modes).

With the exception of MPC-based methods, the major-
ity of these previous contributions focus on unconstrained
motion control problems, where input and state constraints
are neglected in the theoretical design of the control law.
Such constraints can appear due to actuation saturations and
force limits in the tire-road interface, e.g, friction ellipse
constraints [9], and are critical when controlling the vehicle
close to is physical limits. If not properly handled, these con-
straints can negatively affect the motion control performance,
increase tracking errors and potentially compromise the safe
execution of planned maneuvers.

Motivated by this issue, a novel supervisory module for
the trajectory tracking task is proposed in this work. The
main contribution of the supervisor is to endow a nominal
trajectory tracking controller (TTC) - designed around an
unconstrained motion control law - with constraint handling
capabilities. Specifically, the supervisor produces corrective
control actions to enforce actuation and physical constraints,
while minimizing the performance degradation of the nom-
inal TTC. The supervisor also enhances the nominal TTC
with safety features, such as collision avoidance and fulfill-
ment of vehicle stability limits. These safety features, which
represent the second main contribution of the supervisor, are
relevant for several reasons. For instance, when the planned
trajectory is computed remotely, e.g. using a virtual trajectory
planner running on the cloud, the (local) supervisor can cor-
rect the reference trajectory to cope with unexpected events
not considered in the remote computations. The supervisor
can also be seen as a fail-safe mechanism, allowing the
vehicle to safely operate in case of faults in the planner
module.

II. MODEL AND PROBLEM FORMULATION

This section presents the control-oriented model of the
(ego) vehicle and mathematically defines the trajectory
tracking control problem. The kinematic component of the
vehicle model is defined as:[

ṗ
ψ̇

]
= R(ψ)v, R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (1)

where p=
[
pX pY

]T represents the position of the vehicle’s
center of gravity – defined in a reference axis fixed with road
surface – and ψ the yaw-angle (see Fig. 1). The velocity
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Fig. 1. Planar vehicle model. The point (pX , pY ) represents the position
and orientation of the vehicle’s center of gravity.

vector v =
[
vx vy vψ

]T is composed of longitudinal (vx),
lateral (vy), and yaw (vψ ) velocity, respectively, defined in a
reference frame fixed with the vehicle’s center of gravity. Its
dynamics are given by [4]

Mv̇ = M fv(v)+BFxy, fv(v) =
[
vyvψ −vxvψ 0

]T(2)

B =

 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
− c

2 l f
c
2 l f − c

2 −lr c
2 −lr

 (3)

Fxy =
[
Fx1 Fy1 Fx2 Fy2 Fx3 Fy3 Fx4 Fy4

]
(4)

where Fxi and Fyi represent the longitudinal and lateral forces
generated by the tire i ∈ {1,2,3,4}1, respectively. The ma-
trices M = diag(m,m, Iz) and B are dependent on the vehicle
mass (m), yaw inertial (Iz), position of center of gravity
(l f , lr) and trackwidth (c). The vehicle’s front wheels are
assumed to have independent steering, braking and traction
actuators, while the rear wheels are equipped with individual
braking actuators. Due to this highly-actuated structure, the
front tires forces (Fxi,Fyi, i = 1,2) and the rear longitudinal
forces (Fxi, i = 3,4) are assumed to be directly controlled,
u =

[
Fx1 Fy1 Fx2 Fy2 Fx3 Fx4

]
, where u ∈ U ⊂ Rnu is

the control input vector and nu = 6 the number of control
variables. These controllable forces are subject to friction
ellipse constraints [9] and physical actuation limits, which
are captured by the input domain U :

U = {u ∈ Rnu :
(

Fxi

dxi

)2

+

(
Fyi

dyi

)2

≤ (µiFzi)
2, i = 1,2

Fxi ≤ Fxi ≤ Fxi, i = 1,2
max(−µiFzi,Fxi)≤ Fxi ≤ 0, i = 3,4 } (5)

where µi is the tire-road friction coefficient, dxi and dyi
constants, and [Fxi,Fxi] force limits due to actuation con-
straints. The vertical loads of the tires, Fzi, are considered
here as known exogenous signals, which can be estimated
using quasi-static mappings between vehicle’s accelerations
and vertical load transfer [4].

1as depicted in Fig. 1, index 1 refers to the front left tire, 2 to the front
right, 3 to the rear left, and 4 to the rear right tire

To model the coupling between the lateral and longitudinal
forces of the rear tires, the magic tire formula [9] and the
friction ellipse constraints are employed:

Fyi(v,Fxi) = F̃yi(v)ϕ(Fxi), ϕ(Fxi) =

√
1−
(

Fxi

µiFzi

)2

F̃yi(v) = µiFzi sin(Ci atan(Biαi(v))) (6)

tan(αi(v)) = −
ϑ T

yi v

ϑ T
xi v

,

[
ϑ T

xi
ϑ T

yi

]
=

[
1 0 χxi
0 1 χyi

]
(7)[

χx3 χx4
]

=
[
− c

2
c
2

]
,
[
χy3 χy4

]
=
[
−lr −lr

]
for i = 3,4, where Bi,Di are parameters and αi(v) the side-
slip angle of the tire i. The term F̃yi represents the lateral
force generated by the rear tire i under pure lateral side-
slip conditions. It is “derated” by the factor ϕ(Fxi) ∈ [0,1]
when longitudinal forces are applied [10]. To facilitate
the handling of the force coupling between longitudinal and
lateral rear forces, the derating factor ϕ(Fxi) is approximated
by ϕ(Fxi)≈ 1+ Fxi

µiFzi
. This pragmatic approximation, valid in

the domain Fxi ∈ [Fxi,0], i= 3,4, allows us to obtain an affine
mapping between Fxy and control input u:

Fxy ≈ Bu(v)u+ fy(v) (8)

where Bu(v) and fy(v) are defined in Appendix. Based
on these considerations, the vehicle dynamic model can be
compactly described as:

ẋ =

 ṗ
ψ̇

v̇

=

[
R(ψ)v

fv(v)+M−1B fy(v)

]
︸ ︷︷ ︸

fx(x)

+

[
0

G(x)

]
︸ ︷︷ ︸

Gx(x)

u+
[

0
I3×3

]
︸ ︷︷ ︸

Gd

d (9)

where x =
[
pT ψ vT ]T ∈ X ⊂ R6, G(x) = M−1BBu(v),

I3×3 is an identity matrix (with dimension 3), X the state
domain, and d ∈D⊂R3 a disturbance acceleration that cap-
tures modeling approximation errors - e.g. introduced by (8)
- and external perturbations. The disturbance is assumed to
be bounded by the set D = {d ∈ R3 : ‖d‖ ≤ d}, where d is
a known upper bound.

In order to formulate the motion control problem, let us
consider a set of safety constrains C ⊂ X and the virtual
point h, located at a constant distance Lx from the vehicle’s
center of gravity (see Fig. 1):

h =
[
hX hY hψ

]T
=
[
pT ψ

]T
+R(ψ)L (10)

where L =
[
Lx 0 0

]T . This point can be selected, e.g., as
the center of oscillation (Lx = Iz/(mlr)), which cancels the
effect of rear lateral forces Fyi in the tracking of hX ,hY [6].
Our goal is to construct a feedback control law for u ∈ U
such that the virtual point h tracks, as close as possible, the
reference trajectory hr(t) : R→ R3, while enforcing safety
constraints x ∈ C, ∀d ∈ D.

The TTC’s control law is composed by the summation
of two components, u = uN + ∆u. The first component
(uN) is a nominal control action. It uses input-output (IO)
linearization [11] method to compute the control actions for
the unconstrained control problem. The second component



(∆u) is a corrective control action generated by the supervisor
to cope with the problem’s constraints (U ,C). In the final
step, the commanded tire forces u are translated into actuator
demands (steering angles and wheel torques) using model
inversion methods (see [6], [4] for details).

III. NOMINAL TRAJECTORY TRACKING CONTROLLER

To derive the nominal controller uN , let us consider
the tracking error e =

[
eX eY eψ

]T
= h− hr. Since all

elements of e have a relative degree of 2, the tracking
error and its derivative can be augmented into the vector
z =

[
eX ėX eY ėY eψ ėψ

]T , enabling us to express
the error dynamics as:

ż = Az+BΓ(x, ḧr)+BE(x)(τ +d) (11)
τ = G(x)u (12)

where A,B,Γ(x, ḧr),E(x) are matrices defined in Appendix.
The above representation contains the virtual control input
τ ∈ Rnτ , nτ = 3, composed by the longitudinal, lateral and
yaw acceleration produced by the actuators. Because of this
virtual control input, the nominal control problem can be
divided in two steps. In the first step, a high-level controller,
based on IO linearization [11], manipulates the virtual input
τ in order to fulfill the primary control goal. Its control law
is given as

τN = E−1(x)
(
−Γ(x, ḧr)−Kz

)
(13)

where K ∈ R3×6 is a matrix selected by the designer such
that (A−BK) is Hurwitz. In the second step, the nominal
virtual input τN is mapped into the control input space Rnu .
Because of its numerically efficiency and simplicity, the
Moore-Penrose pseudo-inverse uN =G(x)+τN , with G(x)+ =
G(x)T (G(x)G(x)T )−1, is employed.

IV. SUPERVISOR

This section presents the main novelty of this work: the
supervisor module for the TTC. The supervisor’s main goal
is to enhance the nominal TTC with constraint handling ca-
pabilities. It achieves that by generating a corrective control
action ∆u∈Rnu , fulfilling: i) input constraints, uN +∆u∈ U ,
and ii) safety constraints, uN +∆u∈UC , where UC is a control
input set constructed based on control barrier functions [12]
and able to enforce the safety set C ⊂ X (details follow
shortly). To comply with these constraints, the supervisor
might need to modify the nominal virtual input, i.e.,

τ = τN +∆τ, ∆τ = G(x)∆u (14)

where ∆τ is the corrective virtual input due to ∆u. Deviations
from the nominal virtual input occur when ∆τ 6= 0 and
might negatively affect the performance of the nominal TTC.
To mitigate these risks, the supervisor should be minimally
invasive, i.e., the performance degradation of the nominal
TTC should be as small as possible.

A. Performance Degradation

To better understand the minimally invasive property,
let us treat the supervisor’s corrective virtual input ∆τ as
an additional perturbation and investigate its effect in the
closed-loop system using Lyapunov methods. Accordingly,
inserting (14) into (11) leads to the following error dynamics:

ż = (A−BK)z+BE(x)(∆τ +d) (15)

Given the dominance of the linear component (A−BK)z,
stability can be investigated using the quadratic Lyapunov
function V (z) = zT Pz, where P is a positive definite matrix2.
Computing the time derivative of V one obtains

V̇ (z,∆V̇ ,d) =−zT Qz+2zT PBE(x)d +∆V̇ (16)

where ∆V̇ = 2zT PBE(x)∆τ represents a perturbation intro-
duced by the supervisor’s intervention. Recall that, ultimate
boundedness of z – i.e., convergence of z to a small neigh-
borhood around the origin – is achieved if V̇ fulfills [11]

V̇ (z,∆V̇ ,d)≤−WV (z)< 0, ∀‖z‖ ≥ εz, d ∈ D (17)

where WV (z) is a positive definite function and εz > 0 a small
positive constant that affects the size of the ultimate bound. It
can be verified that the nominal TTC ensures ultimate bound-
edness of z, i.e., V̇ (z,0,d) fulfills (17). On the other hand, the
supervisor’s perturbation, ∆V̇ can have a “good” or a “bad”
effect in the ultimate boundedness condition. For example, a
“good” effect is obtained when ∆V̇ < 0, which makes V̇ more
negative, helping the fulfillment of (17). “Bad” effects occur
when ∆V̇ > 0. In this case, εz might need to be increased in
order to fulfill (17), leading to higher ultimate bounds and
– in the worst case scenario – compromise the closed-loop
stability. In light of this discussion, the supervisor should
penalize “bad” perturbations, i.e., positive values of ∆V̇ . This
can be achieved, for example, by minimizing Js(s) = wss2

subject to ∆V̇ (z,x,∆τ) ≤ s and s ≥ 0, where s is a non-
negative upper bound for ∆V̇ and ws a positive weight.

B. Overview of the Optimal Supervisor

Constraint fulfillment and minimization of perfor-
mance degradation can be achieved using the following
optimization-based supervisor:

min
∆u,∆τ,s

Js(s)+ Jτ(∆τ)+ Ju(uN +∆u)

s.t. uN +∆u ∈ U ∩UC (18a)
∆τ = G(x)∆u (18b)
2zT PBE(x)∆τ ≤ s, s≥ 0 (18c)

where Ju is a cost term that minimizes a secondary actuation
cost, based on the friction usage of the tires (see Appendix),
Jτ(∆τ) = ∆τTWτ ∆τ , and Wτ a weight matrix. This optimal
formulation computes the correction term ∆u compliant with
U and UC , while simultaneously penalizing the performance
degradation (Js and (18c)), deviations of the nominal virtual
input (Jτ ) and actuation cost (Ju).

2obtained by solving the equation P(A−BK)+(A−BK)T P =−Q, with
Q a positive definite matrix defined by the designer



C. Safety Constraints

Let us now discuss in more detail how the safety con-
straints C and corresponding safe input set UC can be de-
signed. To assist us in this discussion, we define the generic
safe set C(θ)⊂X as the superlevel set of the scalar function
l(x,θ) ∈ R:

C(θ) = {x ∈ X : l(x,θ)≥ 0 } (19)

where θ ∈Θ⊂Rnθ is a vector of nθ time-varying parameters.
From a technical point of view, forward invariance of the safe
set C(θ) is desired, i.e., if x(0)∈ C(θ) then x(t)∈ C(θ),∀t ≥
0. To ensure this property, control barrier functions - in
the form of zeroing control barrier function (ZCBF) - are
employed.

Definition 1. [12] Consider the set C(θ)⊂X ⊂Rnx defined
by (19) for the function l(x,θ) ∈ R. The function l(x,θ) is
a zeroing control barrier function (ZCBF) if there is an
extended class K function3 αb such that l̇(x,u,d,θ , θ̇) ≥
−αb(l), ∀x ∈ X ,θ ∈Θ, θ̇ ∈ Θ̇,d ∈ D. This is equivalent to

sup
u∈U

inf
d∈D

[ ∂ l
∂x

( fx(x)+Gx(x)u+Gdd)+
∂ l
∂θ

θ̇ +αb(l)
]
≥ 0,

where l is short notation for l(x,θ).

The key idea of the ZCBF definition is to ensure the
existence of a control input u ∈ U capable of enforcing
the condition l̇ ≥ −αb(l). To facilitate the computation of
UC , i.e., the set of control inputs capable of enforcing l̇ ≥
−αb(l), we will assume that a lower bound εd(x), possibly
state dependent, for the disturbance d can be computed,
i.e., infθ∈Θ,d∈D

∂ l(x,θ)
∂x Gdd ≥ εd(x). Based on this bound,

a conservative estimate for UC can be determined as:

UC(x,θ , θ̇) = {u ∈ U :
∂ l(x,θ)

∂x
( fx(x)+Gx(x)u)+

∂ l(x,θ)
∂θ

θ̇ + εd(x)+αb(l(x,θ))≥ 0}

Lemma 1. [12] Consider the safe set C(θ) defined by (19)
and the ZCBF l(x,θ). Any Lipschitz continuous controller u
such that u ∈ UC(x,θ , θ̇) 6= /0 for the system (9) renders the
set C(θ) forward invariant.

We will now apply this result to design ZCBFs for safety
constraints related with vehicle stability limits (CT ) and
obstacle avoidance (CO).

1) Vehicle Stability Limits: The nominal TTC does not
directly control the rear lateral forces (Fyi, i = 3,4). When
faced with model mismatches and disturbances, these forces
can saturate, leading to high side-slip angles, loss of grip
and possible vehicle instability [13]. To prevent this loss
of stability, the supervisor will constrain the rear side-slip
angles to lie in the safe slip-angle envelope CT :

CT = {x ∈ X : | tan(αi(v))| ≤ tan(α), v =Cvx, i = 3,4}

3A continuous function αb : (−b,a) −→ R for some a,b > 0 is
an extended class K function if i) αb(0) = 0; and ii) αb is strictly
increasing[12]

where α is maximum allowed side-slip angle. By exploiting
the fact that tan(αi(v)) is a rational function of the vehicle
velocity v, enables us to represent this safety set as an
intersection of nT polytopic sets CT =∩nT

j=1CT , j, as described
in Algorithm 1. To better understand the construction of
these polytopic sets, let us consider one of the upper side-
slip bounds in CT , namely tan(α3(v)) ≤ tan(α). Expanding
the tangent function with its rational representation – see (7)
– yields

tan(α3(v)) =−
ϑ T

y3v

ϑ T
x3v

=−
ϑ T

y3Cvx

ϑ T
x3Cvx

≤ tan(α), (20)

where Cv is a matrix that extracts v from x. This is equivalent
to
(

ϑ T
y3 +ϑ T

x3 tan(α)
)

Cvx≥ 0, which leads to the polytopic
set CT ,1 defined in Algorithm 1. The construction of the
remaining polytopic sets follows similar arguments.

Algorithm 1 Barrier function for rear tire’s protection
qT

1
qT

2
qT

3
qT

4

=


ϑ T

y3 +ϑ T
x3 tan(α)

−ϑ T
y3−ϑ T

x3 tan(−α)

ϑ T
y4 +ϑ T

x4 tan(α)

−ϑ T
y4−ϑ T

x4 tan(−α)


nT = 4
for j = 1 to nT do

CT , j = {x ∈ X : lT , j(x) = qT
j Cvx≥ 0}

UCT , j(x) = {u ∈ U : −qT
j CvGx(x)u≤ c j(x)}

c j(x) = qT
j Cv fx(x)+ εd, j +αb, j(lT , j)

end for{note: Cv extracts v from x , εd, j =−
∥∥∥qT

j CvGd

∥∥∥d}

From Lemma 1, forward invariance of the safe slip-angle
envelope CT can be achieved as long as uN +∆u ∈ UCT =
∩nT

j=1UCT , j .
2) Obstacle Avoidance: The second set of barrier func-

tions deals with collision avoidance between the ego-vehicle
and a set of no agents (obstacles). Our idea is to extend
collision-free ZCBFs, previously proposed by [14] in the
context of multirobot systems, to automotive applications.
As depicted in Fig. 2, each agent has position pk, velocity
ṗk and acceleration p̈k, k = 1, . . . ,no; these agent states can
be obtained using data from vehicle mounted sensors and
its accuracy enhanced with inter-vehicle communications.
We define safety disks, with radius Dk, around agent k,
while the ego-vehicle is protected by a safety disk with
radius D0. A collision with agent k occurs if the relative
distance ∆pk = p− pk between the ego-vehicle and agent k
is smaller than Ds,k = Dk +D0, i.e., ‖∆pk‖ ≤ Ds,k. To avoid
such outcomes, ∆pk should be sufficiently high, such that
the relative velocity ∆vk = ṗ− ṗk can be driven to zero
before a collision happens. To better explain this concept,
let us project the relative velocity ∆vk along the tangent
unit vector tk =∆pk/‖∆pk‖, leading to the tangential relative
velocity ∆vk,t = tT

k ∆vk (see Fig. 2). As discussed in [14], if
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Fig. 2. Problem setup for collision avoidance.

Algorithm 2 Barrier functions for obstacle avoidance
for k = 1 to no do

CO,k(pk, ṗk) = {x ∈ X : lO,k(x, pk, ṗk)≥ 0}
lO,k(x, pk, ṗk) = l̃O,k(Cpx,Cp fx(x), pk, ṗk)

l̃O,k(p, ṗ, pk, ṗk) =
(p− pk)

T

‖p− pk‖
(ṗ− ṗk)+√

2∆ak(‖p− pk‖−Ds,k)

UCO,k(x, pk, ṗk, p̈k) = {u ∈ U :
∂ lO,k

∂x
Gx(x)u+bk(.)≥ 0}

bk(x, pk, ṗk, p̈k) =
∂ lO,k

∂x
fx(x)+

∂ lO,k

∂ pk
ṗk +

∂ lO,k

∂ ṗk
p̈k + εd,k(x)+αb,k(lO,k)

end for{ Cp extracts p from x, i.e., p = Cpx, lO,k is the
short notation for lO,k(x, pk, ṗk) }

this component is positive (∆vk,t > 0), then the agent k is
moving away from the ego-vehicle, while negative values
might lead to collisions. Thus, to prevent collisions, the
tangent component needs to be non-negative. With this goal
in mind, let us compute the time (Tb) and distance (Db)
needed to bring ∆vk,t to zero. To compute these values, we
will assume that the relative acceleration ∆ak = p̈− p̈k is
constant

∆ak = a+σkak (21)

where a is the maximum acceleration of the ego-vehicle
along tk, ak the maximum acceleration of agent k, and σk
is the degree-of-cooperation with agent k. This latter factor
allows us to incorporate additional information about the
behavior of agent k - which might be uncertain - into the
problem formulation. For example, if σk = 1, then it is
assumed that both agents will try to avoid collision by apply-
ing their maximum possible acceleration. An extreme non-
cooperative case is obtained with σk =−1, which represents
the worst-case scenario where agent k is on collision course
with the ego-vehicle at maximum acceleration. Based on

these considerations, one can compute:

Tb =−∆vk,t/∆ak, Db =−
∫ Tb

0
(∆vk,t +∆akt)dt =

∆v2
k,t

(2∆ak)

From a collision mitigation perspective, the relative dis-
tance between agents should fulfill the safety constraint
‖∆pk‖ ≥ Db +Ds,k. Since ∆vk,t = tT

k ∆vk, together with the
fact that only situations with ∆vk,t < 0 are considered, allows
us to re-write this safety constraint as:

−
∆pT

k
‖∆pk‖

∆vk ≤
√

2∆ak(‖∆pk‖−Ds,k) (22)

By expanding the relative positions and velocities with
absolute values, this safety constraint is then used to con-
struct the collision-free safe set CO,k and collision-free input
set UCO,k , as detailed in Algorithm 2. Collision mitigation
with all agents is achieved by ensuring that the supervisor’s
correction action fulfills uN +∆u∈ UCO =∩k∈NoUCO,k , which
makes the collision-free set CO = ∩k∈NoCO,k forward invari-
ant (see Lemma 1).

3) Final Optimization Problem: Inserting UC =UCT ∩UCO

into (18), leads to the following expanded version of the
supervisor’s optimization problem:

min
∆u,∆τ,s

Js(s)+ Jτ(∆τ)+ Ju(uN +∆u)

s.t. uN +∆u ∈ U (23a)
∆τ = G(x)∆u (23b)
2zT PBE(x)∆τ ≤ s, s≥ 0 (23c)
−qT

j CvGx(x)(uN +∆u)≤ c j(x), j ∈NT (23d)

−
∂ lO,k

∂x
Gx(x)(uN +∆u)≤ bk(.), k ∈No (23e)

The above optimization problem is convex. This property,
which can be demonstrated by exploiting the fact that both
problem’s constraints and cost function are convex [15], is
particularly attractive because it allows us to obtain global-
optimal solutions for the TTC’s supervision problem.

V. SIMULATION RESULTS

This section presents the validation of the supervised TTC
through numerical simulations. The simulation environment
is based on Matlab&Simulink, and contains the non-linear
vehicle model presented in Section II, extended with vertical-
and actuator dynamics. To efficiently solve the supervisor’s
optimization (23), which can be posed as second-order cone
programming problem, we employed the embedded conic
solver (ECOS) [16] together with cubic barrier functions
(αb(l) = kl3, k > 0). Similarly to [2], the TTC’s performance
is evaluated using the tangential (ex) and normal (ey) compo-
nents of the tracking error, represented in the local vehicle
coordinates, exy =

[
ex ey

]T
= CeR−1(ψ)e, where R(ψ) is

defined in (1) and Ce is a constant4.
In the scenario considered here, the reference trajectory is

a straight line (along the X axis), generated with a constant

4Ce =

[
1 0 0
0 1 0

]T
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Fig. 4. Simulation results for the obstacle avoidance maneuver.

velocity (10 m/s). To investigate the effect of the proposed
performance degradation approach, the supervised TTC is
simulated with two different ws weights. This first setting,
called TTC-normal (TTC-N), uses ws = 0, while the second
employs the weight ws = 2 and is referred as TTC with
minimum performance degradation (TTC-MD). Besides the
ego-vehicle, the simulative scenario also considers two non-
cooperative agents (σk = 0,k ∈ {1,2}). Agent 1 is driving
with constant velocity (5m/s), along the same lane as the
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Fig. 5. Control inputs u. To simplify the time-domain representation of U ,
only the worst-case ±µiFzi limits (dotted red lines) are shown.

ego-vehicle, having an initial longitudinal offset of 10m;
agent 2 is positioned in an adjacent lane, with constant
velocity of 10m/s. Additionally, the road is characterized
by low adhesion conditions (µi = 0.4). Fig. 3 depicts this
simulation scenario, as well as the path of the ego-vehicle,
represented in the coordinate frame fixed with the agent 1.
The results reveal that both TTC-N and TTC-MD are able
to avoid collision with agent 1. From 0s to 1s, the control
barrier function associated with agent 1 (see lO,1 in Fig. 4(a))
quickly approaches zero, signaling an eminent clash. This
triggers aggressive braking to avoid collision – see forces Fxi
during the period [1,2]s (Fig. 5) – followed by an overtaking
maneuver such that both TTCs recover nominal performance
and ”catch up” with the reference trajectory. The results
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Fig. 6. Lyapunov function V and perturbation ∆V̇ during the obstacle
avoidance maneuver.

of Fig.4(c) reveal that, in comparison with the TTC-N, the
TTC-MD reduces the tangential and normal tracking errors.
The key reason for this superior transient behavior lies in the
Lyapunov-based constraint (18c). More specifically, the in-
crease in ws penalizes the perturbation ∆V̇ , which reduces the
value of Lyapunov function V (see Fig.6) and improves the
TTC-MD response. This superior response comes, however,
with a price: the collision avoidance maneuver becomes more
aggressive, increasing the rear side-slip angles and bringing
the vehicle closer to its driving limits. Nonetheless, thanks
to the safety constraint CT , the TTC-MD keeps the rear side-
slip angles within a safe operating envelope (Fig.4(b)) and
preserves vehicle stability.

VI. CONCLUSIONS

An optimization-based framework for supervision of tra-
jectory tracking controllers (TTCs) was proposed in this
work. This framework enhances existing TTCs with the
capability to handle input and multiple safety constraints. We
showed how zeroing control barrier functions (ZCBF) can be
used to systematically handle safety constraints, including
vehicle stability limits and collision avoidance. To minimize
the performance degradation due to supervision’s correc-
tion actions, the ZCBFs were combined with Lyapunov-
based constraints and convex optimization methods. The
supervisor’s safety and minimal invasiveness properties were
demonstrated through a numerical simulation example in-
volving a collision avoidance scenario. In a future work, we
will investigate how uncertainties in the environment’s per-
ception affect the design and parameterization of ZCBFs.

APPENDIX - AUXILIARY VARIABLES

Variables Bu and fy(x) are defined as:

Bu(x) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 F̃y3(v)
µ3Fz3

0
0 0 0 0 0 1

0 0 0 0 0 F̃y4(v)
µ4Fz4


, fy(v) =



0
0
0
0
0

F̃y3(v)
0

F̃y4(v)



Additionally,

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



Γ(x, ḧr) = −vψ

vy cos(ψ)+ vx sin(ψ)+Lxvψ cos(ψ)
vy sin(ψ)− vx cos(ψ)+Lxvψ sin(ψ)

0

− ḧr

+E(x)Cv fx(x) (24)

E(x) =

cos(ψ) −sin(ψ) −Lx sin(ψ)
sin(ψ) cos(ψ) Lx cos(ψ)

0 0 1

 (25)

where Cv extracts the v component from x, i.e. v =Cvx. The
actuation cost Ju penalizes the tires’ friction usage [10]:

Ju(u) = ∑
i∈{1,2}

F2
xi +F2

yi

(µiFzi)2 + ∑
i∈{3,4}

F2
xi +

(
F̃yi(x)2(1− Fxi

µiFzi
)
)

(µiFzi)2
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