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Road Geometry and Steering Reconstruction for Powered Two Wheeled
Vehicles

M. Fouka, L. Nehaoua, D. Ichalal, H. Arioui and S. Mammar

Abstract— This paper deals with the estimation of both
motorcycle lateral dynamics and road geometry reconstruction.
A linear parameter varying (LPV) unknown input observer
is designed to estimate the whole motorcycle dynamic states
including road banking angles and the rider’s steering torque
taken into account the variation of the forward velocity.
The road bank angle and the lateral slip angle are relevant
parameters for improving rider’s safety and handling, thus,
it is interesting to estimate the road geometry. The observer
convergence study is based on Lyapunov theory and the estab-
lished convergence conditions are expressed in linear matrix
inequalities (LMIs) formalism. The main idea consists in getting
a set of conditions to design an observer transformed into
a polytopic form, which estimates a part of the motorcycle
dynamics states independently of some inputs (rider torque)
and/or other states (zeros dynamics: roll angle) taken into
account the variation of the longitudinal velocity.
Simulation results of experimental test are provided to confirm
the efficiency of the proposed design method.

Index Terms— Motorcycle dynamics, UI Observer, Lyapunov
theory, LMI, Motorcycle safety.

I. INTRODUCTION

Major two wheelers vehicle manufacturers, are accelerat-
ing Powered Two Wheeled vehicles (PTWv) and advanced
rider assistance systems (ARAS) development efforts to get
ahead in the race. For this reason, interest in safety problems
of PTW vehicles has been growing over the past few years
[1] [2]. ARAS systems are very important to improve riders
safety and handling in both normal and critical situations.
In this context, it is necessary to acquire knowledge on
the behavior of the PTWv from the pertinent parameters
governing motorcycle dynamics (roll angle, yaw rate, tire
cornering forces), involved by riders action (steering torque,
steering angle) and/or the infrastructure geometry (road bank
angle which is very useful to detect the rollover and sideslip
angles to detect a skidding motorcycle). While some states
are readily measured with inexpensive sensors (yaw rate),
others states must be estimated by more sophisticated means
(tire cornering forces). Safety systems nowadays available
collect some states from integration of inertial sensors, but
this estimation method is combined with errors accumula-
tion and uncertainties from road geometry (slope and bank
angles).

Model-based estimators are therefore interesting to over-
come previous shortcomings in order to provide estimates of
unmeasured states and relevant parameters. In this context,
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it seems necessary to estimate the road geometry in order to
evaluate the infrastructure impact. One challenge to estimate
the road bank angle is to improve estimation of the side slip
angle on tilted road surfaces, the road banking have a direct
influence on motorcycle lateral motions (lateral acceleration
measurement). Thus, knowing the road bank angle allows
us to achieve safety speeds and desired control on difficult
road conditions, because part of the centrifugal force is com-
pensated by this inclination. Several methods were proposed
to estimate and identify the motorcycle dynamics states and
parameters such as, ([3]-[13]). Concerning lateral estimation
most of cited papers consider restrictive assumptions, regard-
ing riding motorcycle practices and/or a constant longitudinal
speed, the road geometry and tire-road contact has often been
neglected. To the best of our knowledge, the simultaneous
estimation of the lateral dynamics and the road geometry was
treated on vehicles and those methods developed for four-
wheeled vehicles are not necessarily adequate for motorcycle
[14].

The present paper proposes an unknown input observer
(UIO) considering linear parameter-varying (LPV) motor-
cycle model and a certain number of valid measurements,
taking into account the variations in the longitudinal speed,
the model is transformed into polytopic form by following
the sector non-linearity approach [15] coupled with model
inversion. Using Lyapunov concept and LMI region for
performance enhancement, the observer is able to estimate,
asymptotically, lateral motorcycle dynamics and to recon-
struct unknown inputs (roll angle and steering torque) with
bank angle reconstruction. The tire’s dynamic behavior is
taken into account when evaluating the generated lateral tire
force. In order to show the effectiveness of the estimation
method, a validation test were carried out on an instrumented
motorcycle in realistic riding situations.
The paper is organized as follows. Sec. II, describes and dis-
cusses the motorcycle out of plane model. Sec. III, illustrates
the observer design and presents the convergence analysis.
Sec. IV, discuss the results, compared to real experimental
data and evaluate the estimated model. Finally, sec. V,
concludes the paper.

II. THE OUT-OF-PLANE MOTORCYCLE DYNAMICS

In this work, the Out-Of-Plane motorcycle motions are
modeled as presented in Sharp’s 71 model [16] [17], due
essentially to the effect of lateral forces, including tire
relaxation for the stability of the Sharp’s model, lateral dis-
placement, the yaw and roll motions of the main frame under
rider’s steering actions. We consider the four-dimensional



model (4 DoF) with road bank angle consideration and non-
linear tire characteristics. Figure (1) shows the motorcycle
and the road geometry. This paper extends the earlier results
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Fig. 1: Motorcycle geometry with road banking angle.

in Sharp’s 71 model, taking into account the road bank angle,
denoted φr, it has the effect of keeping the motorcycle in its
path, to avoid the overturning of motorcycle, this force is
noted Fφr = Mgsin(φr).

Assumption 1: Considering the following assumptions:
• Assume that the road bank angle is constant piecewise

or varies slowly.
• The rider is rigidly attached to the main frame.

Under these assumptions, the motions of the motorcycle can
be described by the following equations

e33v̇y + e34ψ̈ + e35φ̈ + e36δ̈ = m34ψ̇ +Fy f +Fyr−Mgsin(φr)

e34v̇y + e44ψ̈ + e45φ̈ + e46δ̈ = m44ψ̇ +m45φ̇ +m46δ̇+
m47Fy f +m48Fyr

e35v̇y + e45ψ̈ + e55φ̈ + e56δ̈ = m51 sin(φ +φr)+m52 sin(δ )+
m54ψ̇ +m56δ̇

e36v̇y + e46ψ̈ + e56φ̈ + e66δ̈ = m61 sin(φ +φr)+m62 sin(δ )+
m64ψ̇ +m65φ̇ +m66δ̇ +m67Fy f + τ

Ḟy f = m71(φ +φr)+m72δ +m73vy +m74ψ̇ +m76δ̇ +m77Fy f

Ḟyr = m81(φ +φr)+m83vy +m84ψ̇ +m88Fyr
(1)

Where (φ , δ , ψ , φ̇ , δ̇ , ψ̇) denote the roll, steering, yaw
angles and respectively their time derivatives, whereas (φr,
vy) are respectively the road bank angle and lateral velocity,
Fy f and Fyr are the cornering front and rear forces respec-
tively, and τ is the torque applied to the handle bar. For
further details on the motorcycle parameters (ei j, mi j(vx))
and expressions refer to tables I and II.

Note that the roll, road banking angles, lateral speed and
the tire forces in the dynamic state are hard to measure.
For the PTWv, we measure ( φ̇ , ψ̇ , vx, δ , ay) and its time-
derivative rate.

Remark 1: To be more consistent with realistic con-
straints, we consider the road banking, roll angle and the
steering torque as unknown inputs.

A. Motorcycle LPV Model

Two wheelers vehicle is stable only for a range of forward
velocities, contrarily to a standard vehicle with four wheels.
Assume that the premise variables ρ = vx is the longitudinal
speed, real time accessible from GPS, its first time derivative
exists and is noted ρ̇(t) can be obtained from hight differ-
entiator or from forward acceleration and it will be used in
the observer design.
Consider, the parameter vector (ρ, ρ̇) ∈ ∆, where ∆ define
hyper-rectangles defined by:

∆=
{
(ρ, ρ̇) ∈ R| ρmin ≤ ρ(t)≤ ρmax, ρ̄min ≤ ρ̇(t)≤ ρ̄max }

(2)
The motorcycle dynamic model can be expressed by the
following Linear Parameter Varying (LPV) structure :{

ẋ(t) = A(ρ)x(t)+Dφ (ρ)φ(t)+Dφr(ρ)φr(t)+Bτ(t)
y =Cx(t)

(3)
where x = [δ ,vy, ψ̇, φ̇ , δ̇ ,Fy f ,Fyr]

T ∈ Rn denotes the state
vector, ν(t) = [φ φr τ]T ∈ Rp is the unknown part of
the model, y ∈ Rny is the vector of measures. The matrices
A(ρ) ∈ Rn×n, Dφ (ρ) ∈ Rn×1, Dφr(ρ) ∈ Rn×1, are parameter
varying, while the matrices C ∈ Rny×n and B ∈ Rn×m are
constants. The numerical values of the matrices are given in
the appendix.

Let, G(ρ) = [Dφ (ρ) Dφr(ρ) B], Dφ (ρ) is the vector
corresponding to the roll state and Dφr(ρ) is the vector
corresponding to the road banking angle.
The model (3) is rewritten as follow:{

ẋ(t) = A(ρ)x(t)+G(ρ)ν(t)
y =Cx(t) (4)

One can remark that dim(y(t))> dim(ν(t)) is satisfied.

III. OBSERVER DESIGN

In this section we explain how to design an unknown input
observer (UIO) considering LPV system, to state estimation.
The approach considers Lyapunov theory associated with
LMI tools to guarantee the asymptotically convergence to
zero of the state estimation errors.

Assumption 2: To design a stable unknown input observer,
the well-known conditions for the existence of the UIO are
given by the following theorem [18]:

1) The pair (A(ρ),C) is detectable ∀ρ(t) ∈ ∆.
2) Matching condition: rank(CG(ρ)) =

rank(G(ρ)), ∀ρ(t) ∈ ∆, is satisfied.
Let us denote x̂(t) and ŷ(t) the estimated state and output
vectors respectively. Consider the following unknown input
observer [20]:{

ż(t) = N(ρ, ρ̇)z(t)+L(ρ, ρ̇)y(t)
x̂(t) = z(t)−H(ρ)y(t) (5)



The matrices N(ρ, ρ̇) ∈Rn×n, L(ρ, ρ̇) ∈ Rn×ny and H(ρ) ∈
Rn×ny of the observer are to be determined to ensure asymp-
totic state estimation error even in the presence of UI.

According to equations (4, 5), the state estimation error is
given by:

e(t) = x(t)− x̂(t) = (I +H(ρ)C)︸ ︷︷ ︸
P(ρ(t))

x(t)− z(t) (6)

The state estimation error obeys to the following differential
equation:

ė(t) = Ṗ(ρ, ρ̇)x+P(ρ)ẋ− ż (7)
= N(ρ, ρ̇)e+(Ṗ(ρ, ρ̇)+P(ρ)A(ρ)−N(ρ, ρ̇)P(ρ)
−L(ρ, ρ̇)C)x(t)+P(ρ)G(ρ)ν(t)

With z(t) = P(ρ)x(t)− e(t).
If the following conditions hold:

Ṗ(ρ, ρ̇)+P(ρ)A(ρ)−N(ρ, ρ̇)P(ρ)−L(ρ, ρ̇)C = 0 (8)
P(ρ)G(ρ) = 0 (9)

The estimation error dynamics will be reduced to:

ė(t) = N(ρ, ρ̇)e(t) (10)

In which, N(ρ, ρ̇) must be Hurwitz.

A. Convergence study

In this paper, the stability analysis of the observer (5)
is studied in order to obtain the observer gains that satisfy
the LMI conditions. This analysis is performed by using a
quadratic Lyapunov function as follows :

V (e(t)) = e(t)T Qe(t), Q = QT > 0 (11)

By using the error dynamics in equation (10), the time
derivative of the Lyapunov function can be written by the
following expression:

V̇ (t) = e(t)T (N(ρ, ρ̇)T Q+QN(ρ, ρ̇)
)

e(t) (12)

Equations (8) to (9) form a set of an LMI conditions to
be resolved to compute the observer gains. One replace the
matrix P(ρ) = I+H(ρ)C in the equality (8) which leads to:

Ṗ(ρ, ρ̇)+P(ρ)A(ρ)−N(ρ, ρ̇)P(ρ)−L(ρ, ρ̇)C = 0
Ṗ(ρ, ρ̇)+P(ρ)A(ρ)︸ ︷︷ ︸

Γ(ρ,ρ̇)

−N(ρ, ρ̇)− (N(ρ, ρ̇)H(ρ)+L(ρ, ρ̇)︸ ︷︷ ︸
K(ρ,ρ̇)

)C = 0

Thus,
N(ρ, ρ̇) = Γ(ρ, ρ̇)−K(ρ, ρ̇)C

Γ(ρ, ρ̇) and K(ρ, ρ̇) are function of the parameters varying
signals (ρ(t), ρ̇(t)).

The dynamics of the state estimation error’s become:

ė(t) = (Γ(ρ, ρ̇)−K(ρ, ρ̇)C)e(t) (13)

The time derivative of the Lyapunov function is written by
the following expression:

V̇ = eT
(
(Γ(ρ, ρ̇)−K(ρ, ρ̇)C)T Q+Q(Γ(ρ, ρ̇)−K(ρ, ρ̇)C)

)
e

= eT
(

Γ(ρ, ρ̇)T Q−CT R(ρ, ρ̇)T +QΓ(ρ, ρ̇)−R(ρ, ρ̇)C
)

e

where R(ρ, ρ̇) = QK(ρ, ρ̇)
Theorem 1: The state estimation error converges asymp-

totically toward zero if there exist a symmetric positive
definite matrix Q ∈ Rn×n and a matrix R ∈ Rn×ny satisfying
the Lyapunov inequality:

Γ(ρ, ρ̇)T Q+QΓ(ρ, ρ̇)−R(ρ, ρ̇)C−CT R(ρ, ρ̇)T < 0 (14)

It follows that V (e) = eT Qe> 0 defines a common quadratic
Lyapunov function for the observer.
Note that the Lyapunov inequality depend on the varying
parameters, in order to derive LMI conditions that ensure
the asymptotic convergence of the state estimation error, the
polytopic approach is used to transform the inequality 14.

B. Polytopic Representation

The nonlinearities in the observer are taken into account
by considering a polytopic representation to define a set
of Linear Time Invariant (LTI) models interconnected with
nonlinear weighting functions ηi(.) which are known and
they must satisfy the following convex sum property [15]:

r
∑

i=1
ηi (ρ(t), ρ̇(t)) = 1

0≤ ηi (ρ(t), ρ̇(t))≤ 1
∀i = {1,2, ..,r} (15)

r represents the number of local submodels defines by r =
2nρ where nρ = 2 is the number of non-linearities (for more
details, please refer to [15], [20], [21]) . Then the sector
nonlinear approach is used to transform the problem into a
(TS) form : Γ(ρ, ρ̇) = Ṗ(ρ, ρ̇)+P(ρ)A(ρ) = ∑

r
i=1 ηi(ρ, ρ̇)Γi

K(ρ, ρ̇) = ∑
r
i=1 ηi(ρ, ρ̇)Ki, (ρ, ρ̇) ∈ ∆

(16)

C. Eigenvalue Assignment Problem
The performances of the observer can be improved by

pole assignment in an LMI region to ensure an acceptable
transient response, given by the stability margin α in a subset
Θ of the complex plane such that the matrix Γi is said Θi-
Stable when its spectrum λ (Γi) belongs to region Θi [19].

Θi =
{

z = (xz + i.yz ∈ C| Re(z)≤−α ⇔ z+ z̄+2α < 0 } (17)

where C is the set of complex numbers, and z̄ denotes
the complex conjugate of z. Using the convex sum property
of the weighting functions and from (14), sufficient LMI
conditions ensuring asymptotic stability in LMI region are
obtained as follows :

Γ
T
i Q+QΓi−CT RT −RC+2αQ < 0, i ∈ (1, ...,r) (18)

Where, Ri = QKi and Q = QT > 0. This equation provides a
way of ensuring the eigenvalues of a matrix within a specific
region.

1) The LMI problem includes the following condition to
compute the matrices H(ρ) as follows:{

P(ρ)G(ρ) = 0
P(ρ) = I +H(ρ)C (19)

H(ρ) =−G(ρ)(CG(ρ))†

The solution of this equation depends on the rank
of matrix CG(ρ), H(ρ) exists if rank(CG(ρ)) =



rank(G(ρ)) ∀ρ . Since CG(ρ) is of full column rank,
(CG(ρ))† =

[
(CG(ρ))T (CG(ρ))

]−1
(CG(ρ))T is the

left pseudo-inverse of the matrix (CG(ρ)).
2) The gains of the observer N(ρ, ρ̇) and L(ρ, ρ̇) are

computed as follows:

K(ρ, ρ̇) = Q−1R(ρ, ρ̇)
N(ρ, ρ̇) = Γ(ρ, ρ̇)−K(ρ, ρ̇)C

L(ρ, ρ̇) = K(ρ, ρ̇)−N(ρ, ρ̇)H(ρ)
(20)

for more details, please refer to [21].

D. Unknown Input estimation

After estimating the states of the system, the unknown in-
puts can be estimated by a simple dynamic system inversion.
From the output equation y =Cx, one can write:

ẏ =CA(ρ)x(t)+CG(ρ)ν(t)

Since the condition rank(CG(ρ)) = rank(G(ρ)), is satisfied,
it follows:

ν(t) =

 φ(t)
φr(t)
τ(t)

= (CG(ρ))†(ẏ(t)−CA(ρ)x) (21)

When the state estimation error e(t) converges to zero,
we have x̂(t)→ x(t), then the following UI estimation ν̂ is
obtained by the following equation :

ν̂(t) = (CG)†(ẏ(t)−CA(ρ)x̂(t))

In which, the convergence of ν̂ toward ν can be analyzed
by defining the unknown input estimation error

eν(t) = ν(t)− ν̂(t) =−(CG)†CA(ρ)e(t), ∀ρ(t) ∈ ∆

knowing that e(t) converges asymptotically to zero, then
eν(t) also converges asymptotically to zero.
According to Lyapunov formulation, the state and unknown
input errors converge asymptotically to zero in order to
achieve an accurate estimation of the states of the motorcycle
and the torque applied on the handlebar.

IV. EXPERIMENTAL RESULTS

This section aims to present experimental results using
a scenario realized on urban scenic road and normal riding
behavior to validate the proposed observer. The instrumented
motorcycle is an Electric Scooter Peugeot model (figure 2)
(please refer to [22] for data set and experimentation).

Fig. 2: Instrumented Scooter of IBISC Lab and Vehicle
trajectory

The simulations are conducted to illustrate the efficiency
of the presented approach, the optimization problem under

LMI conditions is solved using Yalmip toolbox under Matlab
software. The observer estimate the lateral dynamics using
the measured states (φ̇ , ψ̇ , ay ) given by the inertial unit
and δ obtained from the steering encoder, longitudinal speed
obtained from GPS data. The scenario is considered with a
varying longitudinal velocity from 7m/s on 18m/s, depicted
in (fig. 3 ).
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The actual signals given by the encoder and the IMU
required in the observer design are depicted in (fig. 4 ).
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Fig. 4: States estimation (gray) compared to actual measure-
ment (orange).

Figures (5) shows the states estimation of the unmeasur-
able states from the lateral dynamic model, whereas (fig.



6) illustrate the estimation unknown inputs from the model
inversion.
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Fig. 5: Unmeasurable states estimation of scooter.
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A. Validated dynamic states

Since the actual state vy and Fy f ,Fyr,Fφr are unknown, the
state estimation cannot be checked directly as it was done in
figure 4 in the above simulation. To validate the estimation,
one can use the estimated state vy and (Fy f ,Fyr,Fφr) to
construct the lateral acceleration from equations (22-23) to
compare with the measured acceleration (given by the IMU)
in figures 7.

Mây = F̂y f + F̂yr− F̂φr (22)

ây = ˆ̇vy + vxψ̇ (23)
φIMU = φ +φr (24)

Figure 7 show the actual lateral acceleration compared
to the sum of the estimated lateral forces and also to the
estimated with lateral motion, the roll measure given by the
IMU can also be used to verified the sum of (φ and φr) in
equation (24) :
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Fig. 7: State estimation validation :vy, Fy f , Fyr,Fφr from the
lateral acceleration and the additional measurement; and φ ,φr
from IMU roll angle.

According to the above simulation results, it can be
seen that the observer has a rapid transient phase and an
acceptable convergence to the estimated value, the estimated
model gives a good representation of the actual states. We
see that all the state and variables are well estimated except
the lateral velocity which has significant error estimation,
but it is still acceptable. The lateral velocity is difficult
to estimate accurately. However, because of its low value
compared to longitudinal velocity this error does not affect
the performances of the roll angle estimation. The roll
and steer angles (φ + φr, δ ) and also the lateral forces
are well estimated, there are some differences at the peak
due to modeling uncertainties, between the scooter and the
estimated model. The model used for the observer design
does not take into account large roll angles but the observer
still gives acceptable results. Finally, figures shows the ability
of the designed observer to well recover simultaneously the
motorcycle dynamics, unknown inputs and the road banking
angle.

V. CONCLUSION

In this paper, an estimation of out of plane motorcycle
model, road feature and unknown inputs (rider’s torque and



roll angle) have been proposed using an unknown input
observer associated with model inversion. The design method
takes into account the forward speed as a linear parameter
varying. Sufficient conditions for the existence of the estima-
tor are given in terms of linear matrix inequalities (LMIs).
The performance of the resulting observer has been evaluated
by experimental validation using a riding scenario. Simula-
tion results are provided which illustrate the effectiveness
of the proposed observer in estimating the states, unknown
input and road geometry, the observer result demonstrate that
the observer gives reliable estimations.

VI. APPENDIX

A. System’s parameters description and numerical values

TABLE I: motorcycle parameters

Parameters
M f , Mr , M mass of the front frame, the rear frame

and the whole motorcycle
K damper coefficient of the steering
Z f , Zr front and rear vertical forces
C f 1, Cr1 front and rear tire cornering stiffness
C f 2, Cr2 front and rear tire camber stiffness
σ f , σr coefficients of relaxation of the front

and rear pneumatic forces
j, h, k, e, l f , lr linear dimensions
i f y, iry polar moment of inertia of front and rear wheels
R f , Rr radius of front and rear wheels
ε caster angle
K damper coefficient of the steering mechanism
η mechanical trail
I f x, Irx, I f z, Irz front and rear frame inertias about X /Z axis
Crxz rear frame product of inertia, X and Z axis

TABLE II: Motorcycle parameters expressions

e33 = M,e35 = M f j+Mrh, e46 = M f ek+ I f z cosε , e34 = M f k ,
e44 = M f k2 + Irz + I f x sin2

ε + I f z cos2 ε , m44 =−M f kvx, e36 = M f e
e45 = M f jk−Crxz +(I f z− I f x)sinε cosε , m34 =−Mvx m45 =

i f y
R f

+
iry
Rr

,

m46 =
i f y
R f

sinεvx e55 = M f j2 +Mrh2 + Irx + I f x cos2 ε + I f z sin2
ε ,

e56 = M f e j+ I f z sinε ,m47 = l f , m48 =−lr , m51 = (M f j+Mrh)g,
m54 =−(M f j+Mrh+

i f y
R f

+
iry
Rr
)vx , m56 =−

i f y
R f

cosεvx ,
m52 = M f eg−ηZ f , m61 = M f eg−η ∗Z f ,m62 = (M f eg− etaZ f )sin(ε)
e66 = I f z +M f e2 , m64 =−(M f e+

i f y
R f

sinε)vx , m65 =
i f y
R f

cos(ε)vx,

m66 =−K,m67 =−η , m71 =
C f 2
σ f

vx, m73 =−
C f 1
σ f

, m74 =−
C f 1
σ f

l f ,

m72 =
(C f 1 cos(ε)+C f 2 sin(ε))

σ f
vx, m76 =

C f 1
σ f

η ; m77 =− 1
σ f

vx, m81 =
Cr2
σr

vx,

m83 =−Cr1
σr

, m84 =
Cr1
σr

lr , m88 =− 1
σr

vx,

l

E =



1 0 0 0 0 0 0
0 e33 e34 e35 e36 0 0
0 e34 e44 e45 e46 0 0
0 e35 e45 e55 e56 0 0
0 e36 e46 e56 e66 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, B̄=



0
0
0
0
0
1
0
0


D̄φ (ρ) =



0
0
0

m51
m61
m71
m81



D̄φr (ρ) =



0
mgh

0
m51
m61
m71
m81


M(ρ) =



0 0 0 0 1 0 0
0 0 m34 0 0 1 1
0 0 m44 m45 m46 m47 m48

m52 0 m54 0 m56 0 0
m62 0 m64 m65 m66 m67 0
m72 m73 m74 0 m76 m77 0

0 m83 m84 0 0 0 m88



Where, the matrix A(ρ) = E−1M(ρ), Dφ (ρ) = E−1D̄φ (ρ),
Dφr (ρ) = E−1D̄φr (ρ), B = E−1B̄.
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