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Abstract— Set-based predictions can ensure the safety of
planned motions, since they provide a bounded region which
includes all possible future states of nondeterministic models
of other traffic participants. However, while autonomous vehi-
cles are tested in urban environments, a set-based prediction
tailored to pedestrians does not exist yet. This paper addresses
this problem and presents an approach for set-based predictions
of pedestrians using reachability analysis. We obtain tight over-
approximations of pedestrians’ reachable occupancy by incor-
porating the dynamics of pedestrians, contextual information,
and traffic rules. In addition, since pedestrians often disregard
traffic rules, our constraints automatically adapt so that such
behaviors are included in the prediction. Using datasets of
recorded pedestrians, we validate our proposed method and
demonstrate its use for evasive maneuver planning of automated
vehicles.

I. INTRODUCTION

A. Motivation

Automated vehicles may endanger other traffic participants
in the event that they misjudge a traffic situation. In urban
environments in particular, vulnerable road users such as
pedestrians impose strict safety requirements. For example,
if autonomous vehicles do not consider that an approaching
pedestrian might try to cross the road at the last second (cf.
Fig. 1), a fatal collision could be inevitable.

To prevent such situations at an early stage, the future
motion of pedestrians needs to be accurately predicted [1],
[2]. Current probabilistic approaches are limited when pre-
dicting all feasible and legal future motion, since they are
not designed to enclose all behaviors given an uncertain
pedestrian model. In contrast, set-based predictions guarantee
that all planned motions are safe, even when traffic partici-
pants deviate from the most likely prediction [3]. Recently,
a prediction approach using reachability analysis to account
for any feasible future motion of other traffic participants in
a set-based fashion was proposed [4]. However, a set-based
prediction method for pedestrians considering both structured
and unstructured environments does not yet exist, making it
difficult to provide advanced safety systems which ensure
the safety of vulnerable road users.
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Fig. 1. The safety of the ego vehicle’s planned motions can be guaranteed
for given model assumptions by predicting all possible future behaviors of
the pedestrian, which may include crossing the road even when traffic rules
(e.g., a red light for the pedestrian) forbid such behavior.

B. Related Work

We review existing work on pedestrian prediction for
automated vehicles in unknown environments categorized by
whether they compute a) a single behavior, b) a probability
distribution of multiple behaviors, or c) a bounded set of
future behaviors. In order to apply such predictions, we
require the current state of pedestrians from sensor data,
which can be obtained as described in [5]–[7]; however, this
process itself is beyond the scope of this work.

a) Single behavior: The probability of whether pedes-
trians intend to cross the roadway is computed in [8]–
[12] using one or more of the following sources: motion
information (previous path and current position), situation
awareness (e.g., head pose), and contextual information (e.g.,
proximity to curb or intersection). Based on the predicted
intention, the most likely behavior can be inferred, while
other works directly compute a single trajectory [13], [14]
or the time until the pedestrian will most likely cross [15].

b) Probability distribution: Predicting only a single
behavior may suffice for short-term prediction; however,
since many possible maneuvers exist, it is beneficial to
compute a probability distribution of future behaviors by
considering the possible goals of pedestrians [16]–[20].

c) Set of future behaviors: To verify that one does not
collide with a pedestrian, a bounded set containing its pos-
sible future behaviors must be considered. While dynamic-
based models have been used in [21]–[23], set-based models
which integrate map-based information or traffic rules have
not yet been developed, to the best of our knowledge.



C. Contribution

This paper significantly extends previous work on set-
based predictions [4], [23] by considering not only motorized
traffic participants but also pedestrians, while exploiting
traffic rules based on the given environment map. This
extension will be available in the next version of our open-
source prediction tool SPOT1. More specifically, our method
is the first that can:

1) predict the feasible future motion of pedestrians in a
formal and set-based manner,

2) obtain tight over-approximative occupancies by mak-
ing use of formalized traffic rules and contextual
information,

3) explicitly consider measurement uncertainties in the
initial state of pedestrians, and

4) guarantee the safety of planned motions according to
our assumptions.

The remainder of this paper is organized as follows. Sec. II
introduces the required models and definitions, and Sec. III
explains the set-based prediction of pedestrians. Sec. IV
demonstrates our approach by using different datasets of
recorded pedestrians and by evasive planning for autonomous
vehicles. Finally, Sec. V concludes the paper.

II. PRELIMINARIES

A. Road Model

We model our environment in R2 using lanelets, which
are atomic, interconnected, and drivable road segments [24].
Lanelets are defined using a left and right bound represented
by a linearly interpolated list of points. As Fig. 1 shows,
we distinguish two types of lanelets: vehicular lanelets (i.e.,
roadways) and pedestrian lanelets (i.e., sidewalks/pavements
and crossings).

Definition 1 (Road networks)
We define the following types of road networks:

• The vehicular network is the union of all vehicular
lanelets and is denoted by Wveh ⊂ R2.

• The pedestrian network Wped ⊂ R2 is the union of all
pedestrian lanelets, i.e., sidewalks Wside and crossings
Wcross. We use Wprio

cross(t) to denote the crossings a
pedestrian is allowed to cross at time t (cf. Sec. III-
B).

• The forbidden network Wforbid := Wveh ∩ W{
ped is the

part ofWveh pedestrians are not allowed to enter (where
W{

ped denotes the complement of Wped, cf. Fig. 4). The
boundary of Wforbid is denoted by δWforbid.

Let a disk, i.e., a circular area, with center [cx, cy]T and
radius r be denoted as C

(
[cx, cy]T , r

)
:=
{

[sx, sy]T | (sx −
cx)2 +(sy− cy)2 ≤ r2

}
. If cx = cy = 0, we just write C(r).

The following predicates are defined using first-order logic
to argue about the position of pedestrians:

1Available at spot.in.tum.de

Definition 2 (Not intruding Wforbid)
The predicate notInWf(Xs, r) evaluates to true if all points
[sx, sy]T ∈ Xs ⊂ R2 intrude the vehicular network by at
most the distance r:

notInWf(Xs, r)⇔
(
Wforbid 	 C(r)

)
∩ Xs = ∅,

where 	 denotes the Minkowski difference defined for sets A
and B as A	B := (A{⊕B){ using the Minkowski addition
(A⊕ B := {a+ b | a ∈ A, b ∈ B}).

Definition 3 (Conforming to crossing priority)
The predicate confPrio(Xs, t) evaluates to true if none of the
points [sx, sy]T ∈ Xs are located in a forbidden crossing at
time t:

confPrio(Xs, t)⇔Wcross ∩Wprio
cross(t)

{ ∩ Xs = ∅.

B. Reachable Set of Pedestrians

The motion of a pedestrian can be described by the
differential equation

ẋ(t) = f
(
x(t), u(t)

)
, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, and t is
the time. The possible states and inputs are bounded by the
sets X and U , respectively. We denote the initial time by t0,
the final time by tf > t0, an input trajectory by u(·), and a
possible solution of (1) at time t by χ

(
t, x(t0), u(·)

)
.

Definition 4 (Reachable set)
The reachable set R ⊆ X of (1) is the set of states which
are reachable at time t from an initial set X 0 ⊆ X at time
t0 and subject to the set of inputs U:

R(t) =

{
χ
(
t, x(t0), u(·)

) ∣∣∣∣x(t0) ∈ X 0,

∀t? ∈ [t0, t] : χ
(
t?, x(t0), u(·)

)
∈ X , u(t?) ∈ U

}
.

Our state vector is x = [sx, sy, vx, vy]T , where sx and sy
denote the position, vx and vy the velocity, each in x- and
y-direction, respectively. We define the occupancy of a state
as:
Definition 5 (Occupancy of a state)
The operator occ(x) returns the set of points in the two-
dimensional Cartesian space occupied by the pedestrian in
state x due to its circular dimensions with radius rped:

occ(x) :=
{
Px⊕ C(rped)

}
,

where P is the projection matrix P = [I 0] ∈ R2×4, I the
identity matrix, and 0 a matrix of zeros, both with proper
dimensions. Given a set of states X , the operator is defined
as occ(X ) := {occ(x) |x ∈ X}.

To obtain the future occupancy of pedestrians efficiently,
we over-approximate their reachable occupancy:
Definition 6 (Over-approximative occupancy set)
Based on Def. 4 and Def. 5, the occupancy set O(t) over-
approximates the set of occupied points which are reachable
by the pedestrian: O(t) ⊇ occ

(
R(t)

)
.

http://spot.in.tum.de
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Fig. 2. The set of initial velocities, i.e., X̂ 0
v × X̂ 0

ϕ, is modeled by an
annulus sector, i.e., a circular ring sector.

Since an occupancy O(t) can be non-convex, we represent
it by a polygon, and since a collision check with the intended
trajectory of the ego vehicle requires an infinite number of
points in time to be checked, we compute occupancies for
consecutive time intervals τk = [tk, tk+1] ⊆ [t0, tf ] with
time step size ∆t = tk+1 − tk.

The initial set X 0 in Def. 4 contains measurement uncer-
tainties. Using a polar coordinate system to describe vx and
vy by the radius v and the polar angle ϕ, we introduce the
following initial sets:

X̂ 0
s := C

(
s0,∆s

)
, (2)

X̂ 0
v := [v0 −∆v, v0 + ∆v], (3)

X̂ 0
ϕ := [ϕ0 −∆ϕ, ϕ0 + ∆ϕ], (4)

where s0 := [sx0
, sy0 ]T , and ∆s, ∆v , and ∆ϕ denote the

measurement uncertainty of the corresponding variable. As
Fig. 2 shows, the set of initial velocities is bounded by
an annulus sector. The initial set X̂ 0 is constructed by the
Cartesian product of the partial initial sets X̂ 0 := X̂ 0

s ×X̂ 0
v ×

X̂ 0
ϕ; the set X̂ 0 in Cartesian coordinates is denoted by X 0.

The initial occupancy is O0 := occ(X 0), which accounts for
uncertainties in the pedestrian’s dimensions by choosing rped
as the maximum of the measured radii.

III. PREDICTION OF PEDESTRIANS

To efficiently compute a tight over-approximative occu-
pancy of (1), we use two types of occupancies: 1) the
occupancy Odyn(t) considering the dynamics of the pedes-
trian and 2) the occupancy Orule(t) considering possible
states according to traffic rules, as described in Sec. III-A
and Sec. III-B, respectively. Then, the over-approximative
occupancy is the intersection of both over-approximations:

∀τk ⊆ [t0, tf ] : O(τk) = Odyn(τk) ∩ Orule(τk). (5)

A. Dynamic-Based Occupancy

We use a kinematic model for pedestrians:
Definition 7 (Dynamic model of pedestrians)
The dynamics of a pedestrian are described by a velocity-
and acceleration-bounded point mass:

s̈x = ux, s̈y = uy, (6a)√
|ux|2 + |uy|2 ≤ amax, (6b)√
|vx|2 + |vy|2 ≤ vmax, (6c)

where ux and uy denote the acceleration input in the x-
and y-direction, respectively, amax the maximum allowed
acceleration, and vmax the maximum allowed velocity.

To efficiently obtain the occupancy, we do not directly
perform reachability analysis on (6), but use the approach
proposed by [23]: We separately compute an acceleration-
constrained occupancy Oacc(t) considering only the con-
straint (6b) and a velocity-constrained occupancy Ovel(t)
considering only the constraint (6c), as explained in Sec. III-
A.1 and III-A.2, respectively.

1) Acceleration-constrained occupancy:

Proposition 1 (Reachable positions Rpos
acc(t) for point in time)

The reachable positions Rpos
acc(t) of (6a) with (6b) are

Rpos
acc(t) = Γhom(t)X 0 ⊕ Γinp(t)U ,

where

Γhom(t) =

[
1 0 t 0
0 1 0 t

]
, Γinp(t) =

1

2
t2
[
1 0
0 1

]
.

Proof: Let us first write (6a) in state-space form:
ṡx
ṡy
v̇x
v̇y


︸ ︷︷ ︸
ẋ

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

A


sx
sy
vx
vy


︸ ︷︷ ︸
x

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

B

[
ux
uy

]
︸ ︷︷ ︸
u

. (7)

In general, the exact reachable set of linear systems cannot be
computed, except for when A is nilpotent or the eigenvalues
are purely real or imaginary [25]. Since A is nilpotent (A2

is a matrix of zeros), we can compute the exact reachable
set as presented in [26, Sec. 3.2]:

Racc(t) = eAtX 0 ⊕
∞⊕
i=0

Aiti+1

(i+ 1)!
BU

nilpotence
= (I +At)X 0 ⊕ (BUt)⊕ 1

2
At2BU .

Since we are only interested in the reachable set of the
positions, we multiply the above solution with the projection

x

y
Γhom(t)X 0

Γinp(t)U

Rpos
acc(t)

Fig. 3. The reachable positions of the acceleration-constrained model
Rpos

acc(t) are bounded by the Minkowski addition of Γhom(t)X 0 with
Γinp(t)U (cf. Prop. 1).



TABLE I
DEFINITION OF THE OCCUPANCIES BASED ON FORMALIZED TRAFFIC RULES, WHICH ARE COMPUTED DEPENDING ON THEIR BOOLEAN VARIABLE.

Constraint Boolean Description Traffic rule [29] Occupancy

Cprio bprio Within Wcross, pedestrians are allowed to
cross if they have priority over vehicular
traffic, i.e., at pedestrian crossings, at inter-
sections when pedestrians have green traffic
lights, and at intersections without traffic
lights when vehicles take a turn2.

20§6(b), 21§2 Oprio(t) =

{
Wprio

cross(t), bprio,

Wcross, ¬bprio.

Cstop bstop When (carelessly) stepping on the road-
way outside Wcross (i.e., onto Wforbid), the
pedestrian immediately slows down with
astop to come to a stop as soon as possible
in order to not impede vehicular traffic.

20§6(a,c) Ostop =


∅, bstop,

C
(
s0, rstop + rped

)
, ¬bstop ∧ notInWf(O0, 0),

C
(
pW (s0), rstop + rped

)
, ¬bstop ∧ ¬notInWf(O0, 0).

Cperp bperp Crossing the roadway outside Wcross is
not allowed. If crossing nevertheless, the
shortest path of width ξperp, which is per-
pendicular to the driving direction, must be
chosen.

20§6(c,d) Operp =

{
∅, bperp,

Wperp ∩Wforbid, ¬bperp.

Cslack bslack Walking on the roadway is not allowed;
Wforbid may be entered by the margin ξslack
only if no usable sidewalk is provided.

20§2(a), 20§3,
20§4

Oslack =

{
∅, bslack,(
W{

forbid ⊕ C(ξslack)
)
∩Wforbid, ¬bslack.

matrix P (cf. Fig. 3):

Rpos
acc(t) = PRacc(t) =

[
1 0 t 0
0 1 0 t

]
︸ ︷︷ ︸

Γhom

X 0 ⊕ 1

2
t2
[
1 0
0 1

]
︸ ︷︷ ︸

Γinp

U .

Next, we consider the reachable set for time intervals.
Proposition 2 (Reachable positions Rpos

acc(τk) for time interval)
The reachable positions of the acceleration-bounded model
for a time interval τk = [tk, tk+1] are

Rpos
acc(τk) = conv

(
Γhom(tk)X 0,Γhom(tk+1)X 0

)
⊕ Γinp(tk+1)U ,

where conv(A,B) returns the convex hull of the sets A and
B.

Proof: The proof follows directly from [27, Alg. 1],
where the matrix F in that algorithm is a matrix of zeros
due to the nilpotence of A.

Finally, the acceleration-constrained occupancy for a sin-
gle point in time is Oacc(t) = occ

(
Rpos

acc(t)
)

and Oacc(τk) =
occ
(
Rpos

acc(τk)
)

for a time interval.
2) Velocity-constrained occupancy: Up until now, we

have ignored the maximum velocity constraint in (6c). Let us
first determine the earliest point in time when the maximum
velocity is reached:

vmax = v0 +∆v+amaxtvmax
⇔ tvmax

=
vmax − (v0 + ∆v)

amax
.

When starting at the origin with the maximum velocity in all
directions, the reachable set is a disk centered at the origin

2In order to automatically consider that pedestrians have priority over
turning vehicles at intersections, it is necessary to compute this occupancy
depending on the intended motion of the ego vehicle.

with radius vmax(t− tvmax
). Thus, an over-approximation of

the reachable positions considering the velocity constraint
for t > tvmax

is

Ovel(t) = Oacc(tvmax
)⊕ C

(
vmax(t− tvmax

)
)
. (8)

Due to the monotonic growth of C
(
vmax(t − tvmax

)
)
, it

follows that C
(
vmax(tk+1 − tvmax

)
)
⊇ C

(
vmax(tk − tvmax

)
)
,

and thus

Ovel(τk) = Oacc(tvmax)⊕ C
(
vmax(tk+1 − tvmax)

)
. (9)

Since Ovel(t) is not required for t ≤ tvmax , the overall
dynamic-based occupancy is

Odyn(τk) =

{
Oacc(τk), tk ≤ tvmax ,

Oacc(τk) ∩ Ovel(τk), tk > tvmax .
(10)

B. Rule-Based Occupancy

We incorporate formalized traffic rules into our prediction
[28]. As a legal source, we use the Vienna Convention
on Road Traffic [29]. We assume that pedestrians adhere
to traffic rules and do not obstruct vehicular traffic [29,
7§1]. However, if pedestrians violate rules, we have to take
necessary precautions to avoid endangering pedestrians [29,
21§1].

Pedestrians are generally not allowed to leave the pedes-
trian network and enter the roadway [29, 20§2]. Since this
rule has different cases of violations, we deduce four atomic
constraints described in Tab. I; these constraints each have a
Boolean variable, denoted by b, which allows us to enable
and disable this constraint individually.

The occupancies resulting from these constraints are il-
lustrated in Fig. 4 and are computed as presented in Tab. I,
where we use the following variables: The distance required



TABLE II
THE CONSTRAINT MANAGEMENT DEACTIVATES OR ADAPTS THE CONSTRAINTS IF UNDERLYING ASSUMPTIONS ARE VIOLATED.

Constraint Parameter with default values Condition adapting the constraint variable

Cprio — bprio ⇔ confPrio(O0, t0) ∧ bperp

Cstop astop = 0.6 m/s2 bstop ⇔ ∀t ∈ [t0, tf ] :
(
Odyn(t) ∩ Orule(t)

)
	 C(rped) 6= ∅

Cperp ξperp = 2.0 m bperp ⇔ notInWf
(
O0,max(ξslack, rstop + rped)

)
∧
(
bstop ∨ ∀t ∈ [t0, tf ] :(

Odyn(t) ∩ Orule(t)
)
	 C(rped) 6= ∅

)
Cslack ξslack = 1.0 m bslack ⇔ notInWf(O0, 0)

Camax amax = 0.6 m/s2, ∆amax = 0.05 m/s2 amax ← max(amax, a0 + ∆a + ∆amax )

Cvmax vmax = 2 m/s, ∆vmax = 0.1 m/s vmax ← max(vmax, v0 + ∆v + ∆vmax )

for the pedestrian to stop with deceleration astop from its
current velocity is rstop := 1

2astop
(v0 + ∆v)

2 + ∆s. The
point on δWforbid closest to the center of O0 is pW(s0) :=
argmin
p∈δWforbid

‖p− s0‖2 (cf. Fig. 4), and the unit vector at pW(s0)

tangential to δWforbid is denoted by tW(s0). We choose s0

as the center of Ostop, since we assume that pedestrians
immediately slow down to avoid entering the road (i.e.,
entering Wforbid); however, for a pedestrian already located
inWforbid, we assume that the pedestrian had started slowing
down when entering Wforbid, and thus choose pW(s0) as the
center of Ostop (cf. Tab. I). For Operp, we compute the area
perpendicular to the roadway by

Wperp :=

{[
sx
sy

] ∣∣∣∣ ∥∥∥∥ tW(s0)T
([
sx
sy

]
− pW(s0)

)∥∥∥∥ ≤ ξperp

2

}
,

where the parameter ξperp describes the width of this corridor
(cf. Fig. 4).

Finally, we define the rule-based occupancy Orule(t) as
the area of the whole vehicular and pedestrian network
respecting the constraints of Tab. I:
Definition 8 (Rule-based occupancy)
Using the partial occupancies from Tab. I, the rule-based
occupancy of a pedestrian is

Orule(t) =Wside ∪ Oprio(t) ∪ Ostop ∪ Operp ∪ Oslack.

Note that all partial occupancies of Orule(t), except Oprio(t),

ξperp

Operp

O0

OstopWforbid

Ostop

Oslack ξslack

O0

O0

pW (s0)

Wcross

Wside

Fig. 4. Visualization of the occupancies based on formalized traffic rules
of Tab. I.

are constant over the prediction horizon, and Wside, Wcross,
and Oslack can be precomputed offline for given road net-
works.

C. Constraint Management

The prediction of each pedestrian is based on traffic rules,
which are represented by the constraints introduced in Tab. I.
The Boolean variables are initialized with b = true and then
set according to the conditions listed in the last column of
Tab. II. Thus, constraints are automatically deactivated as
soon as assumptions on the traffic rules are violated. Let
us explain the constraint management for Cstop and Cperp in
more detail. For Cstop, pedestrians are anticipated to step
on the roadway if they cannot stop before; in this case,
bstop = false. The condition of Cperp further anticipates that
the pedestrian crosses the road if stopping within Ostop is not
possible or if Wforbid is intruded by more than the maximum
of ξslack and rstop + rped; in these cases, bperp = false.

Note that the proposed conditions for the constraints are
deduced from traffic rules, but may be adapted to obtain more
or less conservative behavior, e.g., a sophisticated intention
prediction may directly set bperp and bslack to false (and
increase ξperp and ξslack) for a child playing at the side of the
road. Thus, our approach offers the possibility of deactivating
constraints based on the specifications of users while still
remaining formally valid.

For the dynamic-based occupancy, the constraints (6b) and
(6c) are not deactivated if we measure higher values; instead,
their maximum allowed values are adjusted as presented in
the last two rows of Tab. II, where the parameters ∆amax

and
∆vmax are thresholds to anticipate that the measured values
might be exceeded and thus, the updated maximum values
will not be directly violated again.

IV. EVALUATION WITH REAL-WORLD DATA

We evaluate our approach using recorded data with mea-
surement noise obtained from a moving vehicle [30]. Fig. 5
shows the view from the front camera of the autonomous
vehicle and three tracked pedestrians crossing the street.
The default values for the constraints in our prediction are
listed in Tab. II. For the dynamic-based occupancy, the
maximum acceleration and velocity must be parametrized.
As in [23], we use as the default amax = 0.6 m/s2 (based
on a labeled video source [31]) and vmax = 2.0 m/s (which



Fig. 5. View from the front camera of the autonomous vehicle approaching
three pedestrians crossing the street. The recorded data is provided by [30].
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(b) Odyn(τ9).

Fig. 6. The predicted dynamic-based occupancy contains the recorded
occupancy of the three pedestrians at the crossing of Fig. 5.

is the transition speed between walking and running and is
suggested by [32]). One can also choose different values,
e.g., from extensive physiological experiments on walking,
running, and stopping [33]. Our results have been obtained
using MATLAB 2016a on a machine with a 2.6 GHz Intel
Core i7 processor with 20 GB 1600 MHz DDR3 memory.

A. Conformance of Dynamic-Based Occupancy

We validate our dynamic-based occupancy by checking
whether our model over-approximates the real behavior of
walking-only pedestrians, using ∆t = 0.1 s, tf − t0 =
2.0 s, and rped = 0.35 m. From [30], we predict 11 pedes-
trians for a total of 7008 s with ∆s ∈ [0.19 m, 0.96 m],
∆v ∈ [0.21 m/s, 1.5 m/s], and ∆ϕ ∈ [0.21 rad, 0.88 rad].
We achieve a coverage of 100 %, since all recorded oc-
cupancies, i.e., ground-truth trajectories without uncertainty
enlarged by rped, were fully contained within the predicted
Odyn(τk). As an example, Fig. 6a depicts our result of the
three pedestrians from Fig. 5. A snapshot in Fig. 6b for
τ9 = [0.9 s, 1.0 s] shows that our set-based prediction is not

unreasonably conservative. Note that our prediction remains
over-approximative for longer time horizons (tested for up
to 5.0 s).

The computation time for each pedestrian was 23 ms;
however, since the set intersection in (10) requires the most
resources, the prediction only required 5 ms for ∆t = 0.5 s.

Furthermore, we also validated our model using ground
truth trajectories of 389 pedestrians from the publicly avail-
able BIWI Walking Pedestrians dataset of a street scene
in Zurich, Switzerland [31]. Again, we achieved 100 %
coverage using ∆s ∈ [0.15 m, 0.3 m], ∆v = 0.15 m/s, and
∆ϕ ∈ [0.2 rad, 0.5 rad].

B. Evaluation of Rule-Based Occupancy

Next, we demonstrate the influence of the constraints
deduced from the traffic rules. As shown in Fig. 7a, the
pedestrian just stepped onto the roadway (with v0 = 1.40 m/s
at t0 = 0 s). According to Tab. II, bslack = false and since
∃t ∈ [t0, tf ] :

(
Odyn(t)∩Orule(t)

)
	C(rped) = ∅, bstop = false.

The resulting occupancy (Oslack∪Ostop)∩Odyn(t) restricts the
pedestrian from completely crossing the street. For tf−t0 =
3.0 s, the computation time was 66 ms for ∆t = 0.1 s and
was reduced by a factor of 3 for ∆t = 0.5 s.

When the initial state is updated at t0 = 0.5 s, the
pedestrian had made another step onto the roadway (v0 =
1.58 m/s, cf. Fig. 7b). Since the constraint management again
detects that the occupancy is empty, bperp = false and we
predict the pedestrian crossing the street perpendicular to
the driving direction, as shown in Fig. 7b.

C. Application to Evasive Motion Planning

To demonstrate how the obtained prediction can be used
for evasive trajectory planning of autonomous vehicles, we
make use of a trajectory planner based on convex opti-
mization techniques [3]. The scenarios presented next are
available in the CommonRoad benchmark suite including all
simulation parameters3 [34].

3commonroad.in.tum.de
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Fig. 7. The rule-based occupancy intersected with Odyn(t) for different
stages of a pedestrian crossing the roadway.

https://commonroad.in.tum.de
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Fig. 8. By making use of our set-based prediction, planned maneuvers
of the ego vehicle are guaranteed to be collision-free. As an example, we
show an evasive trajectory and the predicted occupancies with bstop = false
for t ∈ [0 s, 1.8 s].

The ego vehicle in our first scenario (cf. Fig. 8, Com-
monRoad ID: S=ZAM Intersect-1 1 S-1:2018a) is approach-
ing the intersection with a velocity of 13.8 m/s, while the
pedestrian approaches a forbidden crossing (without priority
due to a red traffic light) with v0 = 1.35 m/s. Similar to
the example in Sec. IV-B, the pedestrian cannot stop before
entering the roadway and thus is predicted with bstop = false.
We plan an evasive maneuver which involves swerving to
the left adjacent lane to avoid a collision. The obtained
evasive trajectory is guaranteed to be collision-free given our
assumptions (cf. Fig. 8).

Furthermore, the prediction can be used to proactively
evaluate evasive options so that the number of available
evasive maneuvers is increased. As an example, we consider
the situation 0.5 s later when the pedestrian has already
entered the forbidden crossing (v0 = 1.40 m/s), implying
bprio = false (cf. prediction in Fig. 9; CommonRoad ID:
S=ZAM Intersect-1 2 S-1:2018a). Considering the current
velocity of the ego vehicle, a collision with the crossing
pedestrian can only be avoided by swerving to the left
adjacent lane (similar to the maneuver of the previous
scenario, cf. Fig. 8). However, this may not be an option
in the presence of other vehicles. Thus, we simultaneously
plan evasive trajectories for different velocities of the vehicle.
As a result, we observe that the ego vehicle is still able to
avoid a collision using emergency braking for a velocity of
12.5 m/s (cf. trajectory in Fig. 9).

V. CONCLUSIONS

This paper proposes a formal prediction of the possible and
legal future motion of pedestrians in an over-approximative,
set-based fashion. By considering contextual information and
the traffic rules pedestrians should adhere to, the prediction
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Fig. 9. The pedestrian has just entered the crossing and is predicted with
bstop = bprio = false and tf − t0 = 5.0 s. If the ego vehicle reduces its
speed from 13.8 m/s (in Fig. 8) to 12.5 m/s, it is also able to perform a
collision-free braking maneuver.

is significantly improved compared to a solely dynamical
model. Nevertheless, our approach anticipates that pedestri-
ans disregard rules and automatically adapts the prediction
to ignore violated rules. We have validated our method using
recorded motions of pedestrians and highlighted its use for
evasive maneuver planning.

Future work includes further studies on pedestrian behav-
ior to validate and parameterize the constraints based on the
traffic rules. Furthermore, we are currently preparing real-
world vehicle experiments for evasive maneuver planning
considering pedestrians crossing the road.
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