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Abstract— Train-borne localization systems as a key compo-
nent of future signalling systems are expected to offer huge
economic and operational advances for the railway trans-
portation sector. However, the reliable provision of a track-
selective and constantly available location information is still
unsolved and prevents the introduction of such systems so far.
A contribution to overcome this issue is presented here. We
show a recursive multistage filtering approach with an increased
cross-track positioning accuracy, which is decisive to ensure
track-selectivity. This is achieved by exploiting track-geometry
constraints known in advance, as there are strict rules for the
construction of railway tracks. Additionally, compact geometric
track-maps can be extracted during the filtering process which
are beneficial for existing train localization approaches. The
filter was derived applying approximate Bayesian inference.
The geometry constraints are directly incorporated in the filter
design, utilizing an interacting multiple model (IMM) filter and
extended Kalman filters (EKF). Throughout simulations the
performance of the filter is analyzed and discussed thereafter.

I. INTRODUCTION

A reliable location information is indispensable for the
safe execution of train rides. As rail guidance and low
friction are inherently existent in the railway system it is
not safe to operate trains on sight. Instead, the control
relies on central instances, taking the location information
of all trains into account. For that, train localization is a
safety-critical issue within the overall signalling system.
At the moment, this localization heavily relies on track-
side infrastructure that provides information on whether or
not a specific section on the track, which may be several
kilometers long, is occupied by a train. This localization
principle has proven to be successful, although, by design it
suffers either from high costs or a low track capacity [1]. For
this reason and because of advances in sensor technology,
especially in the development of micro-electro-mechanical
systems (MEMS) inertial measurement units (IMU) and the
further deployment of global navigation satellite systems
(GNSS), the development of train-borne localization systems
has gained more interest in recent years [2]. One of the main
challenges for train-borne localization systems is to ensure
a track selective localization result on parallel tracks, which
are typically installed in a distance of 4 m. In addition, the
functionality of such a system has to be demonstrated in the
sense of EN 50126, as it is highly safety-critical. Therefore,
it has to fulfill the highest standards in terms of reliability,
availability, maintainability and safety (RAMS) [3]. These
two circumstances ultimately lead to the reason why there is
no market-ready solution available so far.
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Fig. 1. Exemplary track, consisting of the three standard track geometries:
straight, transitional arc and circular arc. The individual parameters for the
track elements 1 – 9 are listed in Tab. I.

Here we aim at presenting a new train localization
approach exploiting track-geometry constraints to increase
the positioning accuracy. We utilize the fact that railway
tracks can only consist of a sequence of the following three
geometric shapes: straight, transitional arc and circular arc
as demonstrated in Fig. 1 [4]. By continuously identifying
the current track geometry and incorporating this knowl-
edge in the estimation process of the train’s position, we
will demonstrate that especially the cross-track positioning
accuracy can be increased significantly. In addition, the
identified track-geometry parameters can be used as a compact
geometric track-map which can be utilized by several already
existing train localization algorithms. According to our best
knowledge, this is the first approach which explicitly takes the
sequence and shape of different track geometries into account,
although the idea of exploiting special railway features to
achieve better positioning results has been known before. The
feature probably taken advantage of most often, is the fact
that the position of a railway vehicle is constrained to its track.
Thus, if a track map is available, the 2-D localization problem
can be reduced to a 1-D problem. For example, in [5] a map-
matching algorithm solely based on GNSS measurements is
presented. However, as shown in [6] better performances can
be achieved by explicitly considering the track constraints
in the filter design, as it is done in [7]–[9] in different ways.
The track constraints also can be exploited to improve GNSS
performance, both, in the sense of the absolute positioning
accuracy and in terms of integrity monitoring [10]–[12].

It is important to notice the different meanings of track-
constraint, used in previous literature, and track-geometry
constraint that we apply here. The former relates to exploiting
a given track map to constrain possible positioning solutions
to fixed tracks, while the latter is related to our idea of going
one step further by directly incorporating track geometry
constraints into the position calculation.

Team DPUB
Schreibmaschinentext
© 2018 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Available under only the rights of use according to UrhG.



TABLE I
PARAMETERS OF THE TRACK SHOWN IN FIG. 1.

Track element 1 2 3 4 5 6 7 8 9

Shapea st ta ca ta st ta ca ta st

Length L in m 1000 231 476 231 1000 108 206 108 1000

Length Lstart in m 0 1000 1231 1707 1938 2938 3046 3252 3360

Radius r in m ∞ — 900 — ∞ — 300 — ∞
Speed vmax in km/h 160 130 130 130 160 75 75 75 160

a st: straight, ta: transitional arc, ca: circular arc

II. CHARACTERISTICS OF RAILWAY TRACKS

In order to better understand the train localization algorithm
presented later, we start with a brief survey of the most
important features of railway tracks, based on [4].

A. Construction Principles

Railway tracks should be constructed in a way to ensure a
safe and comfortable journey at the highest speed possible.
Therefore, one of the main objectives is to minimize the
occurring accelerations, as they are perceived as unpleasant
by the passengers very quickly. Great changes in acceleration
occur e. g. when changing from a straight line to a circular arc
where the radius changes abruptly. To mitigate such unwanted
effects there are clear rules that regulate the sequence and
the realization of certain track geometries.

B. Standard Track Geometries

Typical railway tracks only consist of the following three
geometric shapes: straight, transitional arc and circular arc.
This sequence is fixed when entering a curve and repeated the
other way round when the curve is left again. The transitional
arc ensures a smooth transition from a straight line with
radius rst =∞ to the circular arc’s radius rca > 0 to reduce
the before mentioned impact when entering or leaving a curve.
By additionally elevating the outer rail in curves the comfort
and maximum curve speed can be further increased.

C. Curvature Profile

In the railway domain it is convenient to use the curvature
c = 1

r instead of the radius r as design parameter, as the
radius often appears in the denominator throughout many
calculations.

In Fig. 2 the curvature profile corresponding to the track
shown in Fig. 1 is drawn against the path length l of the track.
The track consists of a total of nine elements, as numbered in
the figures, realizing two turns with different lengths and radii,
according to the scheme described above. The exact track
parameters can be found in Tab. I. From the linear curvature
transitions in the sections 2, 4, 6 and 8, it can be seen that
the transitional curve is realized by a clothoid, which is the
most common case.

III. PROBABILISTIC PROBLEM FORMULATION

Train-borne localization requires a strict probabilistic
treatment of all the underlying data to be able to appropriately
cope with uncertainties [6]. For that a dynamic Bayesian
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Fig. 2. Curvature profile c of the track depicted in Fig. 1 plotted against
the track’s path length l.

network (DBN) will be specified to gain more insight into
the localization problem at hand. Based on the DBN, a
general posterior can be formulated, serving as basis for
the development of a Bayesian filter. However, here we want
to propose an alternative filtering approach by slicing up
the original DBN into three successive DBNs, inspired by
the structure of the underlying model. Thus, our filter is
derived by approximately applying Bayesian inference. The
consequences will be discussed in due course.

A. Dynamic Bayesian Network

A DBN visualizes the dependencies of multiple random
variables over time. Thereby, it represents the preliminary
assumptions on how a considered joint probability density
function (pdf) can be factorized into multiple conditional
distributions [13]. The DBN related to the problem at hand
is drawn on the left in Fig. 3. It represents a first-order
hidden Markov model, with the hidden train states x and the
observable measurements z extended by a mode switching
variable M and the track-geometry parameters g. The mode
switching variable M ∈ {Mi}ri=1 allows different models to
be applied, each matched to a special track geometry, for the
transition of the train states and the geometry parameters. By
separately modeling the train states and the track-geometry
parameters the connection between the two becomes obvious.
As the track geometry can be seen as the given source of the
train’s motional behavior, we choose x to be dependent on g.
It is also conceivable to model this dependability the other
way round, although, the physical explanation then becomes
less intuitive. In fact, our modeling represents the main idea
of our localization algorithm, that is, to improve the position
estimate by taking knowledge of the track geometry into
account explicitly.

B. General Posterior

The inference task that needs to be solved is to estimate
the joint pdf p(xk,Mk, gk|z1:k)1. Through marginalization

1The subscripts indicate the discrete time or time span we refer to, e. g.
by writing z1:k we refer to all measurements in the time span from t = T
to t = kT , with sampling time T and k ∈ Z.
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Fig. 3. Approximation scheme for the posterior (1) by slicing the original DBN into structural sub-DBNs, enabling the implementation of three successive
filters. The estimation results E [•] of the individual filter stages are marked by different superscripts, e. g. a quantity q estimated in the first stage is marked
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and application of the product rule, the final posterior

p(xk|z1:k)=

r∑
i=1

∫
gk

p(xk, gk|Mi,k, z1:k)p(Mi,k|z1:k)︸ ︷︷ ︸
“multiple model estimation”

+
“parameter estimation”

dgk

=

r∑
i=1

∫
gk

p(xk|Mi,k, gk, z1:k)p(Mi,k|z1:k)

× p(gk|Mi,k, z1:k) dgk
(1)

can be extracted. For a Bayesian filter implementation the
posterior (1) has to be factorized in a recursive form,
considering the structure of the DBN. In this work an
alternative approach, approximating the posterior by three
successive filters, is proposed.

C. Posterior Approximation

By investigating the DBN’s or the posterior’s (1) structure it
becomes obvious that we have to deal with a multiple-model
problem, extended by an underlying parameter estimation
process [14]. That is what motivates us to propose an
approximate solution for (1) by a structure of three successive
filters. Therefore, the original DBN is split up into three DBNs
as shown on the right in Fig. 3, which can be calculated
successively by separate filters. The first DBN (shaded
blue) represents the multiple-model structure induced by
the different track geometries, where the mode switching
behavior is now only taken into account for the train states
x. In this stage the underlying mode (track geometry) and
the train’s motional states are to be estimated, given the
sensor data zx, simultaneously. Then (shaded red) the track-
geometry parameters are estimated for the most likely mode
M̂ = arg maxM (p(M |zx)) , assuming a first-order hidden
Markov model, at which the estimated train states x̂ serve
as measurement data zg = subset(x̂). Finally, in the third
stage (shaded green), again assuming a first-order hidden
Markov model, the position p̄ of the train is calculated.
Therefore, the previously estimated parameters g̃ are used
in the transition model from pk−1 to pk and the train states
serve as measurement data zp = subset(x̂) again.

Slicing up the originally presented DBN as described be-
fore, and only propagating the most probable track geometry

M̂ , makes it possible to use well-known filter techniques in
each step. However, this approach is not exactly relying on
Bayesian inference. For example, this can be seen from the
fact that the knowledge about the parameters is not used to
improve the current mode or train state estimation process in
turn within each time slice.

IV. LOCALIZATION FILTER IMPLEMENTATION

In this section the implementation of the filter approach
presented in Sec. III-C will be explained. In doing so, we start
from the following system specifications: For the moment,
planar single tracks without any branching tracks will be
assumed. The track is unknown, hence, there is no track
map given in advance. Furthermore, a GNSS receiver and an
IMU are assumed to be the sensors available, providing the
position pGNSS = ( ξGNSS, ηGNSS )

T in the navigation plane
as well as the along-track acceleration aIMU and the yaw rate
wIMU of the train relative to the navigation coordinate system.
The definitions of the various coordinate systems together
with the train’s track are shown in Fig. 4.

A. Track-Geometry Extraction

In the first stage the track geometry as well as the
train’s motional states have to be estimated (c. f. Fig. 3, blue

yT

xT

θ

ξ

η

Fig. 4. Definition of the navigation coordinate system (blue) and the
train coordinate system (brown). θ is the train’s orientation angle, measured
between the ξ-axis and the velocity vector in along-track direction. The
track is shown in red. The dot marks the track’s starting point (l = 0) and
the arrow the direction of positive counting.



shaded area). As mentioned before, this relates to a multiple-
model problem whose optimal solution is intractable. This is
because it requires to match a filter to each possible mode
history at each time step, leading to rk filters at time step
k, for example. There are different suboptimal approaches
from which we chose the interacting multiple model (IMM)
filter. It is characterized by its reasonable computational
prerequisites, but still yielding adequate results compared
to other approaches [14].

As typical tracks consist of straight and circular arc
elements most of the time, we will focus on identifying these
two. Therefore, at least two models are needed to distinguish
between the linear and the circular motion, respectively.
A third fall-back model is supplemented additionally to
make the distinction even more accurate by covering clutter
situations where a precise assignment of the two models
mentioned before is not justified, e. g. on transitional arcs.
For each model Mi a separate filter has to be set up, solving
for the train’s motional states x given the measurements
zx. We will use an extended Kalman filter (EKF) for
each model with x = ( ξ, η, d, v, a, θ, w )

T and zx =
( ξGNSS, ηGNSS, aIMU, wIMU )

T
, in which d represents the

traveled distance from the start, v the train’s speed and θ
the train’s orientation angle, measured between the ξ-axis
and the velocity vector in along-track direction. The various
discrete time, dynamic stochastic system equations xk+1 =
fx,i(xk) + Γvx,i,k with sampling time T , zero-mean, white
Gaussian noise vectors vx,i,k ∼ N (0, diag(σ2

i,ACC, σ
2
i,TR))

and their corresponding vector gain

Γ =

(
1
2T

2 1
2T

2 1
2T

2 T 1 0 0
0 0 0 0 0 T 1

)T

(2)

are given below. The standard deviations σi,ACC and σi,TR are
design parameters, representing the acceleration increment
and the turn rate increment over one sampling period that
should be taken into account in the i-th model, respectively
[14].

1) Straight-track model: While the train is moving on a
straight track segment its orientation θ stays constant
and its motion can be modeled by assuming constant
acceleration (CA) [15], which results in

fx,1 =



ξk + vkTcos(θk) + 1
2akT

2cos(θk)

ηk + vkTsin(θk) + 1
2akT

2sin(θk)

dk + vkT + 1
2akT

2

vk + akT

ak

θk

0


. (3)

2) Circular-arc track model: Extending the former model
with an additional constant turn rate assumption, al-
together known as constant turn rate and acceleration
(CTRA) assumption [15], the movement on a circular

arc can be described by2

fx,2 =



ξk + ∆ξk

ηk + ∆ηk

dk + vkT + 1
2akT

2

vk + akT

ak

θk + wkT

wk


, (4)

with

∗∆ξk = 1
w2

k
[(vkωk + akωkT ) sin(θk + ωkT )

+ akcos(θk + wkT ) (5)
− vkωksin(θk)− akcos(θk)] , (6)

∆ηk = 1
w2

k
[(−vkωk − akωkT ) cos(θk + ωkT ) (7)

+ aksin(θk + wkT ) (8)
+ vkωkcos(θk)− aksin(θk)] . (9)

3) Fall-back model: The fall-back model has the same
structure as the circular-arc model

fx,3(xk) = fx,2(xk) (10)

because the latter is already capable of describing
all occurring types of motion. The desired fall-back
behavior is achieved by applying a much larger process
noise vx,3 compared to the other two models, through
the choice of σ3,TR � σ{1,2},TR.

The common measurement model is given by

zx,k =

 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

xk +wx,k, (11)

with the zero-mean, white Gaussian noise vector wx,k ∼
N (0,Rx,k) and its corresponding measurement covariance
matrix Rx,k.

Once an EKF is set up for each model, only the time-
invariant model transition probability matrix Π, defining the
probabilities pij of a transition from model i to model j, has
to be chosen in order to be able to implement the IMM filter.
The various pij are assumed to be known in advance and
represent design parameters of the IMM filter. For the concrete
implementation of the EKF’s and the IMM’s algorithms,
respectively, we would like to refer to the literature, e. g.
[14].

B. Parameter Extraction

The next step is to identify the track-geometry parameters
(c. f. Fig. 3, red shaded area) for the most likely model M̂k =
arg maxMk

(p(Mk|zx,1:k)) calculated before. The estimation
task can be formulated in the form zg = hg(g) +wg with
observations zg , nonlinear measurement function hg , desired
static parameters g, and wg ∼ N (0,Rg). This problem can

2In the case of very small turn rates w, we switch from the CTRA model
to the CA model to avoid numerical inconsistencies.



be interpreted as a nonlinear least squares (LS) problem or a
filtering task with a static system function and without any
process noise. In the sense of the latter, we again implement
different EKFs for each track geometry [16]. Thereby, some
of the previously calculated train’s motional states serve
as observation data zg,k = subset(x̂k). The parameters to
be estimated for each track geometry are its starting point
( ξ0, η0 )

T
, its tangent angle ϕ0 at the starting point and

its radius3 r, summarized in g = ( ξ0, η0, ϕ0, r )
T
. The

measurement models zg,{1,2},k for the two track geometries
we are considering are defined as:

1) Straight line(
ξ̂k
η̂k

)
=

(
l̂k cos(ϕ0,k) + ξ0,k
l̂k sin(ϕ0,k) + η0,k

)
(12)

2) Circular arc ξ̂k
η̂k
v̂k

 =

 rk sin( l̂k
rk

+ ϕ0,k) + ξ0,k

rk

[
1− cos( l̂k

rk
+ ϕ0,k)

]
+ η0,k

ŵkrk


(13)

Both models not only include quantities from gk exclusively
but also from x̂k, in which l̂k, representing the current path
length, is an operand calculated through l̂k = d̂k − d̂start. The
quantity d̂start is always saved when a new track geometry
is detected. For all quantities originating from x̂k, the
corresponding entries in the covariance matrices Pg̃,k and
Rg,k are induced by their equivalents in the covariance
matrix Px̂k

, in each filtering step. In the case of l̂k the
variance is induced by var(l̂k) = var(d̂k) + var(d̂start). For
the initialization of the filters, the current estimates of ξ̂, η̂ and
θ̂4, together with their corresponding blocks in the covariance
matrix Px̂ can be used directly, except for r. The radius is
initialized through one LS calculation step for v̂ = ω̂r, to
get an initial estimate as well as a variance [14].

C. Localization

The last step is to calculate the final position estimate p̄
together with its covariance matrix Pp̄ (c. f. Fig. 3, green
shaded area). In the case that the current track geometry
and its parameters have been identified in the previous steps,
the position can be calculated by p̄ = Tr(l̂, g̃). Thereby,
Tr represents the current track in a parametric form with
respect to l̂. Since a track geometry Tr can not always be
identified (c. f. Sec. IV-A) and also the covariance matrix Pp̄

is required, an estimation problem, delivering an estimate for
the position and its covariance matrix, has to be solved again.
Therefore, we implement different EKFs, dealing with each
possible situation: 1) straight track identified 2) circular-arc
track identified and 3) unknown track geometry.

The state vector for the different filters is defined as
p =

(
ξ, η, ξ0, η0, ϕ0, r, l̂

)T
, while the estimates ξ̂ and

η̂ from the first filter stage form the measurement vector
zp =

(
ξ̂, η̂

)T
. Except for ξ and η, the necessary blocks

3We use r = 0 for straight track geometries.
4The tangent angle ϕ0 is initialized through θ̂.

in the covariance matrices Pp and Rp are taken directly
from their corresponding blocks in Px̂ and Pg̃ at each time
step. For the two former mentioned, the covariance matrix is
only initialized through Px̂ and then computed as usual in a
KF. Furthermore, no additional process noise vp is included
because the purpose of this localization stage is the fusion
of all available information and no additional uncertainties
should be introduced.

The system models fp,i(pk) for each situation are given
below.

1) Straight-track localization:

fp,1 =



l̂kcos(ϕ̃0,k) + ξ̃0,k

l̂ksin(ϕ̃0,k) + η̃0,k

ξ̃0,k

η̃0,k

ϕ̃0,k

0

l̂k


(14)

2) Circular-arc track localization:

fp,2 =



r̃k sin( l̂k
r̃k

+ ϕ̃0,k) + ξ̃0,k

r̃k

[
1− cos( l̂k

r̃k
+ ϕ̃0,k)

]
+ η̃0,k

ξ̃0,k

η̃0,k

ϕ̃0,k

r̃k

l̂k


(15)

3) Unknown-Track Localization: If the track geometry is
unknown, the first estimates of ξ̂k and η̂k together with
their corresponding covariance block in Px̂ are adopted
directly.

All states are initialized through their corresponding estimates
in x̂ or g̃, respectively. Finally, the position estimate p̄ =
( ξ̄, η̄ )

T and its covariance matrix Pp̄ can be gathered from
the first two states of p and its corresponding block in Pp.

V. ANALYSIS

The algorithm presented above will be analyzed in this
section, based on simulations. To begin with, the investigated
set-up is explained. Then the individual steps of the algorithm
are evaluated and its performances discussed, thereafter.

A. Initialization

Throughout all simulations, the track described in Tab. I and
shown in Fig. 1 serves as test track. It represents a typical main
line with minimal radii of 300 m and is probably installed in a
way like this in many real railway networks. In all simulations
the train starts at time t0 = 0 s on the track with path length
l0 = 0 m and speed v = 70 km/h, which is not violating any
speed limits on the given track. As the train moves along
the track during a simulation run all reference data (ground
truth) can be calculated directly and the artificial sensor data



TABLE II
SIMULATION NOISE PARAMETERS

T σi,noise

Sensors 0.05 s

σGNSS = 10 m

σACC = 0.001 g

σGYRO = 0.05 deg/s

EKF1...3 0.50 s
σ1...3,ACC = 0.750 m/s2

σ1...2,TR = 0.014 deg/s
σ3,TR = 0.140 deg/s

is generated by adding zero-mean, white Gaussian noise with
standard deviations as listed in Tab. II.

To start the localization algorithm described in Sec. IV the
three EKFs used in the IMM filter have to be initialized
(c. f. Sec. IV-A). For all three, the state vector x0 is chosen
in a way so that all not measured quantities are initialized
with their ground truth value at t0, respectively. The initial
covariance matrix Px0 for each EKFi is chosen as Px0,i =
Γ diag(σ2

i,ACC, σ
2
i,TR) ΓT, in which the corresponding noise

parameters σi,noise are listed in Tab. II. The IMU’s noise
parameters are taken from [17] and also roughly agree with the
values presented in [18], while the GNSS’s noise is chosen
freely and considered to be reasonable in most situations.
Altogether, these values represent a sensor system with a
rather average performance, affordable in a low to mid cost
range set-up. Eventually, the IMM filter is started with the
mode probabilities µ0 = ( 0.90, 0.05, 0.05 )

T
, favoring the

straight-track model at the beginning, and the transition
probability matrix

Π =

(
0.990 0.000 0.010
0.000 0.990 0.010
0.005 0.005 0.990

)
.

By the choice of Π it can be seen how the knowledge of the
real world can be incorporated into the IMM filter. As the
high values on the diagonal indicate that it is more likely to
stick to the current track geometry than switching to another.
Furthermore, the zero entries indicate that it is impossible to
directly switch from a straight track-geometry to a circular
one, and the other way round.

B. Evaluation

Below, the individual steps of the track-geometry con-
strained (TGC5) localization filter are evaluated.

1) Track-Geometry Extraction: The track geometry de-
tection is evaluated by means of the mode probabilities
µi, which are issued by the IMM filter, as presented in
Fig. 5. As the mode probability for the current track geometry
quickly approaches a value close to 1 and all others close
to 0, it can be seen that a clear distinction between the
different track geometries can be made and also the right
track geometry is detected for each track element 1 – 9 (c. f.
Tab. I). The delays until the right track geometries are detected
∆Lstart = Lstart,TGC − Lstart,ref in meters are shown in Tab. III.

5The abbreviation TGC will be used throughout the evaluation process to
mark the approach presented here.
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Fig. 5. Mode probabilities µi for the various track geometries plotted
against the path length l. The grid (gray lines) indicates the true changing
points of the reference-track’s elements 1–9 (c. f. Tab. I).

TABLE III
GEOMETRY DETECTION DELAYS ∆Lstart = Lstart,TGC − Lstart,ref

Track element 1 2 3 4 5 6 7 8 9

∆Lstart in m 0 40 62 33 26 8 75 5 52
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Fig. 6. Estimated track geometries plotted against the reference track. The
marked section (blue shaded rectangle) is shown in more detail in Fig. 11.

In this case the maximum delay is 75 m at the detection of
the 7th track element.

2) Parameter Extraction: In Fig. 6 the identified track
geometries are plotted together with the reference track. As
only straight and circular arc track geometries are identified
there are no estimates for the transitioning elements 2, 4, 6
and 8. Considered qualitatively, all others are estimated quite
well, although the detection delays mentioned before are not
corrected in the estimate of the starting points of the track
elements, which can especially be seen for the elements 3,
7 and 9. A quantitative assessment is included in the next
evaluation step.

3) Localization: Finally, the overall localization perfor-
mance is evaluated. Therefore, the proposed TGC localization
filter is compared to a standard fusion approach with an
EKF6 and the estimates of the IMM filter in the first filter
stage (c. f. Sec. IV-A). The absolute positioning error ‖∆p‖ =
‖pref−pfilter‖ is depicted in Fig. 7. All three methods perform
in the same order of magnitude, which is also confirmed by
calculating the mean 2.21±0.07 m and the standard deviation
1.21± 0.02 m of the absolute positioning error for all three
methods, as there are no significant variations.

At least as important as the absolute position accuracy, is
the assessment of its uncertainty, because only by that a safe
and distinct assignment to a specific track can be performed
and thus a track-selective location information provided.

6This EKF is initialized like the one matched to the fall-back model (c. f.
Sec. V-A).
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Fig. 7. Positioning error ‖∆p‖ = ‖pref − pfilter‖ plotted against the
path length l. The grid (gray lines) indicates the changing points of the
reference-track’s elements 1–9 (c. f. Tab. I).
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Fig. 8. Positioning uncertainty, expressed by trace(P ), plotted against
the path length l. The grid (gray lines) indicates the changing points of the
reference-track’s elements 1–9 (c. f. Tab. I).
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Fig. 9. Along-track uncertainty σAT plotted against the path length l.
The grid (gray lines) indicates the changing points of the reference-track’s
elements 1–9 (c. f. Tab. I).

The uncertainty of the position estimates is investigated
by means of the trace of the correspondingly estimated
covariance matrices, as shown in Fig. 8. The trace of the
position covariance matrix represents the overall expected
mean squared error of the position estimate and is therefore a
common measure for the positioning uncertainty [19]. Initially,
the uncertainty in all three methods increases quickly and
comes to a level where it is only affected by slight changes,
which is expectable as the process and measurement noise
are static [14]. However, there is a noticeable difference in
how big the individual uncertainties can become. In case
a track geometry has been identified (track elements: 1, 3,
5, 7, 9) the TGC approach outperforms the other two by a
factor of approximately two, while otherwise the performance
degrades to the IMM’s one (track elements: 2, 4, 6, 8). This
makes sense because in the latter case the result of the IMM
filter stage is adopted in the localization stage (c. f. Sec. IV-C).
Furthermore, the IMM filter performs a little better than the
standard EKF because of its faster adaptability to different
track geometries.

The uncertainty is investigated further to show more clearly
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Fig. 10. Cross-track uncertainty σCT plotted against the path length l.
The grid (gray lines) indicates the changing points of the reference-track’s
elements 1–9 (c. f. Tab. I).
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Fig. 11. Positioning results with corresponding error ellipses (with a
confidence region of 99.9999999 % in the style of a safety integrity level
4), for the area marked in Fig. 6 as “section I”.

in which way the uncertainty in the TGC approach is reduced.
Therefore, the standard deviation in along-track σAT and
cross-track σCT direction is calculated from the covariance
matrices, respectively, as shown in Fig. 9 and Fig. 10 [20].
Compared to the other two solutions the TGC approach
shows a significantly smaller cross-track deviation when the
track-geometry has been identified. Therefore, a better track
accuracy can be ensured in these cases. This result also can
be seen by comparing the size and shape of the positioning
error ellipses in Fig. 11, which shows the section at the end
of the track, marked as “section I” in Fig. 6.

C. Discussion

As shown in the previous evaluation, the presented TGC
approach leads to a significant improvement in the cross-
track positioning accuracy when the current track geometry
is involved, confirming our initial notion. Some details and
limitations will be discussed here.

1) Track-geometry detection performance: The detection
of the current track geometries heavily depends on the
performance of the utilized sensors and the train’s speed,
as the differentiation basically relies on the extraction of
the curvature profile of the track. This problem is also
addressed in another context in [7] and [17]. To ensure a
consistent behavior under all conditions and also a more direct
and precise track-geometry identification, further adoptions
need to be implemented. Possible actions are e. g. a more
sophisticated tuning of the IMM filter, the consideration
of additional track characteristics (elevation and slope), the
integration of additional track-geometry models and the use
of additional sensors.

2) Track-geometry parameter estimation: At the moment,
the parameters for each geometry are calculated separately.
This makes it difficult to compensate for the delayed detection
of each track geometry and the therewith associated estimation



of a shifted starting point for the individual track elements
(c. f. Sec. V-B.2). Therefore, an approach considering all past
track-geometries and estimating the parameters for all known
track geometries together is imaginable. Consequently, this
leads to a filter exactly relying on Bayesian inference, which
is planned for the future.

3) Initial assumptions: During the evaluation within simu-
lations some assumptions were made that need to be checked
before applying the filter to practical applications. Especially,
the assumptions concerning the process and measurement
noises need further attention, as many sensors are affected
by a drift or other effects which does not justify the zero-
mean assumption. Even the assumption of Gaussian noise is
not justified in all cases. Besides the noise assumptions, the
multiple linearizations throughout the EKFs can be improved
to gain a more correct propagation of the uncertainties. To
deal with these problems preprocessing of the sensor data
and more sophisticated filter approaches like an unscented
Kalman filter (UKF) or a particle filter (PF) can be applied.

4) Track map generation: It is interesting to note that the
estimated track-geometry parameters g̃ also can be used
directly as a compact geometric track map (c. f. Fig. 6).
Actually, track maps like this are required by existing train
localization approaches [7]–[9], [11], [12]. The compactness
results from the minimal information that needs to be saved for
each track element (c. f. Sec. IV-B), which stands in contrast
to existing mapping solutions where the track map is often
represented by a kind of lookup-table, containing many data
points [21], [22]. The compact form can be very beneficial
when the track map needs to be transferred wirelessly, which
is thinkable in future train control systems.

VI. CONCLUSIONS

Throughout this paper, we presented a recursive multistage
filtering approach for future train-borne localization systems.
In simulations we demonstrated that the filter significantly
increases the cross-track positioning accuracy compared to
common filter techniques which utilize an EKF. This is
achieved by exploiting track-geometry constraints known
in advance. By that the presented approach potentially
contributes to an improved track selectivity in future train-
borne localization systems, which is one of the most crucial
factors for the introduction of these systems. Furthermore,
compact geometric track-maps can be extracted, which can
be utilized in existing train localization approaches.

In the future, we want to concentrate on further developing
the filter by utilizing exact Bayesian inference, expanding it
by additional track-geometry models as well as considering
branching situations. It is also planned to test the approach
with actual sensor data.
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