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Abstract— Since the bus holding problem is an operational
control problem, bus holding decisions should be made in real-
time. For this reason, common bus holding approaches, such
as the one-headway-based holding, focus on computationally
inexpensive, rule-based techniques that try to minimize the
deviation of the actual headways from the planned ones.
Nevertheless, rule-based methods optimize the system locally
without considering the full effect of the bus holding decisions
to future trips or other performance indicators. For this reason,
this work introduces a Reinforcement Learning approach which
is capable of making holistic bus holding decisions in real-
time after the completion of a training period. The proposed
approach is trained in a circular bus line in Singapore using
400 episodes (where an episode is one day of operations)
and evaluated using 200 episodes demonstrating a significant
improvement in scenarios with strong travel time disturbances
and a slight improvement in scenarios with low travel time
variations.

Keywords: Bus Holding; Operational Control; Reinforce-
ment Learning; Service Regularity.

I. INTRODUCTION

The design of bus routes is generally addressed at the
strategic planning phase [1]. After the strategic planning,
the frequencies of the bus lines, the daily timetables and
the crew and vehicle schedules are defined at the tactical
planning stage [2]. Nevertheless, even if the tactical planning
is based on sophisticated statistical methods, the actual
performance of the bus services deviates significantly from
the expectations of the bus operators due to the travel time
and passenger demand variations throughout the day [3], [4].

The unstable nature of bus operations impacts significantly
the daily planning and can increase the in-vehicle travel
times and the waiting times of passengers at regular and
transfer stops [5]. Public transport authorities (PTAs) are
aware of this problem and provide monetary incentives to bus
operators for improving the reliability of their services. For
instance, the Land Transport Authority (LTA) in Singapore
provides a monetary benefit of 2,000 Singaporean dollars
for each 0.1-minute improvement of the service regularity
measured in terms of operational headway adherence to the
planned headways [6].

These incentives have increased the pressure to introduce
corrective measures during the daily operations for improv-
ing the service reliability under the presence of travel time
and passenger demand variations. For this reason, several
studies have investigated the effect of operational control
actions such as bus holding [7], [8], stop-skipping [9] and
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short-turning [10] to the improvement of the service relia-
bility.

This work focuses specifically on the bus holding problem.
In the bus holding problem, automated vehicle location
(AVL) data provides the current positions of the running
buses and the bus operator decides whether to hold a bus
or not when it arrives at a bus stops. This decision is
typically made based on the actual headway deviation from
the planned headway value. This is a local optimization
approach, known as one-headway-based optimization [11],
which considers only the position of two buses for making
a decision.

Such local-based decision-making approaches have pre-
vailed in practice because their decision-making process is
trivial and allows the computation of bus holding times in
real time. Nevertheless, local decisions that do not consider
the implications of the bus holding times to future bus trips
and to other operational constraints, such as the limitations
of the total trip travel times, cannot address the bus holding
optimization problem in a holistic manner.

Alternatively, formulating the bus holding optimization
problem as a mathematical program that considers the impact
of the bus holding decisions to all other running trips and
future operations leads to a combinatorial problem that
cannot be solved in real time [12]. For this reason, this study
investigates the potential of using a reinforcement learning-
based bus holding scheme where, after a training period,
decisions about bus holding times can be made in real time
while considering the impact of bus holding decisions to
other running buses and future trips instead of deciding by
following local-based rules.

II. RELATED STUDIES

Most studies on the bus holding problem of high-
frequency services (which operate based on a regularity
scheme) focus on holding buses at stops for reducing the
deviation of the actual headways from the planned ones; thus,
improving the service reliability [13]–[16]. One exception is
the work of [17] that proposed a self-coordination scheme
within which bus holding times try to reduce the headway
variability without adhering to the planned headway. In
the above-mentioned works, buses are not held at any bus
stop, but at specific intermediate time point (ITP) stops for
mitigating the passenger inconvenience caused by multiple
holdings [18].

Most of the above-mentioned works employ local-based,
heuristic optimization approaches for deciding the bus hold-
ing times and do not consider the impact of the holding
times to the prolongation of the trip travel times that can
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delay the dispatching of future trips. [11] tested two of the
most common headway-based bus holding strategies that are
based on local rules in the bus network of Waterloo, Ontario:
(i) the one-headway-based control method where a bus is
held at one stop if it is closer to its preceding bus than its
planned headway; and (ii) the two-headway-based method
where the position of both its preceding and following bus
are considered when making a holding time decision. [19]
and [20] have also proposed distributed control models where
buses act as agents that communicate in real-time to achieve
local-level coordination.

Even if most works on bus holding consider deterministic
trip travel times when holding a bus at a stop, a distinct
number of works have considered the potential variation of
the future trip travel times when computing bus holding times
[13], [21]. For instance, [15] introduced stochasticity to the
trip travel times when deciding about the holding time of a
bus at the first bus stop of the trip. The work of [15] and the
works of [22]–[24] focused on the single-holding problem
where bus trips are held only at the first bus stop and not
at any other intermediate stop. Therefore, such works cannot
exploit the full potential of holding times on correcting the
headway deviations.

This work contributes to the prior art by examining the
bus holding problem in a more holistic manner by modeling
the implications of bus holding times to the dispatching
times of future trips and the headways of the running buses.
Such a holistic mathematical formulation of the bus holding
problem cannot be solved with classical exact optimization
approaches [25], [26]. Therefore, the second contribution of
this study is the introduction of a reinforcement learning
approach for making real-time bus holding decisions.

Since the bus trips can be seen as independent entities,
this study perceives the bus holding problem as a multi-
agent decentralized policy optimization problem. Multi-agent
decentralized policy optimization problems are complex,
especially if the coordination among agents is limited. Dis-
tributed multi-agent systems have been studied as distributed
optimization problems [27], as game theory problems [28],
[29] or as decentralized partially observable Markov deci-
sion processes (Dec-POMDPs) [30]. Our proposed method
follows the Dec-POMDPs approach and assumes a common
policy for all the agents as it will be described in the
following sections.

III. PROBLEM FORMULATION

A. Bus Movement Model

Each bus trip has to serve all stops along its path. Let
N = {1, ..., n, ..., |N |} be the set of daily bus trips of one
bus line and S = {1, ..., s, ..., |S|} the set of bus stops. If δn
is the dispatching time of a bus trip n ∈ N , then its departure
time from any other stop s ∈ S \ {1} is:

dn,s(X) =

{
δn + xn,1, s = 1

dn,s−1(X) + tn,s−1 + kn,s + xn,s, s ∈ S \ {1}
(1)

where dn,s is the departure time of trip n from stop s,
xn,s the holding time of trip n at stop s, X an |N | ×
|S|-dimensional matrix of all bus holding times at stops,
dn,s−1(X) the departure time of the same trip from its
previous stop s − 1, tn,s−1 the travel time of trip n from
stop s−1 to stop s, and kn,s the required dwell time at stop
s for the passenger boardings/alightings.

The recursive formula of eq.1 for determining the depar-
ture time of a bus n from any stop s ∈ S\{1} can be written
as:

dn,s(X) = δn + xn,1 +

s∑
j=2

(tn,j−1 + kn,j + xn,j) (2)

The arrival time of a trip n at any stop s ∈ S \ {1, 2} is:

an,s(X) = dn,s−1(X) + tn,s−1 =(
δn + xn,1 +

s−1∑
j=2

(tn,j−1 + kn,j + xn,j)
)
+ tn,s−1

(3)
and the arrival time at stop s = 2 is an,s(X) = δn +

xn,1 + tn,s−1.
The headway between a bus trip n and its preceding trip

n− 1 at stop s is:

hn,s(X) = an,s(X)− an−1,s(X) (4)
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Fig. 1. Vehicle movements and decision points

At each time instance, the positions of the running buses
are updated and a bus holding decision is made every time
a bus arrives at one bus stop. An example of the movements
of running buses is provided in Fig.1.

B. Bus Trip Model

This work focuses on circular bus lines and makes the
following assumptions regarding the daily operations:

• each bus can be assigned to multiple daily trips;

3163



• a bus can be held at specific ITP stops;
• a bus trip can start only when the previous trip that was

operated by the same bus is finished;
• buses that serve the same line do not overtake each other

[21], [31].
Following the 3rd assumption, a bus trip n is allowed to

be dispatched only after the previous bus trip n′ which was
operated by the same bus has been completed. This yields
the following expression:

dn,1(X) = max(δn + xn,1; an′,|S|(X) + kn′,|S|) (5)

where dn,1(X) is the actual dispatching time of trip n, |S|
the last stop of the bus line and an′,|S|(X) the arrival time
of trip n′ at the last stop.

C. Cost Functions

In this work we introduce two metrics that will be used
for measuring the performance of the bus holdings.

The first metric is based on the deviation of the actual
headways from the planned ones. This metric measures
the reliability of high-frequency services and is the key
performance indicator of several transport authorities [32].
This metric can be expressed as:

f1(X) =

√√√√ 1

|S|(|N | − 1)

∑
s∈ITP,n∈N\{1}

|hn,s(X)− wn,s|2

(6)
where f1(X) measures the average daily deviation of the

actual headways from their planned values which are denoted
as wn,s. In addition, ITP is the set of intermediate time point
stops where bus holdings are allowed.

The planned headway, wn,s, depends on the time of the
day when bus n arrives at stop s because the bus services
might operate in higher frequencies during peak hours and
in lower frequencies during offpeaks. For instance, if wρ

s is
the planned headway at stop s during the time period ρ, then
wn,s = wρ

s if the bus trip n arrives at bus stop s during the
ρth time period of the day.

In this work, we also monitor the travel time of each
trip since holding a bus at several stops might prolong
significantly its total trip travel time. The total trip travel
time is the time difference between the departure from the
first station (Eq. 5) and the arrival at the last station (Eq. 3),

Tn(X) = an,|S|(X)− dn,1(X) (7)

We can then introduce the second performance metric that
measures the excess trip travel time (ETT). The ETT is the
exceeding trip travel time from a pre-defined total trip travel
time threshold Tmax and the second metric can be formulated
as:

f2(X) =

√
1

|N |
∑
n∈N

max (Tn(X)− Tmax, 0)
2 (8)

where f2(X) is the travel time prolongation of the average
bus trip from the pre-defined total trip travel time threshold
which is used for penalizing excessive trip delays that can
affect the dispatching times of future trips and the crew/ve-
hicle schedules.

Each trip travel time, Tn(X), is the sum of the travel times
between bus stops plus the dwell and the holding times at
stops. The quantity max (Tn(X)− Tmax, 0)

2 is squared for
increasing the penalization of trip travel times that exceed
significantly the travel time threshold. At the same time, the
term max (Tn(X)− Tmax, 0) ensures that travel times which
are lower than or equal to the trip travel time threshold,
Tn(X) ≤ Tmax, do not penalize the performance of the
operations since max (Tn(X)− Tmax, 0) = 0 in such case.

IV. REINFORCEMENT LEARNING

A. General Introduction

In this section, we form the bus holding problem that aims
at minimizing the performance metrics f1(X), f2(X), as a
Reinforcement Learning (RL) problem. In general, a single
agent RL problem [33] is defined by a Markov Decision
Process (MDP) as (Y,U, P,R, γ) where Y is the set of states
of the process, U the set of actions that can be preformed on
the system, P is the transition probability between a state y
and the following state y′ after action u has been applied (i.e.
P (y → y′|y, u)), and R the reward at state y when selecting
action u, (i.e. r(y, u)). If the system is not stationary, the
state and the action are denoted with a time index, k, thus
yk, uk denote the state and action at instant k, while rk the
reward between state yk and yk+1 under the action uk.

A MDP also considers a discount factor γ that is used
to define the expected total reward at a state y as V (y) =
EP {

∑+∞
k=0 γ

krk|y0 = y}, while the Q function is the
expected reward on the joint state and action Q(y, u) =
EP {

∑+∞
k=0 γ

krk|y0 = s, u0 = u}. On an MDP, a determin-
istic policy is defined as a deterministic mapping from the
state to the action uk = π(yk) , while a probabilistic policy
defines the probability of an action uk, given the current state
yk, i.e. π(uk|yk).

Under the presence of multiple agents with decentralized
and partial observable MDPs, one can use the Decentralize
Partial Observable MDP (Dec-POMDP) method [30]. In this
work, we model the bus holding (BH) problem in the form
of a Dec-POMDP where the observation of the single agent
(bus trip) depends only on its own state. The single agent is
the single bus trip that decides about its holding time (action)
when it arrives at an ITP stop.

B. States and Observation space of the BH problem

The state of the BH problem comprises of the states of
all bus trips (agents). However, the observation space when
deciding the holding time of a trip n at a stop s ∈ ITP
depends only on the following information:

• dn−1,s: is the departure time of the preceding bus trip,
n− 1, from stop s ∈ ITP

• an,s: is the arrival time of the examined trip at stop s
• wn,s: is the target headway time of bus trip n at stop s
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Fig. 2. Reinforcement Learning Architecture

In this way, each agent (bus trip) is only informed about its
status, target headway and the departure time of its preceding
trip at stop s ∈ ITP . This mimics the information which is
typically used in bus holding control [11].

C. Reward Function

The performance of the daily operations measured by Eq.6
and Eq.8 is only available at the end of the episode (e.g. end
of the day), while the reward function of the RL must be
evaluated for every action that takes place in the system.
Because of that, the reward function plays a critical role for
the convergence of the Dec-POMDP and it is a critical design
choice.

In this work, we shape the reward function in accordance
with the elements of the cost functions. Therefore, we include
a component rw which is inversely proportional to the
difference from the target headway

rnw(s) = −ρµ (‖hn,s(X)− wn,s‖) (9)

As discussed before, the planned headway, wn,s does not
depend on the bus holdings, but on the time of arrival of
trip n at stop s ∈ ITP . The penalization function is a non-
decreasing positive function and we use the Huber function
that penalizes small deviations more than large deviations
because this can provide a more robust learning of the
expected reward on the joint state and action [34]:

ρµ (r) =

{
1
2r

2 for|r| ≤ µ
µ(|r| − 1

2µ) otherwise (10)

where µ is the threshold value of the Huber function.
An additional term penalizes actions that lead to excessive

trip travel times

rnt (s) = −ρµ (max (Tn − Tmax, 0)) (11)

Furthermore, a prolonged bus holding at an ITP stop
has a negative effect to the travel time of the trip and the

passengers’ convenience. Therefore, we add a reward term
that penalizes solutions with longer holding times

rnh(s) = −ρµ (|xn,s|) (12)

The final reward function that evaluates the effect of an
action u, where this action is the bus holding time of trip n
at ITP stop s, is defined as the weighted sum of the reward
contributions:

rns = βwr
n
w(s) + βtr

n
t (s) + βhr

n
h(s) (13)

where βw, βt and βh are the respective weight factors of
the reward function, where we choose βw=βt=βh=1, since
all components have time dimension.

D. Action space

The action of the RL algorithm is the holding of a bus
trip when it arrives at an ITP stop. The bus holding time
can take a value from a set of pre-determined quantities that
can be encoded in a Human Machine Interface (HMI) and
can be interpreted by the bus driver. This set can have a
granularity of 10 seconds as suggested in other works [18],
[35] and can be limited to 30 seconds for avoiding prolonged
holdings. Therefore, in this work the set of actions is defined
as Z = {0, 10/60, 20/60, 30/60} minutes.

V. PROPOSED SOLUTION METHOD

To solve the previously described bus holding MDP prob-
lem, we use an adapted version of the Prioritized Double
Deep Q-Learning (PDDQN) method [36]–[38]. Even if the
problem is a Multi-Agent MDP (as presented in Fig.2), we
define a common network for all agents, so that the learned
policy is applied to all of them. Each agent (i.e., bus trip) gen-
erates a new experience defined by (yn,s, un,s, r

n
s , yn,s+1)

every time a holding decision is made. The Q-Learning
algorithm [39] estimates the Q function independently of the
policy that has been applied. Since the structure of the Q
function is unknown, we use a Neural Network representa-
tion based on the Deep Q-Network (DQN) algorithm [36].
A typical training of a Neural Network with the stochastic
gradient descent (SGD) method requires a large number of
samples. For this reason, an experience replay buffer of size
Bbuffer is used [36] in order to store the previous experiences.
The Q function is updated using supervised learning, where
the loss function is defined based on the Bellman equation:

‖rns + γsQθ′(yn,s+1, u
′(yn,s+1))−Qθ(yn,s, un,s)‖2 (14)

where
u′(yn,s+1) = argmax

u
Qθ′(yn,s+1, u) (15)

Eq.14 uses a second target network that is updated every
T update steps to improve stability. θ and θ′ are the parameters
of the Neural Network and the update is performed with a
batch of size Bbatch from the replay buffer. Along with the
basic observation variables defined in Sec.IV-B, we include
the additional feature:

ζn,s = dn−1,s + wn,s − xn,s (16)
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TABLE I
PARAMETER VALUES

T update (Update period) 10, 000
Bbuffer (buffer size) 500, 000
Bbatch (batch size) 64
εexpl. (Exploration percentage) 1.0 → 0.02
Exploration iterations (total) 400, 000
εAdam (Adam learning rate) 5e�4

H (size of the hidden layer) 2048
γs (discount factor) 1
c (OHHR threshold variable) 1
µ (Threshold of the Huber function) 100

Fig. 3. Evaluation line overview where the ITP stops are in orange and
the terminal is the biggest stop of the line [source: OpenStreetMaps]

for facilitating the convergence of the Q function. The used
neural network is a Full Connected Neural Network (FCNN)
with ReLu activation [40], while the last layer has a linear
activation for enabling the mapping of the different discrete
actions. The size of the hidden layer is denoted as H
and for the training we use the Adam optimizer [41] with
Adam learning rate εAdam. Due to the previous choices, we
name the employed solution method Single-Agent Prioritized
Double Deep Q-Network (SA-PDDQN).

VI. EXPERIMENTAL EVALUATION

A. Experimental scenario

Our case study is a main bus line (Fig.3) in Singapore with
a total length of ca 7.5km. Its total travel time ranges from
30 to 45 minutes, depending on the hour of the day. The
desired headway at each bus stop is reported in Tab.II. The

TABLE II
DESIRED BUS LINE HEADWAYS IN MINUTES

Time Interval Min. allowed Max. allowed Desired Headway
Headway Headway

Before 06:30 6 10 8
06:30-08:30 3 5 4
08:31-19:00 4 6 5
After 19:00 6 10 8

06:30 08:30 17:00 19:00
Time of the day

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Tr
av

el
 T

im
es

 (m
in

)

between ITP stop 1 and 2
between ITP stop 2 and 3

between ITP stop 3 and 4
between ITP stop 4 and 1

Fig. 4. Mean travel times between ITP stops at different times of the day

travel times between ITP stops are reported in Fig.4 where
the mean travel times are approximated with a piecewise
linear function. The two peak periods (early morning and
afternoon) are from 6:30 to 8:30 and from 17:00 to 19:00.

The total number of daily trips is 220 and all of them
perform a circular service. The total number of bus stops
is |S| = 22 and 4 of them are ITP stops. The 4 ITP stops
are selected from the bus operator because they exhibit a
higher number of boardings/alightings. This results in a total
of |ITP | × |N | = 4× 220 = 880 bus holding variables and
a total number of |Z||ITP |×|N | = 4880 possible solutions.

B. One-Headway-based Holding

In this study we use as comparison the well-known One-
Headway-based Holding Rule (OHHR) which determines the
holding time of a bus trip n at a bus stop s ∈ ITP based
on (a) its arrival time an,s; (b) the departure time of the
preceding bus trip at the same stop dn−1,s; and (c) the target
headway wn,s. The OHHR considers the time after which
trip n can be held at stop s, t0 = an,s+kn,s, and a threshold
variable H0 = dn−1,s + cwn,s, with c ∈ [0, 1]. If t0 < H0,
then the vehicle can leave the ITP stop immediately, xn,s =
0; otherwise, the departure time of the current vehicle is
dn,s = dn−1,s +wn,s (i.e. xn,s = dn−1,s +wn,s − t0). This
policy is a local rule that seeks to minimize the deviation of
the actual headway from the planned one [11].

C. Results and Evaluation

In this work, we implemented the Bus Holding environ-
ment into the Gym framework [42]. While this approach
allows the application of state-of-the-art methods, the special
multi-agent system which is proposed in this study requires
the development of specific solutions. For this reason, we use
the Priority Experience Replay and the implementation of the
Double Deep Q-Network of Baselines1 [43] to implement the
SA-PDDQN method.

Fig. 5 shows the behavior of the learning process dur-
ing the training stage. The exploration percentage2, εexpl.,
decreases linearly. The reward is increased along with the

1Baseline v0.1.5 uses tensorflow and python3
2the exploration percentage is the probability of selecting a random action

during the training phase
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Fig. 5. Reward and total cost evolution along epochs with full a connected
neural network (FCNN)

TABLE III
SA-PDDQN PERFORMANCE VS DO NOTHING VS ONE HEADWAY

HOLDING RULE

Travel time variation DN OHHR SA-PDDQN

1 % 4.140 4.125 4.123
5 % 4.185 4.197 4.180
10 % 4.430 4.479 4.399
20 % 5.294 5.474 4.726

increase of iterations, while the total episode3 cost of the sum
of the cost functions f1(X)+f2(X) is reduced. At the early
stage, the cost and reward oscillate due to the exploration.
After the early stage, they are more stable.

Table III reports the performance of the metrics of Eq.6
and Eq.8 (i.e., sum of functions f1(X) and f2(X)) during
the testing phase where the bus holding times based on the
OHHR method and the SA-PDDQN method are tested for
200 different episodes. The network is initially trained using
400 episodes and is tested using 200 more episodes. To
account for different travel time conditions, we generated
different scenarios and the travel times between stops were
allowed to vary from their expected values by 1%, 5%, 10%
and 20%.

From table III, one can notice that the proposed approach,
SA-PDDQN, outperforms the do-nothing4 (DN) and the
OHHR. One can also notice that the OHHR method becomes
counterproductive when the level of travel time variation is
increased. This is due to the cost function f2(X) which is
not considered by the OHHR because it focuses only on the
minimization of the headway deviations from the planned
values. As a result, the value of the cost function f2(X) is
higher when using the OHHR method instead of the SA-
PDDQN in scenarios with significant travel time variations
as presented in Fig.6.

The proposed SA-PDDQN method is able to mimic the
OHHR for low levels of travel time variation, while con-
sidering other cost terms, such as the total trip travel time

3one episode is a full day of operations
4in the do-nothing scenario bus holdings are not allowed

DN

OH
HH

R

SA
-P

DD
QN

0.000

0.005

0.010

f 2
(X

)

1% variation

DN

OH
HH

R

SA
-P

DD
QN

0.00

0.01

f 2
(X

)

5% variation

DN

OH
HH

R

SA
-P

DD
QN

0.0

0.1

f 2
(X

)

10% variation

DN

OH
HH

R

SA
-P

DD
QN

0.0

0.5

f 2
(X

)

20% variation

Fig. 6. Cost function f2(X) for different travel time variation levels

limits that can delay the dispatching of future trips, in case
of large travel time variations. These results confirm that the
proposed SA-PDDQN method is able to address more issues,
such as the delay of future trips, when making a bus holding
decision.

The proposed approach learns a Q-function in the form of
a NN for all the trips in the same line. The method requires
to learn only a new Q-function for each new line, so scales
linearly with the number of lines. The training complexity
though depends on the number of control stations, number
of actions and on the rate of convergence of the learning
process.

D. Concluding Remarks

This work introduced a mathematical program for the bus
holding problem which is based on the bus movement model
and the cost functions that measure the service regularity and
the trip delays due to excessive trip travel times. Given the
computational intractability of the bus holding problem, we
introduced a RL model for solving the bus holding multi-
agent problem where the agents share the same Q-function.
For implementing the RL, this work introduced a reward
function and designed a Neural Network architecture.

After the training phase of the experimentation, the RL
method was compared against the OHHR method and its
performance was evaluated. During the testing phase, the
proposed method outperformed the OHHR method and the
do-nothing scenario proving its stability in both low and high
travel time variation scenarios.

The proposed approach can be an important step for
the introduction of data-driven methods in order to obtain
more holistic solutions for the computationally intractable
bus holding problem in real-time. In future research, more
advanced architectures of the Neural Network and their effect
to the RL performance can be investigated. The extension of
this approach for addressing more performance indicators,
such as the occupancy rates of buses and the synchronization
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levels among multiple bus services, can also be a potential
topic for future research.
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