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Abstract— Our premise is that autonomous vehicles must
optimize communications and motion planning jointly. Specif-
ically, a vehicle must adapt its motion plan staying cognizant
of communications rate related constraints and adapt the use
of communications while being cognizant of motion planning
related restrictions that may be imposed by the on-road envi-
ronment. To this end, we formulate a reinforcement learning
problem wherein an autonomous vehicle jointly chooses (a)
a motion planning action that executes on-road and (b) a
communications action of querying sensed information from
the infrastructure. The goal is to optimize the driving utility
of the autonomous vehicle. We apply the Q-learning algorithm
to make the vehicle learn the optimal policy, which makes the
optimal choice of planning and communications actions at any
given time. We demonstrate the ability of the optimal policy
to smartly adapt communications and planning actions, while
achieving large driving utilities, using simulations.

I. INTRODUCTION

We consider an on-road environment that consists of
autonomous vehicles equipped with sensors and other actors,
for example, human driven vehicles, which may not have
sensing ability. An autonomous vehicle would like to opti-
mize its driving utility, for example, speed and/or smoothness
of drive. To do so, it must choose a suitable motion plan
while being cognizant of the other on-road actors.

Further, we envision the prevalence of roadside infrastruc-
ture sensors. Information sensed by vehicles or infrastructure
may be communicated over a wireless network. In the ab-
sence of a network, an autonomous vehicle carries out motion
planning given the road region it can perceive using its local
sensors. Information from other sensors communicated over
a wireless network allows the vehicle to perceive a larger
region. Figure |l| provides an illustration. One expects this
to allow for better motion planning and improved driving
utilities.

However, communications related constraints impose lim-
its on information that can be communicated at any given
time. These limits impact the region that may be perceived
by the autonomous vehicle and thus impact its motion
plan. Conversely, an on-road environment, for example, a
high vehicle density, may restrict the feasible motion plans
and therefore diminish the requirement for communicating
sensed information over the network.

In this work, we capture this interplay for a single
autonomous vehicle (the ego vehicle) that uses the view
perceived by its local sensors (local view) and may choose to
query information sensed by the infrastructure to append an
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Fig. 1: Illustration of the on-road environment. A Vehicle
may query the infrastructure for information that it uses
to extend its local view. The infrastructure makes its own
measurements and may receive measurements made by other
vehicles too. The local view and the possible extended view
is shown for the vehicle V.

extended view to its local view. The communications network
is constrained and the ego vehicle may need multiple queries
to populate its extended view. The ego vehicle must adapt its
motion plan and its communications action (specifically, the
choice of sensed information queried from the infrastructure)
to the on-road environment, such that its driving utility is
optimized. We formulate this requirement as a reinforcement
learning problem.

Works that study the impact of communication constraints
on driving utilities are limited. A recent work [1] considers
the limits on speed in autonomous vehicle networks that re-
sult from communications constraints. Works like [2] and [3]
consider techniques to merge locally sensed information
with information obtained from other vehicles, to extend
a vehicle’s view. They use an 802.11n/g wireless network
as is for transferring sensed data amongst two to three
vehicles. There are other works [4] [5] that don’t dwell on
the sensed information and motion planning. Instead, they
consider problems related to vehicles sending information
over a wireless network.

Our specific contributions are:

1) We formulate the problem of optimizing the driving utility
of an autonomous vehicle using information obtained
from its local sensors, and by querying the infrastructure



over a network, as a reinforcement learning problem.
Specifically, we formulate a discrete-time infinite horizon
expected sum cost minimization. The goal is to find an
optimal policy that the vehicle will use to choose its
communications and motion planning actions at every
time step.

2) We avail the occupancy grid representation of the on-
road environment to capture both motion planning and
communications related constraints. While simple, this
helps us to clearly exhibit the interplay of planning and
communications.

3) We use the Q-learning algorithm to enable the ego
vehicle to learn the optimal policy, which solves the
above problem, as it drives through a simulated on-road
environment. Since Q-learning does not require the ego
vehicle to know the model that guides evolution of the
on-road environment, it can be used by an ego vehicle to
learn optimal policies over time in real settings.

4) We compare the driving utility achieved by the ego vehi-
cle, its choice of communications and motion planning
actions when using the obtained policy, with alternate
policies and under varied traffic densities and commu-
nications constraints.

The rest of the paper is organized as follows. In Section
we summarize related works. In Section [[II] we formulate
the problem followed by details on the occupancy grid
representation that we use in Section In Section
we explain how we use Q-learning to solve the problem.
Section [VI] details the simulator. Section provides an
evaluation of policies obtained using Q-learning for different
scenarios. We conclude in Section [VIIIl

II. RELATED WORKS

There exists a large body of work that explores planning
strategies for autonomous vehicles connected in a V2X
framework. We focus on works relevant to our problem
context, which involves cooperative perception and planning,
communications in vehicular networks and applications of
reinforcement learning to these problems.

Cooperative Perception and Planning: With increasing
sensing and communication capabilities in cars, cooperative
perception has become key to improving safety and traffic
flow density. Several efforts [2], [3], [6] have been made in
extending the range of perception of the ego vehicle. Kim et
al. [2], [3] combine locally sensed information from various
vehicles to create a merged occupancy grid map. The authors
also study and characterize the effect of communication
delay on map merging and conclude that safety critical
tasks like collision avoidance should rely on local sensing
information. They also suggest that longer-term decisions
like early lane change or lane keeping could benefit from
remote information. In [6], the authors take a Bayesian
approach to incorporate uncertainty in perception modules as
well as communication delays in the merged occupancy grid,
over which an appropriate algorithm like RRT* is applied for
path planning.

More recent works like [7], [8] discuss cooperative percep-
tion and planning in mixed-traffic scenarios, where certain
human driven vehicles may not have sensing and communi-
cation capabilities.

Manzinger and Althof [8] develop an algorithm for coop-
erative collision avoidance by redistributing drivable regions
fairly among the cooperating vehicles. The human-driven ve-
hicles in the occupancy maps are treated as any other obstacle
and are assumed to be known at each time instance. Kamal
et al. [7] also work in a mixed-traffic, i.e., partially connected
vehicle environment, and use the local and extended view to
create a ‘road speed profile’ of the upcoming road segment.
The road speed profile is then used for anticipative planning
and control to optimize a given utility function.

These approaches develop the framework for merging
the extended view with the local view and leverage the
global view for better planning, however, all the schemes
discuss broadcasting of information and do not consider the
‘usefulness’ of the sensing information received by the ego
vehicle. A naive approach of collecting data may lead to
unnecessary bandwidth consumption and processing delays.

Planning and Communications: A crucial aspect of coop-
erative perception is the underlying protocol for communi-
cation and the constraints it imposes. In case of vehicular
networks, often vehicles are equipped with multiple network
interfaces like DSRC, Wi-Fi and Cellular. Higuchi and Altin-
tas [9] explore hybrid schemes for vehicular communication
and design a strategy for selecting one of the communication
media (DSRC, Wi-Fi, Cellular, etc.) based on vehicular
density on road regions. Talak et al. [1], on the other hand,
observe that any wireless communication scheme imposes
constraints due to interference and delay and derive bounds
for velocity as a function of traffic density.

In [10], Roth et al. consider a multi-agent setting and
learn a policy with each agent broadcasting its local view
with no cost to communication. At execution time, however,
a heuristic approach is taken, where an agent decides to
communicate only when it benefits the team performance.
More recently, Best et al. [11] take a planning-aware commu-
nication approach for decentralized coordination of multiple
agents. A particle filter framework is used where each agent
tracks the action distribution of every other agent and decides
to communicate with one only when its local utility can
improve with new information.

III. MODEL AND OPTIMIZATION PROBLEM

We model the interaction of the ego vehicle with its
environment as a discrete-time dynamic system [12]

Trpt1 = fu(@p, uk, w), k=0,1,..., (D

where k indexes discrete time, xj, is the state observed by the
ego vehicle at time k, uy is the action that the ego vehicle
takes at time &, and wy, is a random disturbance that captures
the fact that the next state x4, given the current state xj
and action ug, is governed by a probabilistic model. The
function fj describes how the state is updated.



The state x3, = [xg) x,(cq)]’, for any k, is a n x 1 vector. It

consists of the two subvectors :U,(Cl) and x,(cq). The former is
a n; X 1 vector that is obtained from measurements made
by sensors local to the ego vehicle, and the latter is a
ng X 1 vector that the ego vehicle obtains by querying the
infrastructure. The action uy, = [ug) uéq)]’ is a 2 x 1 vector.
Here u,(cl) is the motion planning action that determines
the vehicle’s motion on the road (say, for example, its
velocity or lane) for the following time step and uéq is the
communications action that determines the query the vehicle
sends to the infrastructure. This query, at time k, populates
elements in :c;qll.

Let U () and U9 (xy,), respectively, be the set of all
motion related actions and communications related actions
that are feasible in state xzj. While the set of feasible
motion related actions restricts the on-road maneuvers the
ego vehicle may make, the feasible set of communications
actions captures the constraints on the ability of the ego
vehicle to obtain information from the infrastructure using
the communications network. An example of the former is
a limit on the maximum acceleration or velocity and of the
latter is a limited communications bandwidth/rate. For any £,
uy, is feasible only if u\” € U® (z},) and u{? € U@ (x},).

At time k, given that the ego vehicle observes state
x), and chooses action ug, it incurs a bounded stage cost
9k (g, uk, Tp41). Let X be the set of all states. Define
a stationary (independent of time k) policy p, which is a
function that maps every state x; € X to a feasible action
uy. Let J,(xo) be the infinite horizon discounted expected
sum cost when the ego vehicle starts in state g and uses the
policy . In terms of the stage costs, we can write

oo
Ju(20) = Eay o | > 0 gil@r, (@), 2a11)|zo |, ()
k=0
where 0 < o < 1 is the factor that discounts future costs, and
the expectation is over the sequence of states the ego vehicle
visits, having started in xy. In our work, we use a = 0.91.
Our optimization problem is to find the optimal policy p*
that minimizes the sum cost J,(xo), for all o € X. Let
II be the set of all feasible stationary policies. The optimal
policy is

p* =argminJ,(x0), Vrge X. 3)

pell
The optimal policy p*, at every time step, simultaneously
chooses a motion planning and communications action, as a
function of the state, such that the discounted sum cost in
is minimized.

IV. GRID REPRESENTATION

We use an occupancy grid to represent the on-road envi-
ronment through which the ego vehicle is driving. Each cell
in the grid is either empty or is occupied (has a stationary or
a moving obstacle). The grid, relative to the position of the
ego vehicle, is divided into the two regions of (a) local view
and (b) extended view. The local region occupancy can be
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Fig. 2: The grid corresponding to the states xj and x4 is
shown. The ego vehicle (blue car) has a local view of six
cells and an extended view of eight cells. Assume a velocity
of 2 cells/second. In xj, one other car is in the local view. At
any time k, the cells in the extended view are indexed relative
to the local view of the ego vehicle. The occupancy of those
with a grey background is unknown. The ego vehicle chooses
to stay at a velocity of 2 at k& and would like to query the cell
that is indexed 3 in its extended view at time k£ + 1. This is
cell 7 in the grid at k. The control action u,(f) = Do Nothing

and the query is ugn =3.

measured by the sensors local to the ego vehicle. On the other
hand, the ego vehicle needs to query the infrastructure to
obtain occupancy information in the extended view. Figure [2]
shows an illustration. In practice, cell occupancy information
is obtained by using sensors like cameras and LIDARs that
are observing the road region corresponding to the cell.

States in the grid representation: The state xj, at time k is
obtained from the occupancy grid as follows. The subvector
xg) is constituted of the velocity of the ego vehicle, its lane,
and the occupancy information of each cell that is in its local
view and can be measured] by its local sensors. In Figure
assuming that the ego vehicle is moving at a speed of 2
cells/second, and listing the cell occupancy in its local view
(starting from the cell behind the ego vehicle and going anti-
clockwise), we get xg) = [2 Left lane ' F F O F)', where
O and F denote, respectively, an occupied and a free cell.

The subvector x,(gq) consists of the occupancy of cells that
are in the extended view of the ego vehicle. Their occupancy
is obtained by querying the infrastructure at k& — 1. The
occupancy of a cell that has never been queried is set to
Unknown, else it is set to the last queried value. In Figure 2}
in state xy, the occupancy of cells marked —2,—1,1,2
(relative to the ego vehicle (blue)) was queried earlier to
be free and that of —4, —3, 3,4 is unknown.

Actions in the grid representation: In this work, we
restrict the set U()(z;) of motion planning actions to
{Accelerate, Decelerate, Do Nothing, Change Lane}. Accel-
erate and Decelerate correspond to the ego vehicle, respec-
tively, increasing and decreasing velocity. Lane Change has

'In this work we assume that the measurements are accurate. More
generally, the state may also include measurement uncertainty.



the vehicle move to an adjacent lane. The action Do Nothing
implies that the vehicle sticks to its current velocity and
lane. Occupancy of one or more cells in the extended region
at time k£ + 1 may be queried together at time k. The
set U9 (x}) includes actions, each of which corresponds
to a group of cells, which will be in the extended view
at k + 1, being queried. The set also includes the action
where in the ego vehicle chooses not to query. Larger
numbers of cells in a group correspond to a larger available
communications bandwidth (bits/sec). On the other hand, if
groups contain fewer cells, in effect, the ego vehicle has
access to a smaller communications bandwidth. In Figure [2]
the extended region has eight cells. Supposed we group
them into the sets Ry = {—1,—-2,—-3,—4} and Ry, =
{1,2,3,4}. To populate occupancy of either group at time
k + 1, the ego vehicle queries them at time k. We have
U@ (xy) = {Query Ry, Query Ry, No Query}. Implicitly,
the communications bandwidth is 4 cells/time step.

Uncertainty in the on-road environment: We introduce
uncertainty in the grid world by choosing a cell in the grid to
be occupied with a certain probability 0 < pOccupied < 1,
independently of the other cells in the grid, and unknown
to the ego vehicle. As the ego vehicle moves, new cells are
added and the occupancy of each cell is determined similarly.
The ego vehicle gets to know the true occupancy of a cell
once the cell is in its local view or if the cell is in the
vehicle’s extended view and it queries for its occupancy.

State evolution and costs: The ego vehicle will learn
the optimal policy p* using Q-learning, without an explicit
knowledge of the state evolution model (I)), using state and
action trajectories and stage costs obtained from a simulator.
Next, we describe the Q-learning based method followed by
a description of the simulator, where we describe the stage
costs.

V. FINDING THE OPTIMAL POLICY USING Q-LEARNING

The Q-learning algorithm provides a simulation driven
iterative method to find the optimal Q-factors Q*(z,u) for
every state z € X and action u € UM x U@, To simplify
notation, define set U(zy) = U®(z) x U@ (x;). The
optimal Q-factor Q*(x,u) is the optimal infinite horizon
expected sum cost when starting with the state-action pair
of (x,u). It is related to the optimal cost J,,« () of starting
in state x as per the following equation.

Ju+(x) = min Q*(x,u),

Vi € X. )
ueU(x)

The optimal policy * (Equation (3)) is given by

w'(z) =argmin Q*(z,u), Ve e X. (5)

ueU(x)

Further define

Q(@k, U, Tht1) = g(Th, Uk, Ty 1)

+a min Q(zgt1,v).  (6)
veEU (Th41)

The Q-learning based approach is summarized in Algo-

rithm [1] It proceeds in an episodic manner. A given episode

Algorithm 1 The Q-learning Based Algorithm

Inititalize: Q(z,w), Vx,u, numEpisodes, stepsPerEpisode
Output: Q*(z,u), Yz, u.
while episodeCount < numFEpisodes do
2o < SIMULATOR(); {Get starting state from simulator }
pOccupied < Choose uniformly and randomly from
{0,0.1,...,0.8}
t < 0;
while ¢t < stepsPerEpisode do
uil) < Choose uniformly and randomly from U (z,);
uiq) < Choose uniformly and randomly from U (x;);
w4 [y g
[Ti11, gt (Te, us, Tog1)]
SIMULATOR (¢, u¢, pOccupied);
Q(e, ue) + (1 — ) Q(zt, ur) + 7 Q(zt, ut, T41);
t—t+1;
end while
episodeCount <+ episodeCount + 1;
end while

begins by randomly picking a certain initial state-action pair
and running a long simulation trajectory (stepsPer Episode
long) that starts at the state-action pair. For every episode, we
provide the simulator a probability pOccupied with which a
cell in the grid must be occupied. For every state z; that
the simulation trajectory visits, a motion planning and a
communications action is picked uniformly and randomly,
respectively, from the sets U (z,) and U? () of actions
feasible in the state. Inputting these to the simulator gives
the stage cost g;(x¢, us, z441) and the next state ;4.

The Q-factor corresponding to the visited state and chosen
action is then updated using the original Q-learning algo-
rithm [12]. All other state-action pairs are left unchanged.
In this update, v € (0,1] is a step-size that when chosen
appropriately guarantees the convergence of the Q-factors
Q(z,u) to the optimal Q-factors Q* (x, u). We set it to 0.01.

For the simulation scenarios that we present later, we
observed convergence for a maximum of numFEpisodes =
107 and stepsPerEpisode = 200.

VI. SIMULATOR

We found simulators like Flow [13], DeepTraﬁicE] by MIT
and the Auto Drive Simulatorﬂ Flow integrates micro-traffic
simulation and reinforcement learning to explore control
strategies in various traffic scenarios. DeepTraffic and Auto
Drive both use deep reinforcement learning techniques to
optimize the motion plan of an ego vehicle. However, we
were unable to find simulators that supported the functional-
ity above together with the possibility of an extended view
that can be exposed to the ego vehicle in response to its
querying for information. Motivated by existing approaches
we built a simple simulator using, amongst others, the
Python libraries NumPy and Pygame. This enables us to
grasp the effectiveness of policies that adapt motion and
communications actions jointly. We will briefly describe how

thtps ://selfdrivingcars.mit.edu/deeptraffic/
3https ://github.com/HugoTian/Auto_drive_simulation
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the different actions are simulated followed by a description
of the stage costs.

The simulator keeps track of every cell in an occupancy
grid that includes the local view and the extended view. The
sizes of each view are fixed during a simulation. As the ego
vehicle moves, at every time step, new cells are added and an
equal number of cells leave the simulation. The simulator sets
the occupancy of a new cell to Occupied independently and
randomly with the probability pOccupied that is provided to
it. The occupancy of the cells that leave are lost.

The ego vehicle has access to the occupancy of all cells
in the local view. However, the occupancy of a cell in the
extended view is revealed to it by the simulator only when
the cell is queried.

The simulator maintains distance in the units of cells and,
correspondingly, velocity and acceleration in the units of
cells/time-step and cells/time—stepQEI The ego vehicle has a
certain maximum velocity that can be set. The minimum
velocity is 0. For scenarios we evaluated, the cell size was
set to that of the ego vehicle. Let v; be the velocity of the
ego vehicle at the time step k and let a;, be the acceleration
(a negative value implies deceleration) chosen by it. The
number of cells dj, covered by the ego vehicle and its velocity
at time k + 1 are calculated as

2
dy = v + V;J § Uk41 = Uk + k. (7)
To exemplify, if a vehicle moving at a velocity of 1 at time
k decelerates at a rate of 1, it will come to a halt at time
k + 1 in the cell it started in at time k. On the other hand,
a vehicle that has a velocity of 0 at time k, on choosing
to accelerate at 1, will have a velocity of 1 at time k + 1.
However, it will be in the same cell as it was in time k.
Lastly, lane changes are executed by moving the ego
vehicle by the number of cells given by and then placing
it in the corresponding cell in the chosen adjacent lane.

A. Stage costs (negative rewards)

To make the ego vehicle learn the optimal policy using
Q-learning we must set the stage costs (see Equation [2)
appropriately. We use a very simple reward structure. The
ego vehicle accrues unit stage reward (stage cost of —1) for
every cell it moves in its direction of travel. This is to ensure
that the vehicle covers distance. To discourage unnecessary
motion planning actions or communications actions, the ego
vehicle gets a stage reward of 0.1 when it chooses the motion
planning action Do Nothing or a communications action of
No Query. Note that a vehicle may choose both in a time
step, in which case it will get a reward of 0.2 added to the
number of cells it covered. An example of an unnecessary
motion planning action is that of changing lanes when all
available lanes including the current are empty. Similarly
querying the occupancy of a cell that is already known is an
example of wasteful communications. When an action leads
to an imminent collision, the vehicle receives a reward of

4For ease of presentation, we will skip the units.
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Fig. 3: The grid maintained by the simulator. We show an
instance in which the local view of the ego vehicle has a car.

—1000 (a very large stage cost). Its velocity is forced to 0
and its position remains unchanged.

VII. EVALUATION AND RESULTS

We will demonstrate the efficacy of jointly adapting mo-
tion planning and communications actions in response to
on-road and communications constraints. All results in this
section were obtained for the grid shown in Figure [3| The
ego vehicle could be in either lane, in its column of the
grid. It was constrained to have a maximum velocity of 2. It
could choose an acceleration and deceleration of 1 and —1,
respectively. We will compare the following scenarios. For
each of them, the optimal policy p*, given by Equation (),
was obtained using Q-learning, as described earlier.

1) Local View (LV) Only: The ego vehicle has no access to
communications. It can only adapt its motion plan based
on its local view.

2) Random Communication (RC): The ego vehicle receives
information about its extended view from the infrastruc-
ture. At any time instant, it receives the occupancy of
cells 1,2,3,4 or that of cells 5,6, 7,8, independently of
the previous time instants, and with equal probability. The
vehicle chooses its motion planning actions given its local
view and the occupancy received for the extended view.

3) Query of one column (two cells) at a time (C1): The
ego vehicle may query the infrastructure to populate its
extended view. A query at any time instant can be about
exactly one of the four columns, the groups of cells (1, 2),
(3,4), (5,6), and (7,8). This implies a communications
constraint of 2 cells per time step. C1 has about 15 x 10°
state-action pairs for which Q-factors must be calculated.

4) Query of two columns (four cells) at a time (C2): Similar
to C1. However, exactly one of the two groups (1,5, 2, 6)
and (3,7,4,8) may be queried by the ego vehicle. This
amounts to having a communications rate of 4 cells per
time step, which is twice that available in C1. C2 has
about 7 x 10° state-action pairs.

5) Full View (FV): The ego vehicle obtains, without the
need to query the infrastructure, the occupancy of both its
local and extended views at any given time instant. This
amounts to the ego vehicle having a large local view that
includes all cells in the grid in Figure [3] FV has about
1.5 x 10° state-action pairs.

Note that only in C1 and C2 does the ego vehicle jointly
choose the motion planning and communications actions. In
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Fig. 4: Figures (a), (b), (c), and (d) show, respectively, the average distance covered, the distribution of the velocity of the
agent, the distribution of the motion planning actions taken by the agent, and the distribution of the use of communications,
calculated over 5000 episodes of length 100 time steps. These are shown for four different probabilities of occupancy (akin
to traffic density). For each probability, we consider scenarios including Local view (LV), Random Communications (RC),
Communications - one column at a time (C1), Communications - two columns at a time (C2), and Full View (FV).

LV, RC, and FV, the ego vehicle chooses only a motion plan-
ning action. However, it has access to occupancy information
that ranges from local only in LV to the entire grid in FV.

For each scenario, we test the obtained policy over a
set of 5000 randomly chosen episodes, for a fixed choice
of probability pOccupied of a cell being occupied, where
each episode was 100 time steps long. We show results for
pOccupied = {0,0.2,0.5,0.8}. These choices correspond
to on-road environments varying from no occupancy (no
traffic) to very high occupancy (heavy traffic). During the
episodes we ensure that both the cells in adjacent lanes are
never occupied. This ensures that the ego vehicle has a free
cell to move into for all the 100 time steps in an episode.
Recall from Algorithm [I] that, for any scenario, the policy
is obtained by randomly choosing the value of pOccupied.
Specifically, we don’t train the ego vehicle separately for the
different values of pOccupied = {0,0.2,0.5,0.8}.

Understanding gains from an extended view: Figure [a]
shows the distance traveled by the ego vehicle for different
traffic densities and the scenarios we detailed above. Not
surprisingly, the distance covered in FV is at least as much
and often better than that covered under the other scenarios.
On the other hand, given the limited view that the ego vehicle
has in LV, the distance covered is smaller than the rest. The

ego vehicle does almost as well in C2 as in FV. This is
because the policy in C2 is able to query occupancy of all
the cells in the extended view (Figure [3) in two time steps
(four cells (two columns) at a time). Given that the maximum
speed of the ego vehicle is 2, C2 is in effect the same as FV.

Observe that the differences in distances covered under
the different scenarios shrink as the traffic density increases.
Also, in Figure [4b] observe that as traffic density increases
the agent chooses a velocity of 1 more often, in all the
scenarios. These two effects are in fact related. At large
traffic densities the ego vehicle must restrict its speed to
1 to avoid collisions even if it knows the occupancy of all
cells in the grid. Note that at a velocity of 2 the ego vehicle
moves two cells, either in the same lane or in an adjacent
lane, in one time step. While at any given time step, the ego
vehicle will find an empty cell to enter, the probability of
finding two consecutive empty cells is small for large traffic
densities. To summarize, larger traffic densities constrain the
velocities that the motion plan can choose. As a result, the
knowledge of occupancy of cells in the extended view brings
smaller rewards for larger densities.

Adapting communications to a constrained on-road envi-
ronment: While in FV the ego vehicle gets the entire view
without any communications, one would hope that C1 and




C2 would query less in high density scenarios as they jointly
adapt motion planning and communications. This is in fact
the case and can be seen in Figure Note that as the traffic
density increases, the fraction of times No Query is used as
a communications action increases. It is about 40% for C2
at a density of 0.8. On the other hand, C1 does not query at
all at the density of 0.8. This is because, given that it can
query only two cells (one column) at a time, it is never able
to benefit from the resulting extended view and it always has
the ego vehicle move at a velocity of 1 (Figure {b).

Adapting motion planning actions to communications con-
straints: From Figure [fal we can see that in C2 the ego
vehicle covers the largest distance amongst RC, CI1, and
C2. In RC the ego vehicle has no control over the received
information. However, it receives 4 cells per time step as
described earlier. This is the same as what the ego vehicle
can query in C2. Clearly, from Figure[4a] there are huge gains
to choosing the communications action smartly. On the other
hand, communications in C1 are constrained because of a
smaller available communications rate (2 cells (one column)
per time step). The impact of this on motion planning is
apparent on seeing the distributions of velocity (Figure b))
chosen by the ego vehicle in C1 and C2. The constrained
communications in C1 restricts the fraction of time the ego
vehicle chooses the maximum velocity of 2. The differences
are especially significant for low traffic densities, that is when
the on-road environment does not constrain motion planning.

Observe from Figure 4al that RC shows gains over C1 for
lower densities and does as well for higher densities. The
gains are because in RC the communications rate is twice
that in C1. This larger rate compensates for the randomness
regarding what information must be sent in RC.

Action Selection: Consider Figure which shows how
motion planning actions are distributed across the scenarios
and for different traffic densities. For a traffic density of 0,
LV, C2, and FV almost always choose Do Nothing. This is
because, given the absence of any other occupants, in LV the
ego vehicle sticks to a velocity of 1 and in C2 and FV it sticks
to a velocity of 2. C1 and RC try to opportunistically benefit
from communications. When the ego vehicle has a large
enough extended view, it accelerates. At a higher velocity, it
covers distance faster and isn’t able to acquire the required
extended view to stay fast. Hence, it decelerates. For similar
reasons, at higher traffic densities, C2 sees a lot more of
acceleration and deceleration than FV. In C2, the ego vehicle
opportunistically increases velocity when communications
reveals space in the extended view. However, this also means
that it is forced to decelerate when the density is high. In FV,
on the other hand, the ego vehicle is more often at a velocity
of 1 (see Figure [Ab] for densities 0.5 and 0.8). Both C2 and
FV see similar distance rewards (Figure , however.

Finally, observe that as traffic density increases the fre-
quency of lane changes increases. This is simply because
the ego vehicle encounters occupied cells more often.

VIII. CONCLUSIONS AND FUTURE WORK

We formulated a reinforcement learning problem in which
an autonomous vehicle jointly chooses a motion planning
action and a communications action at every time step,
such that its driving utility is optimized. We used the Q-
learning algorithm to make the ego vehicle learn the opti-
mal policy using simulations. We demonstrated how jointly
adapting motion planning and communications actions al-
lows an autonomous vehicle to (a) make judicious use of
the communications network in an on-road environment that
constrains feasible motion plans and (b) smartly choose
motion planning given communications constraints.

In the future we plan to investigate more realistic motion
and uncertainty models and leverage deep reinforcement
learning techniques to obtain policies. In addition, extensions
to networks of autonomous vehicles are planned.
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