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Abstract—This paper presents an original methodology to es-
timate delay risk a few days before operations with generalized
linear models. These models represent a given variable with any
distribution from the exponential family, allowing to compute
for any subject its own probability distribution according to its
features.

This methodology is applied on small delays (less than 20
minutes) of high-speed trains arriving at a major french station.
Several distributions are tested to fit delay data and three
scenarios are evaluated: a single GLM with a negative binomial
distribution and two two-part models using both a logistic
regression as first part to compute the probability of arriving on
time, and a second part using a negative binomial or a lognormal
distribution to obtain the probabilities associated with positive
delay values.

This paper also proposes a validation methodology to assess
the quality of these probabilistic predictions based on two
aspects: calibration and discrimination.

Index Terms—Railway punctuality, Generalized Linear Mod-
els, Delay modeling, zero-inflated data

I. INTRODUCTION

Demand in public transportation has strongly increased
these past years and important investments have been made
to support this growth. However, for the railway sector
new resources are expensive and long to deploy. A strong
utilization of available resources presents benefits as more
trains can be scheduled, but the service is less reliable and
the average delay is higher. This is the trade-off between
capacity and reliability [1].

An efficient management of capacity is necessary to
simultaneously provide a quality service and respond to
railway demand. However, network saturation and potential
delays make scheduling processes very challenging. Delays
impact planning feasibility and real-time rescheduling is
inevitable. This phenomenon is particularly pronounced in
stations where most of delays occur and propagate, due
to route conflicts, passenger activity or synchronization of
connections (crews, rolling stock or passenger). Strategies
exist to limit this propagation, for instance by imposing buffer
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times between two successive uses of the same resource.
However, margins are limited by available capacity and buffer
times need to be affected wisely.

As a response to congestion issues and with recent techno-
logical advances, large investments have been made to pro-
vide tools to support decisions for traffic management [2]. In
particular, different traffic monitoring devices and automatic
data collection tools have been developed. Machine learning
methods can be used for analyzing these data to explain a
part of traffic variability. Understanding this variability can
help to increase level of service, for instance with real-
time rescheduling tools, passenger information systems or
simulation methods.

This paper presents an original use of Generalized Linear
Models on historical railway data to estimate delay risk.

This paper is structured as follow. Section 2 exhibits a
rapid overview of literature on delay prediction. Section 3
describes the problem and the case study. Section 4 presents
theory about methods that are used here. Experiments are
depicted in section 5 and results are given in section 6.
Section 7 addresses considerations about obtained results,
limits and perspectives. Conclusions are provided in the final
section.

II. RELATED WORK

There has been an important number of researches dedi-
cated to travel time and delay analysis in public transporta-
tion, and in particular for their prediction. Two different type
of study using Machine Learning and data mining techniques
have been identify based on prediction horizon: short-term
prediction and long-term prediction [3].

The first one corresponds to an analysis at operational
level. It is fed with real-time data, and it aims to estimate
delay at next stops knowing the current delays through
the network. Predictions can be used for rescheduling or
passenger information. Peters et al. [4] propose a passenger
train delay prediction with neural networks aiming to limit



delay propagation with intelligent real-time timetable mon-
itoring. Pongnumkul et al. [5] estimate arrival time more
accurately with moving average and k-nearest neighbors
algorithms than with a simple translation of the current
delay. Kecman and Goverde [6] apply linear regression,
decision trees and random forests in order to predict running
and dwelling times considering current train position and
traffic information. Oneto et al. [7] present extreme learning
machines used on historical and exogenous data like weather
records to predict the delay that will affect a train at next
checkpoints with respect to its delay at last visited points and
to the delays of other trains running over the same section.

On the other hand, there are long-term delay predictions
which are conducted at a tactical level (few months to days
before operations) or even at a strategic level. These studies
usually utilize timestamps of trains at specific points of the
network and aim to discover pattern in delays. They have
interesting perspectives for service improvement, e.g. more
robust planning, new dispatching strategies or investments
support. Markovic et al. [3] propose a prediction model of
arrival train delays with support vector regression in order
to have a better understanding of the relationship between
infrastructure and delays. Cerreto et al. [8] apply k-means
clustering to identify different delay profiles, providing new
insights for managerial decisions.

III. CASE STUDY
A. Proposed Framework

This work aims to support tactical decisions for main
stations management, and in particular to improve robustness
of solutions of the platforming problem by integrating actual
delay risk at least one day before operations. This problem
consists in routing trains through station and affecting them
platforms. An inadequate solution can have a strong impact
on punctuality [9].

From an operations research perspective, a robust solu-
tion can be defined as a solution which remains feasible
in real conditions when small disturbances occur. For the
platforming problem, a good schedule must produce limited
delay propagation during operations [10]. For this reason,
this study analyses only delays below 20 minutes: they
have a significant impact on schedule feasibility, they occur
frequently and they produce consecutive delays [10]. Larger
delays are less predictable and have different causes: they
add noise in the data set. Moreover, they are not relevant for
the routing problem: dispatching actions will be necessary to
route the delayed train [11].

Early trains are considered punctual in this analysis (nega-
tive delays are set to zero). This is a strong assumption as they
might have consequences on the scheduling. However, this
study focuses on delayed trains in a fist place, and restricting
the variable domain to non-negative integers allows to use
state-of-the art distributions.

B. Context

This study takes place at Montparnasse station in Paris,
France. This station has a complex infrastructure and hosts
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Fig. 1: High-speed arrival train delays

about 800 arriving and departing trains per day, making
the routing task difficult. Different services (high-speed,
suburban, regional trains) are studied with separate models
of delay risk estimation. This avoids to merge heterogeneous
data in the same analysis. This paper presents a model for
high-speed trains arrival delays.

C. Data

Observations and most of explanatory variables are ex-
tracted from historical track occupation data. These data
contain information for each passing train such as the train
number, the observed delay in minutes or the observation
time and the date. They were collected at Montparnasse
station in Paris and at every stations of the high-speed
network to reconstitute each train’s journey, e.g. its origin,
its stopping pattern or density of the traffic during its trip.
Other data sources are used, such as weather data or school
holidays calendar.

Data of all high-speed trains from the 1% July 2016 to the
30" June 2017 were extracted, representing approximately
27 500 trains. Observations with an unusual stopping pattern
(defined as less than 0.3% of the occurrences) were deleted
because they might correspond to errors in the data or ex-
ceptional circumstances. Trains with delays above 20 minutes
were also deleted. The remaining 23 000 trains were used for
this study. Moreover, trains with negative delay were set to
zero. Corresponding delay distribution is displayed in Fig. 1.
It is heavily right skewed with a peak at zero.

IV. METHOD CHOICE

A. Generalized Linear Models

Generalized linear models (GLMs) extend linear regression
by allowing to model non-normal response with eventually
non-constant variance. They have three components [12]:

o A random component, with the response variable Y and
its distribution from the exponential family.

o Linear predictors : n = X 3 with X the covariate matrix
and 3 the parameter vector.



e A link function g that relates the random component
to the predictors : g(u) = n with p the distribution
parameter vector.

A generalized linear model can be written as :

Y  ~Exp(p)
L Z%5 W

These models estimate the distribution parameter . of each
observation. Regression coefficients vector 3 is determined
by maximum likelihood. The response variable can have
various shapes according to the distribution choice : GLMs
can model binary data, count-data and continuous data on
different domains, e.g. real or positive.

B. Two-part models

Delays are known to be well fitted by distributions from
the exponential family, like the negative-exponential, Weibull
or lognormal distributions [13], [14].

In this study, delays are non-negative integers with a
peak at zero as many trains arrive on time. This clumping
makes state-of-the-art distributions inappropriate to model
train arrival delays with a GLM. Indeed, several density
functions, including lognormal and Weibull, are not defined
in zero. Even with discrete distributions, GLMs can have a
lack of fit due to a disproportionate rate of zero values [15].

A classical method to handle these zero-inflated data is
to use two-part models [12], [15]. The first part is a binary
model, like a logistic regression, for the dichotomous event
of having zero or positive observations. The second part fits
values above zero with a continuous or discrete distribution. It
is trained only on positive observations(without zero values).
A global cumulative distribution function is obtained by
combining predictions of the two parts.

Let Y = (y1,..,yn) be the observations vector and X the
covariate matrix.

Then for ¢t > 0:

Plyr < tlxg] =m + (1 — m)Plyr < tlyx > 0, 2]  (2)

The first model estimates 7, = Py = O|xx] and Py <
t|lyr > 0, xg] is determined with the second model for each
Yy, and each ¢.

C. Validation

Goodness-of-fit assessment of probability prediction mod-
els is more difficult than punctual prediction models which
are usually evaluated by means of the difference between
the predicted values and the observed outcomes (residuals).
For probability predictions, the model outcome and the
response variable are not homogeneous: on one hand there
is a probability and on the other hand a real non-negative
observation.

An option is to evaluate the predicted cumulative distribu-
tion functions at several time-points. A binary framework is
used : a success (observation equal to 1) corresponds to an
arrival after ¢ minutes and the prediction is the probability
of having a delay greater than ¢ minutes. In this framework,
goodness-of-fit is usually assessed with discrimination and
calibration analysis [16].

1) Calibration: it refers to model's ability to estimate
probabilities that are consistent with observed rate of events.
It can be tested either graphically or statistically for binary
responses. In both cases, subjects are first sorted by their
predicted probability of success and separated in g equal-
sized groups, then predictions and observations are compared
among each group.

A calibration plot is obtained by displaying for each group
of subjects the average estimated probability with the actual
proportion of successes. For a well-calibrated model, the plot
should be close to the 45-degree line.

Model goodness-of-fit is usualy assessed by the Hosmer-
Lemeshow test [17]. The Hosmer-Lemeshow statistic is given
by :

g
_ (01— E1)* | (0o — Eo)?
Cy = ; 5t O

where O; ; and E; ; (resp. Op; and Ej ;) are the observed
and predicted number of successes (resp. failures) in group
i. Under the null hypothesis that the model fits the data, C,
follows a x? distribution with g — 2 degrees of freedom [18].
A well calibrated model is expected to have a non-significant
p-value, e.g. greater than 0.05, which does not lead to reject
the null hypothesis.

2) Discrimination: It refers to the ability to distinguish
successes from failures based on the predicted probabilities.
It is usually measured with the area under the ROC curve
(AROQC) [16]. Indeed, it evaluates the likelihood for a positive
event of having a higher predicted probability of success
than a negative event [17]. If AROC = 0.5, the model
doesn't discriminate. Discrimination increases with AROC,
and values greater than 0.7 are in general considered as
satisfactory [17].

Discrimination and calibration are two separate measures.
Indeed, a model that predicts the same probability to all
subjects can be well calibrated but won’t discriminate at all,
while a model with systematic errors on estimated proba-
bilities can discriminate subjects with different outcomes as
predictions ranks are preserved.

As predictions are expected to be used to adapt planning in
a major station, both aspects are required. Indeed, the differ-
ent train types are studied with separate models. Probabilities
must be calibrated to allow using them simultaneously to take
decisions, otherwise a type of train might be privileged due
to bias in estimations. Discrimination is important to develop
robustness strategies: residual capacity can be used where it
is most needed only if the model distinguishes accurately
different levels of risk.

V. EXPERIMENTS

The purpose of this experiment is to compare performances
of single GLM and two-part GLM on small delays data.

All experiments are performed with the R package
GAMLSS [19], which allows fitting data with a large variety
of distributions, including truncated ones, and to estimate
several parameters of a distribution simultaneously. The



package also has functions to fit distribution to data and to
perform step-wise feature selection, which are used here.

The dataset is randomly divided in a train set with 17 200
observations and a test set with 5 800 observations. Models
are trained on the train set and their performances are also
evaluated on the test set in order to verify their ability to
generalize to unknown data.

A. Distribution choice

A distribution has to be chosen to model the variable
“delay” in a GLM framework. This distribution can be either
discrete or continuous. In a single-part model, the distribution
fits all values, otherwise it fits only the positive ones.

For each scenario, distributions from the package are
tested. They all are truncated on the right at 20 minutes.
Distributions are compared and sorted based on their Akaike
criterion in Table I. Part 1. compares discrete distributions
applied on the full train set. Part 2. also compares discrete
distributions but only on positive values of the train set.
Distributions are truncated at O for these experiments. Part
3. contains results on continuous distributions defined for
positive values.

TABLE I: Distributions goodness-of-fit

Part 1. Discrete distributions on full data set

Distributions Parameters AIC
Zero Inflated Poisson Inverse Gaussian 3 64 950
Zero Adjusted Negative Binomial 3 64 980
Negative Binomial 2 65 100
Delaporte 3 65 100
Sichel 3 65 100
Zero adjusted logarithmic 2 65 390
Waring 2 66 470
Yule 1 66 590
Poisson inverse gaussian 2 67 030
Geometric 1 72 800
Zero inflated Poisson 2 79 220
Poisson 1 123 260

Part 2. Discrete distribution for positive delays

Distributions Parameters AIC
Sichel 3 41 140
Waring 2 41 150
Delaporte 3 41 160
Negative Binomial 2 41 180
Geometric 1 41 330
Yule 1 42 770
Poisson 1 54 410

Part 3. Continuous distribution for positive delays

Distributions Parameters AIC
Box-Cox Power Exponential 4 39 850
Box-Cox-Cole-Green 3 40 900
Box-Cox t 4 40 900
Generalized Inverse Gaussian 3 40 930
Lognormal 2 41 470
Gamma 2 42 360
Weibull 2 42 526
Negative Exponential 1 42 680

B. Models

Many distributions have similar results based on Akaike
criterion. Simpler distributions, such as Poisson or Negative
Exponential have the worst results. Since in practice algo-
rithms for fitting distribution with three parameters require a

huge computational burden and often do not converge, only
distributions with one or two parameters are considered here.
Three models are tested :

e Model 1: a single count model with a negative binomial
distribution

e Model 2 : a two-part model with a logistic regression
and a left-truncated negative-binomial distribution

e Model 3 : a two-part model with a logistic regression
and a lognormal distribution

In these three cases, distributions are right-truncated as
there are no values greater than 20. Second parts of two-
part models are trained on positive values of the train set,
representing about 8 000 subjects.

C. Feature selection

The dataset contains many redundant features and non-
informative predictors. A stepwise procedure is used to obtain
a relevant features subset with a greedy search method. The
initial model is the null model with an empty feature subset.
For m potential variables, the two following steps are iterated
until the criterion stops decreasing:

« m models are generated by adding one new feature to
the subset or by deleting one of the current subset.

o The model with the smaller criterion is kept and the
subset is updated.

The criterion is a function of the log-likelihood penalized
by the size of the subset : C = pk — 2[ with [ the model
log-likelihood, p the penalty and k the size of the subset.

In this work, the procedure is iteratively applied to all
distribution parameters if there are several until convergence
and k has been set to 3 according to [20].

Original dataset has 110 potential explanatory variables.
After the feature selection procedure, Model 1 has 36 features
for 1 and 35 features for 0. Model 2 and Model 3 have a
subset of 43 explanatory variables for their fist part with the
logistic regression. Second part of Model 2 uses 18 features
to model 1 and 17 to model o. Second part of Model 3 uses
34 features for p and 10 features for o.

VI. RESULTS

Models are evaluated as follow : for each time-point ¢ from
1 to 20 and for each observation, P[y > t|x] is calculated,
where y is the delay and x the covariate vector. In Model
1, this probability is directly estimated from the cumulative
distribution function of the modeled probability distribution
given the parameter estimates. In Model 2 and Model 3 it is
estimated as described in equation (2).

Ply > t|x] is then considered as the estimated probability
of success of a binary GLM. Calibration and discrimination
are tested and results are given in the following tables. For
each time-point ¢ and each proposed model, the p-value of
the Hosmer-Lemeshow test and the area under the ROC curve
are calculated. The number of groups g used for the Hosmer-
Lemeshow test is computed according to recommendations
given by Paul and Lemeshow [21] to standardize the power
of the test when the sample size or the successes rate are



TABLE II: Model comparison on train set

parameters Model 1 Model 2 Model 3
NBI LR - NBI LR - LOGNO
t f g P ROC P ROC P ROC
1 46 1190 0.91 0.66 0.63 0.66 0.63 0.66
2 37 1190 0.34 0.66 0.90 0.65 0.00 0.65
3 30 1190 0.24 0.66 0.16 0.66 0.05 0.66
4 25 1064 0.52 0.67 0.49 0.66 0.48 0.66
5 20 875 0.40 0.67 0.59 0.67 0.52 0.67
6 17 720 0.58 0.68 0.05 | 0.68 0.46 0.68
7 14 608 0.97 0.69 0.87 0.68 0.34 0.69
8 12 520 0.84 0.69 0.39 0.68 0.29 0.69
9 10 442 0.07 0.69 0.94 | 0.69 0.15 0.69
10 9 379 0.23 0.69 041 | 0.69 0.18 0.69
11 7 325 0.16 0.70 0.02 0.69 0.01 0.69
12 6 274 0.02 0.70 0.24 0.69 0.01 0.69
13 5 230 0.42 0.70 0.37 0.70 0.00 0.70
14 4 190 0.74 0.69 0.14 | 0.69 0.00 0.69
15 4 152 0.20 0.69 0.00 0.68 0.00 0.69
16 3 117 0.20 0.68 0.00 0.67 0.00 0.66
17 2 89 0.62 0.67 0.03 0.64 0.00 0.65
18 2 63 0.06 0.64 0.01 0.61 0.00 0.60
19 1 37 0.08 0.57 0.04 0.55 0.00 0.54
20 | <1 18 0.18 0.50 0.02 0.51 0.00 0.50

TABLE III: Model comparison on test set

parameters Model 1 Model 2 Model 3
NBI LR - NBI LR - LOGNO
t f g ) ROC J2 ROC J ROC
1 46 | 133 | 0.15 0.65 0.19 0.65 | 0.19 0.65
2 37 | 133 | 0.00 0.66 0.27 0.65 | 0.00 0.65
3 30 | 133 | 0.08 0.66 0.06 0.66 | 0.00 0.66
4 24 1 133 | 0.64 0.66 035 | 0.66 | 0.00 0.66
5 20 | 133 | 0.53 0.66 0.14 0.66 | 0.04 0.66
6 17 | 133 | 0.62 0.67 0.01 0.67 | 0.14 0.67
7 15 133 | 0.37 0.67 0.01 0.67 | 0.40 0.68
8 12 | 133 | 0.04 0.68 0.36 0.68 | 0.33 0.68
9 11 133 | 0.46 0.68 0.25 0.68 | 0.21 0.69
10 9 130 | 0.38 0.68 0.04 0.69 | 0.08 0.69
11 8 109 | 0.02 0.69 0.37 0.69 | 0.60 0.69
12 6 92 0.16 0.70 0.25 0.69 | 0.27 0.70
13 5 76 0.28 0.69 0.05 0.70 | 0.00 0.68
14 4 61 0.11 0.70 0.31 0.70 | 0.19 0.70
15 4 50 0.46 0.71 0.00 0.70 | 0.15 0.70
16 3 40 0.13 0.69 0.19 0.70 | 0.05 0.69
17 2 29 0.32 0.69 0.03 0.67 | 0.06 0.66
18 1 20 0.36 | 0.67 0.34 0.65 | 0.37 0.64
19 1 12 0.24 0.61 0.36 0.55 | 0.56 0.56
20 | <1 10 0.44 0.50 0.44 0.52 | 0.55 0.50

varying. f represents the percentage of trains arriving with a
delay greater than ¢.

A model is considered calibrated with a non-significant p-
value (greater than 0.05) and the greater is the area under
the ROC curve, the better the model discriminates. However,
correct models might still have small p-value. Diagnostic has
to be done with a calibration plot to evaluate how strong are
the deviations between observations and estimations.

For instance the null hypothesis is rejected for Model 1 and
Model 3 for t = 2 on the test set. Fig. 2 shows corresponding
calibration plots for g = 40. Model 3 is not well calibrated as
the plot is under the diagonal : it overestimates the probability
of having a delay greater than 2 minutes. On the opposite,

Callibration Curve of Model 1 for t=2 Calibration Curve of Model 3 for t=2
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Fig. 2: Graphical diagnostic of calibration

Model 1 seems to be correctly calibrated.

VII. DISCUSSIONS
A. Model choice

GLMs constitute a promising alternative to model train
delays: they are based on probabilistic predictions instead
of punctual values like state-of-the-art approaches. With this
methodology, it is possible to evaluate the risk associated
with any delay value.

Two options are presented here with classic GLM and two-
part GLM. A single part model is easier to use with only
one model to fit on the full data set but two-part models
have some benefits too. At first they allow to represent train
delays with state-of-the-art continuous distributions. These
distributions, e.g. Weibull, Gamma or Lognormal, can't fit
positive mass in zero, excluding modeling delays with a
single GLM. Then a two-part model is simpler as it requires
smaller feature subset for each parameter estimator, and the
second part is trained on a subset of data. This is interesting
as estimating a two-parameters GLM may take a while to
converge, especially on large datasets. Therefore, feature
selection procedure takes much more time for Model 1 than
for Model 2.

B. Results analysis

When ¢ increases, the proportion of trains with a delay
greater than or equal to ¢, decreases strongly. Predicted
probabilities become small and their range is narrow. This
can cause borderline effects when calibration is estimated
because the number of successes per group is limited and
standardization of the Hosmer-Lemeshow test may fail [21],
[22]. This can be observed for ¢ > 16 as results on both sets
don't match : the three models perform better on the test set
due to standardization default. Regarding the discrimination,
with large ¢ there are not enough events to distinguish them,
and this leads to poor scores.

The two models using a negative binomial distribution
have fair results, in particular from a calibration perspective.
For a given time-point ¢, the area under the ROC curve is
approximately the same for the three models. Calibration of
the single-part model is better than calibration of the two-
part model according to the standardized Hosmer-Lemeshow
test. It can be explained by the fact that Model 1 is trained on
the full train set while the second part of Model 2 is trained



only on positive data. This constitutes a non-negligible loss
of information.

Model 3 performs more poorly, especially for small time-
point values where deviations between predictions and ob-
servations can be observed graphically.

VIII. CONCLUSIONS

This paper presents a novel approach to model train
arrival delay risk at a major station with single and two-
part generalized linear models. Prediction can be done a few
days before operations in order to integrate the estimated
probabilities in the scheduling process.

However, goodness-of-fit is more difficult to assess for
probabilistic predictions as they cannot be compared with
observations directly. A validation methodology is proposed
based on their calibration and discrimination ability.

Both models using a negative binomial distribution achieve
good calibration and acceptable discrimination results. These
results may be improved by adding new predictors or modify
their shape and encoding. Indeed, performance of any method
will be bounded by the quality of the predictors. Another
option would be to clean data and delete outliers.

Future researches will focus at first on using this methodol-
ogy to other train types of the Montparnasse station and then
on integrating this predictions in operations research models
for main stations management.
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