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Data Association for Grid-Based Object Tracking
Using Particle Labeling

Sascha Steyer, Georg Tanzmeister, Christian Lenk, Vinzenz Dallabetta, and Dirk Wollherr

Abstract— Estimating surrounding objects and obstacles by
processing sensor data is essential for safe autonomous driving.
Grid-based approaches discretize the environment into grid
cells, which implicitly solves the data association between mea-
surement data and the filtered state on this grid representation.
Recent approaches estimate, in addition to occupancy probabil-
ities, cell velocity distributions using a low-level particle filter.
Measured occupancy can thus be classified as static or dynamic,
whereby a subsequent tracking of moving objects can be limited
to dynamic cells. However, the data association between those
cells and multiple predicted objects that are close to each other
remains a challenge. In this work, we propose a new association
approach in that context. Our main idea is that particles of the
underlying low-level particle filter are linked to those high-level
objects, i.e., an object label is attached to each particle. Cells
are thus associated to objects by evaluating the particle label
distribution of that cell. In addition, a subsequent clustering is
performed, in which multiple clusters of an object are extracted
and finally checked for plausibility to further increase the
robustness. Our approach is evaluated with real sensor data
in challenging scenarios with occlusions and dense traffic.

I. INTRODUCTION

An accurate model of the environment is essential for
autonomous vehicles. Sensor data are required to detect
surrounding traffic participants and obstacles of the current
local environment. Objects have to be extracted from those
sensor data to plan interactive maneuvers and avoid colli-
sions, i.e., to enable safe and intelligent autonomous driving
applications. A basic problem of object tracking is the data
association between predicted objects of the temporally fil-
tered estimation and new measurements, which also directly
applies to the data fusion between different sensors.

A common approach is a high-level fusion, e.g. [1], [2],
in which, per sensor, object hypotheses are extracted from
the individual measurements by specific features and asso-
ciated with tracked objects of that sensor. The sensor data
fusion is performed afterwards, i.e., based on that abstracted
high-level representation, which also requires a high-level
association. Various data association concepts exist that can
be used for this purpose, e.g., local or global nearest neigh-
bor (NN/GNN) association [3], multiple hypothesis tracking
(MHT) [4], joint probabilistic data association (JPDA) [5],
or random finite set (RFS) tracking [6], [7].

The sensors used today usually provide a large amount of
detections, i.e., an object typically induces multiple measure-
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ments, resulting in so called extended object tracking [8]. The
abstraction of measurement data to a high-level object repre-
sentation like a bounding box shape, however, causes infor-
mation loss and thus also a more error-prone data fusion and
association. Hence, it is beneficial to fuse those measurement
data in advance, i.e., on a low-level representation.

Occupancy grids [9] enable such a low-level represen-
tation, in which the sensor-specific measurement data are
modeled in a uniform, discretized grid with occupancy prob-
abilities of each grid cell. Sensor data can thus be fused cell-
wise, i.e., the association is implicitly solved by the spatial
cell discretization without requiring object assumptions. This
concept is also used in the temporal accumulation, resulting
in the known grid mapping of static environments.

Dynamic occupancy grids additionally estimate the dy-
namic state of the grid and thus distinguish static and
dynamic occupancy. Hence, moving objects can be extracted
and updated by solely considering dynamic occupied cells,
whereas static obstacles are estimated in the grid map repre-
sentation. This simplifies the association as the set of mea-
sured occupied cells that can be associated with the predicted
objects is reduced to those that are classified as dynamic.
Moreover, since static obstacles are precisely modeled in the
grid map without requiring to extract them in the same high-
level object representation, ambiguities of overlapping areas
of predicted objects are significantly reduced.

Occupied cells can be classified as dynamic by determin-
ing free/occupied inconsistencies between the accumulated
map and new measurements, e.g. [10]-[12]. This concept is
used in [12]-[15] to classify parts of the measurement data
as dynamic, which are then clustered using a distance- or
density-based clustering to extract object hypotheses. These
object hypotheses are finally associated with filtered objects
using GNN, MHT, or JPDA.

Clustering dynamic cells for extracting new occurring
objects is expedient as no previous information is available
in such a case. However, especially in urban environments,
there are several scenarios where a clustering without addi-
tional information fails. For example, multiple objects that
temporarily move closely to each other may result in one
large cluster, whereas partial occlusions of one object may
result in several small clusters. Hence, it is crucial that
available information of predicted objects is considered in
advance to help solving these ambiguities. In [16], a region
of interest of each predicted object is used as possible starting
points of a clustering of that object. However, no detailed
prediction of expected areas of occupancy or object shape
information are considered in those regions of interest.
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Recent approaches of dynamic occupancy grids use a grid-
based particle filter to estimate the dynamic state of the oc-
cupied environment, e.g. [17]-[21]. Each particle represents
a hypothesis of occupancy at a specific continuous position
with a particular velocity. This low-level particle tracking is
primarily used to robustly estimate cell velocity distributions
and thus predict occupancy probabilities of the grid map.
This velocity estimation also helps distinguishing objects that
move closely to each other with different velocities.

In our previous work [22], we proposed to associate indi-
vidual grid cells with existing objects without using a clus-
tering. The predicted object pose and box model shape are
used to compute the expected areas of measured occupancy,
resulting in cell association probabilities of each object. In
addition, the similarity of the estimated cell velocity and the
object velocity is considered. The mentioned scenarios where
a clustering typically fails can thus be handled this way.
However, a main drawback is that the occupancy likelihood
approximation of cells extracted from the box representation
is not accurate, even though the current visibility of the box
edges is also considered. This is critical in overlapping areas
of multiple objects, in which conflicts of multiple similar cell
association probabilities cannot be robustly solved.

Filtered objects can also be directly extracted by clustering
dynamic cells that are estimated by the low-level particle
tracking, since the particle population already represents a
filtering of occupancy and velocity distributions. As stated
in [17], those particles could be extended by a unique ID to
reconstruct trajectories of those extracted objects. Similarly,
in [18], an object ID of those particles is used to extract ob-
ject clusters including their mean velocity and gravity center.
This ID is propagated by the particle resampling, i.e., du-
plicated particles inherit the ID, whereas randomly drawn
new particles are initialized with a new unique ID. However,
the resulting object clusters tend to have similar problems
as described before, i.e., a large object can result in several
small clusters of estimated objects, whereas objects moving
closely to each other converge toward one single cluster.

In this work, we propose a new association concept using
those low-level particles. Similar to [17], [18], particles are
also extended by an object identifier, which we denote the la-
bel of a particle. However, as presented in [22], we retain our
concept of using a separate high-level object tracking with an
unscented Kalman filter that is updated by a set of associated
occupied cells. That way, an accurate object state, including
the position, velocity, orientation, acceleration, turn rate, and
the size of the box model shape, is robustly filtered. More-
over, merging or deleting objects is decided on this high-
level representation. Hence, our main motivation is to use
the low-level particle population for improving the associa-
tion between occupied cells and high-level objects.

The basic idea is that particles can be linked to an object,
where the predicted population of all particles linked to an
object represents the prediction of its occupancy likelihood.
Hence, those labeled particles enable an accurate estimation
of the expected areas of occupancy measurements of each
object. Cells can thus be associated by analyzing their parti-

cle label distribution. Additionally, in a subsequent clustering
step, multiple clusters of an object are extracted and checked
for plausibility. Finally, only the most certain clusters of an
object are used, i.e., uncertain clusters can also be discarded,
which further improves the association.

Overall, we propose a new association approach in the
context of grid-based object tracking that improves the object
estimation and, altogether, the safety of autonomous driving
applications. The rest of this paper is structured as follows:
Sec. II defines the specific data association problem of this
work and gives an overview of our grid-based environment
estimation approach. The proposed particle labeling associa-
tion is presented in Sec. III, which is extended in Sec. IV by
the additional clustering step with verification. Results with
real sensor data in various scenarios are given in Sec. V.

II. PROBLEM FORMULATION AND GRID-BASED
MAPPING & TRACKING OVERVIEW

In this section, the addressed data association problem of
input measurements and predicted objects is defined regard-
ing the specific representations of this work. In addition, the
basic concept of the overall grid-based mapping and track-
ing approach is explained, especially the low-level particle
tracking, as it is directly used to solve the association. Further
information of that approach is described in [20]-[22].

A. Problem Formulation

The fused measurement data of various sensors are mod-
eled in a measurement occupancy grid

Zy ={z.|ce€ G},

that represents measurement data from one time instance ¢,
i.e., not accumulated over time. An occupancy grid represen-
tation using the Dempster-Shafer evidence framework [23],
[24] is used. Each cell measurement z. of a cell ¢ € G of the
grid structure G contains two measured beliefs bel(-) € [0, 1]
for the hypotheses occupied O and free F', respectively.

The output of the overall grid-based object tracking ap-
proach [22] are temporally filtered objects, called tracks
7 € Ty, with T; defining the set of all estimated tracks at
time ¢t. Each track 7 is defined by its state s, containing
the pose and size of the oriented box model, among others.
Hence, cell measurements z., or the cell indices ¢, have to
be associated to the corresponding predicted track T € T; to
perform a measurement update of that track. Relevant cells
of the grid structure can be limited to the set

G'={ce G| bel(0,.) >TE.} Cg, 2

as only cells above a minimum occupancy measurement
threshold 'Y, € (0, 1) are considered for this purpose.

Overall, the association problem is described by the sur-
jective function

fo : G = TU{&) e 3)

that maps occupied cells ¢ € G’ to tracks 7 € T; given the
cell measurements z. and predicted track states S.. Cells
that are not associated to a track are mapped to an auxiliary

2o = [ bel(0.0), bel(F.) ]T (1)
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variable £, representing static background, clutter, or new
objects. As this work handles extended objects rather than
point objects, multiple cells can be associated to a track, with

C=fceG | fule)=7} VreT; o

defining the set of cells associated to a track 7. However,
each cell is at most associated with one track, i.e.,

C‘rl mCTQ = @ leaTQ S 7;; T1 7£ T2 . (5)

Fig. 1 exemplarily illustrates this data association problem
between occupied cells of the measurement grid Z;, shown
in Fig. la, and multiple predicted tracks 7 € T, shown in
Fig. 1b. The resulting associated occupied cells C, of each
track 7 are visualized in Fig. 1c.

B. Dynamic Grid Mapping and Particle Tracking

An object tracking that directly and solely uses the
measurement occupancy grid Z; as input would require to
extract high-level objects for all, arbitrary shaped, occupied
areas of the environment. Static obstacles, however, can be
modeled and estimated more accurately and efficiently by
an occupancy grid map using the same grid representation
as the input. Therefore, the object tracking should be limited
to dynamic parts of the environment instead, which requires
an additional dynamic state estimation of the grid.

In [21], we proposed such a dynamic grid mapping ap-
proach that estimates evidence masses for the hypotheses
static occupancy .S, dynamic occupancy D, free space F,
and their combined hypotheses. Hence, the unclassified oc-
cupancy hypothesis O = {S, D} is split into the individual
hypotheses S and D, which are separately estimated. The
filtered dynamic grid map allows a classification and thus a
subdivision of the measured occupancy belief

bel(Oz,c) = m(Si,c) + m(DZ,c) + m(Oi,c) (6)

into individual evidence masses m(-) € [0, 1] of static, dy-
namic, and the remaining unclassified occupancy evidence,
which together form a pseudo-measurement z. The resulting
occupancy classification of Fig. la is shown in Fig. 1d.
Dynamic evidence masses m(D) of the grid map are
robustly estimated using a low-level particle tracking. Each
particle x € A} of the population &; represents a hypothesis
(2% ut o] ™
of dynamic occupancy at a specific position z, € R? with
a velocity v, € R? and an occupancy value o, € [0, 1). The
particle population A&} is updated cell-wise by evaluating
the set of particles X . associated to a grid cell c€ G
regarding the current positions x,. Particles are only drawn
in dynamic cells and, to initialize new dynamic evidence, in
cells with unclassified occupancy of the filtered map. Static
occupancy, in contrast, is directly accumulated by the map
without using particles. The main task of the particle tracking
is to estimate cell velocity distributions and to initialize and
predict dynamic evidence of the dynamic grid map using
the corresponding occupancy values o, . The filtered particle
population of the scenario of Fig. 1 is shown in Fig. le.

ID:9 i

(& ()

Fig. 1. Overview of the association problem and proposed approach.
(a) Measurement occupancy grid Z; (O: pink, F': green). (b) Predicted
tracks 7. (c) Resulting associated occupied cells Cr of each track. (d) Oc-
cupancy classification of measurement grid (S: red, D: blue). (e) Particle
population. (f) Proposed labeled particle population. (g), (h) Front and rear
camera images with an additional projected overlay of (a) and (b).

In addition to the dynamic grid mapping approach of
[21], the predicted tracks are used to avoid that occupied
cells of slow-moving objects converge from dynamic toward
static in this work. Hence, dynamic evidence and thus the
corresponding particles are retained in areas of the predicted
tracks. Therefore only occupied cells with a dynamic ev-
idence m(D) above a threshold I'2. € (0,1) have to be
considered in the association as defined in (3). Overall, the
set of cells that can be associated to a track is limited to

G"={ceqG |mDs.)>TE1Cg. 8)

III. PARTICLE LABELING ASSOCIATION

This section presents the concept of using the low-level
particle representation for solving the association between
occupied grid cells and object tracks.

A. Particle Label Extension as Object Identifier

Our main idea is to extend the track attributes by linking
a set of particles X7 C X, to each track 7 € 7; that help
to solve the association problem as defined in (3). For this
purpose, a label index

Iy € Tt U{So} €))

is attached to each particle x that defines the possible
connection to a corresponding track. Fig. 1f illustrates the
proposed label extension of the particle population of Fig. le.
The set of particles linked to a track 7 is thus defined by

X ={xeXx|l,=1}, (10)
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where each particle is at most linked to one track at time ¢,

(1)

This label is inherited in the particle resampling step to
remain the linking to the corresponding track, while com-
pletely new drawn particles are initialized with [, = p.
However, the particle label is not evaluated in the particle
filter itself, i.e., no object relation is used for the prediction or
weighting of the particles to retain a robust low-level tracking
without modeling specific extended object assumptions for
the point mass particles. Hence, the filtering behavior of the
particle tracking remains unchanged. In the following, the
population &; represents updated particles after resampling,
meaning that a particle velocity weighting and update using
radar Doppler measurements as presented in [20], [25] are
performed in advance. Measured velocities are thus implic-
itly considered by the updated particle population.

XTNXP =0 Vr,meT, n#mn.

B. Cell Association Using Particle Label Evaluation

Dynamic occupied grid cells ¢ € G” as defined in (8) are
associated with tracks 7 € 7T; by evaluating the particle label
distribution in a cell. The ratio

rTo— ‘Xttc|
X

€ [0,1] (12)
of the number of particles | X .| linked to a track 7 compared
to the total number of particles |X; .| in that cell ¢ indicates
the origin of an occupancy measurement. The track

(13)

T, = argmax r, ,

TET:
with the most corresponding particles in that cell results in
the best fitting association. As stated in (5), each cell is
associated at most with one track. Hence, a cell is associated

it e > T
fa(c) = {

&p ,else veeg”
0>

(14)

to the best fitting track 7 if the ratio of particles is above a
threshold I'; , otherwise no track is associated to that cell.

Within the remaining set of unassociated dynamic oc-
cupied cells ¢ € G” with f,(c) = &, potential new object
tracks are analyzed using a combination of a density-based
clustering and a region growing as proposed in [22]. The

resulting set of newly detected tracks is denoted by 7,"".

C. Farticle Label Update / Reselection of Linked Particles

After the measurement update of the tracks, the linking
between the particles and tracks has to be updated. On the
one hand, particles that are too far away from the bounding
box of the corresponding track should not retain linked to that
track. On the other hand, particles without a corresponding
track, i.e., [, = {p, but that are inside the bounding box of a
track and have a similar velocity, may be linked to that track.
This concept basically corresponds to a gating, i.e., defining
which area of a track is generally valid and which not.
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Fig. 2. Schematic illustration of particle labeling association concept.

The scenario shows a guardrail on the left side, partly wrongly classified
as dynamic, and two existing tracks with one turning right. (a) Classified
measurement grid. (b) Labeled particle population and associated cells (§y:
black, 71: cyan, T2: orange). (c) Update of particle labels (filled rectangles:
bounding boxes of updated tracks; dashed lines: valid gating areas of tracks).

The first case, i.e., unlinking all particles that do not match
with the linked track anymore, is described by

& VxeA, 7eT,
T={x e o ¢ blsr,A)}

The position z, of a particle x is compared with the
bounding box b(s,,Ap) of the track 7 which depends on
the track pose and length/width that are part of the state s,
where the valid area is enlarged by a distance parameter Ay,.
This unlinking strategy implicitly includes resetting labels of
deleted tracks.

The second case, i.e., linking new particles to a track,
including newly extracted tracks 7,"%, is described by

ly717 VxeAy, 1€ TUT™,
5= {XGXE‘” | 2y € b(sr) A vy €Evg(sr) A
(597: E{TUTN{1} : 2y eb(s;))}.

A particle is only newly linked to a track, if it is directly
inside the not enlarged bounding box b(s,) of exactly one
track. In addition, the particle velocity v, is compared to
a defined valid velocity gating interval vy(s;) of the track.
In overlapping areas of multiple tracks, no new particles are
linked to any track. In such a case, particles that remained
their label, without being unlinked by (15), are used to solve
these ambiguities.

The different steps of the particle labeling concept are
illustratively summarized in Fig. 2. Dynamic occupied cells
of the classified measurement grid, shown in Fig. 2a, are
associated to the two existing tracks by evaluating the particle
label distributions, cf. Fig. 2b. After the measurement update
of the tracks, the particle labels are updated, while particles
outside the gating area are unlinked from that track and
particles without a label that are inside the bounding box
of a track are added to that track, see Fig. 2c.

5)

(16)

IV. ADDITIONAL CLUSTERING WITH VERIFICATION

In this section, the particle labeling association of the
previous section is extended by a subsequent clustering step.
Multiple clusters of a track are extracted and eventually
checked for plausibility. The motivation of this additional
step is twofold. First, dynamic cells that have not been asso-
ciated to any track by the particle population but are directly
adjacent to cells associated with a track may be added to
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that cluster. This is especially crucial for cells that are not
directly covered by the estimated box model, i.e., outside the
bounding box b(s,). For example, a preceding vehicle that
turns quickly where a wrongly estimated orientation does not
cover the long side of the detected L-shape. Secondly, the
particle labeling association may associate individual cells
close to a track, which, however, are not part of that track.
For example, this may occur at road boundaries or curbs with
some parts wrongly classified as dynamic, or new emerging
objects that have not been extracted as a separate track in
areas next to an existing track.

A. Adaptive Dynamic Evidence Threshold Selection

First, the dynamic evidence masses m (D3 .) of all cells
¢ € C; that are associated to a track 7 by the particle labels
as defined in (14) are analyzed. An adaptive threshold

1
+(r) = max (r,ﬁn, S m(Dz,c)>

ceC,

a7

is calculated that depends on the mean dynamic evidence
mass of the set C; and a factor I'** € [0, 1]. This dynamic
evidence threshold ~(7) is at least T2~ as defined before

in (8). The set C. is thus reduced to the subset

C.={ceCr|m(Dzc) >~(1)}, (18)

i.e., insignificant cells regarding the dynamic evidence mass
are discarded. Such lower dynamic evidence masses may oc-
cur, e.g., for cells with an uncertain static/dynamic classifica-
tion or noisy radar detections that are modeled with a low oc-
cupancy belief. Overall, this concept reduces false positives
of the association and enables a more sensitive clustering of
neighboring dynamic cells as described in the following.

B. Clustering of Associated Cells and Neighbors

Secondly, cells of the set C. are evaluated in terms of
a clustering. In addition, neighboring unassociated dynamic
occupied cells of the set

Gty ={ced" 1 fule) = A 18 =T

cgn\JC, ro=1->"1]

TET: TET:

19)

are added to these clusters. However, unassociated cells with
an ambiguous particle label distribution are excluded in Cém,
i.e., only cells with no significant track origin are added in
this clustering step. Hence, the ratio &% of the number of
particles without an object label compared to all particles
in that cell has to be above the threshold I , cf. (12),
(14). A single-linkage hierarchical clustering with a distance
threshold T'¢__ between the cell centers z.. is used, i.e., two
cells ¢; and co are associated to the same cluster if

||Icl - xc‘z” < anaxa

20
ClGC,/,_,CQECLU{CGC&QJM(D;C)2’7(’7’)}, (20)

which also requires that m (D ) of an unassociated cell is
above the adaptive threshold «(7) of that track. Overall, this

results in |, | clusters C¥, k € K., of a track 7 with
ckceruc, cincl #£0, cLcl ek vke K, . 1)

Each cluster C* contains at least one cell of the set C.,
whereas the union of all clusters of a track includes all cells
of the set C., and the intersection of two clusters results in
the empty set, i.e., a cell is at most associated to one cluster.

C. Cluster Score Verification

Thirdly, the clusters are checked for plausibility before
they are finally associated. Therefore, the clusters C* of each
track 7 are compared to its predicted state $,. The ratio of
the number of cells that are inside the predicted bounding
box is calculated as

{cecCF|a e b(éT)}’
IC¥]

This ratio indicates the conformity in terms of the position. In

addition, the length b;(C¥) and width b,,(C¥) of each cluster

are calculated, i.e., an oriented minimum bounding box is

extracted using the predicted track orientation. This extracted

bounding box geometry is compared

bi(CF) — bu(3)]
Abl _ ‘ I\Yr _ ,
T,k bl(ST)

x —
T,k —

(22)

|bw(67]f) — bw(‘§‘r)|
by (8+)

(23)

with the length b;($;) and width b,(5,) of the bounding
box b(§,) of the predicted track. This relative geometry
conformity is mapped to a factor

)\b’k = exp (—nb min(AblT’k, Ab;‘ik)) €10,1],

T

(24)

with a scaling parameter parameter 77, € R™. Only the more
fitting side of the box is considered in /\ﬁ, &> 1.€., it is sufficient
if only the length or the width of the track is represented by
a cluster. Overall, a cluster score

A = A7 5 Aoy € [0,1] (25)

is calculated that combines the conformity of the position
and the box geometry compared to the predicted track. This
concept can be extended by analyzing additional aspects
like the cell velocities regarding the particle velocities vy,
adjacent static occupied evidence m(Ss ), or the included
freespace evidence bel(F}).

All cluster scores of a track are normalized with respect
to the best cluster score of that track, i.e.,

Y >\‘r,k

max M-
ek,

(26)

Finally, cells of a cluster are associated to the corresponding
track

f(’l(c) — min Ve e g//7 27

T,if c€ Ck /\Xﬂkzlﬂ‘
&p , else

if the normalized score of the cluster is above a threshold
2. € [0,1]. Due to the normalization, the best fitting cluster
of a track is always associated to that track, whereas addi-
tional clusters are only added if they have a similar score.
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V. EXPERIMENTAL RESULTS

The proposed approach has been tested in various real
traffic scenarios. The test vehicle is equipped with four laser
scanners and four short-range radar sensors. The implemen-
tation is based on fast parallel GPU computing that enables a
real-time application in the autonomous driving test vehicles.
A grid cell size of 0.15m x 0.15m and a maximum of
100 particles per cell is used. In the following, the particle
labeling association is compared with a clustering that does
not use any information from the predicted tracks, with our
previous association approach [22], and with the proposed
additional clustering with verification.

Fig. 3 shows an urban scenario where the ego vehicle is
surrounded by multiple objects. The vehicle on the south-
west of the ego vehicle is, due to the restricted sensor field
of view, split into two separate areas of occupancy mea-
surements, cf. Fig. 3a. Those ambiguities cannot be directly
solved by a clustering without prior knowledge. It either re-
sults in multiple object hypotheses of the bottom left vehicle,
demonstrated in Fig. 3b, or, with a larger distance threshold,
in one big cluster that actually belongs to multiple objects.
Hence, a correct association would require a subsequent split
or merge of the object hypotheses formed by the individual
clusters. The predicted state of the tracks is required to solve
these ambiguities. Fig. 3c shows the correct association using
the predicted labeled particle population, which is visualized
in Fig. 3d. Our previous approach [22] is demonstrated in
Fig. 3e, in which cell occupancy association probabilities are
calculated from the bounding box model of the predicted
tracks. That approach also solves those ambiguities and
results in the same correct association in that case.

In scenarios with multiple tracks moving closely to each
other, however, this box model occupancy likelihood approx-
imation is error-prone to inaccuracies of the predicted track
state. Fig. 4 shows such a scenario with two vehicles closely
moving in parallel. Their correct estimation is illustrated
in Fig. 4b. To demonstrate the error-proneness in case of
an incorrect state estimation, an orientation offset of 15°
is added to the predicted track on the right side (ID 1).
Hence, the front left corner of that track overlaps with the
rear right corner of the other vehicle (ID 2), as shown in
Fig. 4c. Ambiguous cells in the overlapping area can thus
be associated to the wrong track, leading to wrong mea-
surement updates, which then further reinforce the incorrect
state estimation and thus the association of the next time
instance, cf. Fig. 4f. In contrast, the particle population
linked to a track represents a detailed occupancy likelihood
approximation of that track, see Fig. 4d. This approach is
robust against overlapping ares of the box models, cf. Fig. 4e
and Fig. 4g, since the particles remain their label from the
previous time instance in such a case, i.e., the label is only
updated when no ambiguities occur.

Fig. 5 demonstrates a scenario where the particle labeling
association, shown in Fig. Sc, fails. Cells of a nearby
curb, which are wrongly classified as dynamic, but are not
extracted as a separate track, are associated to the closely
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Fig. 3. Scenario with a vehicle (bottom left) with two separate areas of

measured occupancy due to a limited sensor field of view. (a) Classified
measurement grid. (b) Clustering without prior knowledge. (c) Proposed
particle labeling association. (d) Predicted tracks and labeled particle pop-
ulation. (e) Predicted tracks and occupancy association probabilities.
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Fig. 4. Scenario with two closely moving vehicles with a modified orien-
tation estimation. Orientation of track 1 is modified in (c), (e), (), (g) by
an offset of 15°. (a) Classified measurement grid. (b)+(c) Occupancy asso-
ciation probabilities. (d)+(e) Labeled particle population. (f)+(g) Associated
cells over time (z-axis) and predicted track box model with 15° orientation
offset of track 1, (f) corresponds to (c), (g) to (e). (i) Camera image.
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Fig. 5. Scenario with a vehicle moving closely to a road boundary with a
curb that is wrongly classified as dynamic. (a) Classified measurement grid.
(b) Labeled particle population and predicted tracks. (c) Particle labeling
association. (d) Additional clustering process (color of a cluster is not related
to the corresponding track here). (e) Finally associated clusters and resulting
measurement minimum bounding boxes. (f) Camera image.
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moving track. The additional clustering process, however,
distinguishes those cells of the curb as a separate cluster,
cf. Fig. 5d. Hence, by evaluating the individual scores of
each cluster, that outlying cluster results in a low cluster
score and is thus excluded. The selection of valid clusters
is chosen conservatively, i.e., a high threshold ')\ is used
such that the score of an cluster has to be similar to the
best cluster of that track, cf. (27). A track is updated by an
extracted minimum bounding box of the associated cells as
described in [22]. Hence, false negatives, i.e., occupied cells
of that track which have been omitted in the association,
only lead to a smaller, more conservative minimum bounding
box that still correctly updates the track. False positives, in
contrast, result in an overestimation of the bounding box of
that measurement and thus also of that filtered track, which
is more critical. This cluster score verification concept can
also be extended by evaluating multiple hypotheses, e.g.,
using MHT or RFS, with different measurement updates
of arbitrary combinations of the clusters over time, which,
however, also increases the computational effort.

Another challenging urban scenario with multiple sur-
rounding vehicles and an approaching scooter is shown in
Fig. 6. Multiple time instances are visualized that illustrate
the movement of the scooter, which is very close to the
other vehicles and the ego vehicle and thus also causes
occlusions. As demonstrated by the different processing steps
and the successive time steps, the proposed particle labeling
association with the subsequent clustering and verification
correctly associated the measured occupied cells to the cor-
responding tracks and thus successfully distinguishes those
different objects. Further results of the proposed association
concept and the overall grid-based environment estimation
approach are demonstrated in the attached video.

VI. CONCLUSIONS

This paper has presented a new data association approach
in the context of grid-based object tracking. Particles of
the underlying low-level particle tracking, primarily used to
estimate the dynamic state of the grid, are linked to filtered
object tracks by an attached label. The predicted particle
population linked to a track represents its expected areas
of measured occupancy, which is used for the association
between those measurements and tracks. As shown in various
real traffic scenarios, this approach is especially useful to
solve ambiguities, e.g., caused by occlusions or dense traffic,
where a clustering without using information of the predicted
tracks often fails. In contrast to our previous approach,
those low-level particles enable a detailed approximation
of the occupancy likelihood of a track. Furthermore, based
on those individually associated cells, multiple clusters of
a track are extracted and analyzed. Wrongly associated
cells of neighboring dynamic areas, which are not part of
that track, can thus be detected and rejected. Overall, the
proposed association approach is basically robust against a
wrong dynamic classification, e.g., guardrails close to a track,
closely moving objects with an inaccurate prediction, clutter
measurements, or occlusions with gaps between clusters.
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Fig. 6.

Scenario with multiple surrounding stopped vehicles and an
approaching scooter. Columns show evaluation over time. (a) Classified
measurement grid. (b) Predicted tracks and labeled particle population.
(c) Particle labeling association. (d) Additional clustering step (color of a
cluster is not related to the corresponding track here). (e) Finally associated
clusters and measurement minimum bounding boxes. (f) Camera images.
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