
Drive2Vec: Multiscale State-Space Embedding of
Vehicular Sensor Data

David Hallac†∗, Suvrat Bhooshan†∗, Michael Chen†∗, Kacem Abida‡, Rok Sosič†, Jure Leskovec†
†Stanford University

{hallac, suvrat, mvc, rok, jure}@stanford.edu
‡ Volkswagen Electronics Research Laboratory

kacem.abida@vw.com

Abstract—With automobiles becoming increasingly reliant on
sensors to perform various driving tasks, it is important to encode
the relevant CAN bus sensor data in a way that captures the
general state of the vehicle in a compact form. In this paper,
we develop a deep learning-based method, called Drive2Vec, for
embedding such sensor data in a low-dimensional yet actionable
form. Our method is based on stacked gated recurrent units
(GRUs). It accepts a short interval of automobile sensor data
as input and computes a low-dimensional representation of that
data, which can then be used to accurately solve a range of tasks.
With this representation, we (1) predict the exact values of the
sensors in the short term (up to three seconds in the future),
(2) forecast the long-term average values of these same sensors,
(3) infer additional contextual information that is not encoded in
the data, including the identity of the driver behind the wheel,
and (4) build a knowledge base that can be used to auto-label
data and identify risky states. We evaluate our approach on a
dataset collected by Audi, which equipped a fleet of test vehicles
with data loggers to store all sensor readings on 2,098 hours
of driving on real roads. We show in several experiments that
our method outperforms other baselines by up to 90%, and we
further demonstrate how these embeddings of sensor data can
be used to solve a variety of real-world automotive applications.

I. INTRODUCTION

With modern automobiles containing hundreds or even thou-
sands of sensors [9], cars are increasingly relying on sensor
data to adapt and react to the vehicle’s environment. For exam-
ple, this data can be used to automatically adjust to different
road conditions [8] or even to stop with the emergency braking
when about to hit an object [7]. Beyond specific applications,
there is also value in the raw data itself. This is because the
sensor data, which comes from the automobile’s Controller
Area Network (CAN) bus [19], provides a comprehensive
picture of the vehicle’s state, including the particular condition
and environment that the car is in at that specific moment
in time. However, as more and more sensors are added, it is
becoming increasingly difficult to define, evaluate, understand,
and eventually analyze the vehicle’s state.

Encoding sensor data to learn the state of the vehicle is
valuable because it can be used for situational awareness and
to identify specific driving scenarios (i.e., as a knowledge base
[22]), or even to predict driver actions in the near future,
such as turning on a blinker or a lane change. Building
this type of knowledge base is especially important in the

∗ — DH, SB, and MC contributed equally to this work.

age of connected, and eventually autonomous, cars. A true
state of the car is useful across a variety of contexts, from
low-level engine optimization to high-level anticipation and
driver/cabin settings, which can improve efficiency, safety,
and the driving experience as a whole. When anticipating
driver actions before they occur, for example, the vehicle can
optimize fuel flow based on how hard it predicts the driver will
push the gas pedal in the short-term future [3]. Or, vehicle-to-
vehicle communication systems could alert neighboring cars
when a driver is about to change lanes [27].

However, it is a challenge to aggregate all of this sensor
data into a single, compact state. It is unclear how to mathe-
matically define such a state, which sensor data is significant,
and how to ensure that the state representation is actionable
on a variety of tasks. Additionally, state representations are
more powerful when they can be embedded in a compact
(low-dimensional) representation. A compact representation is
critical in the resource-constrained environment of an auto-
mobile, since it is more efficient for storage/transmission and
can be transferred easily to any model or decision system.
Low-dimensional representations also improve interpretability
and reduce overfitting. This need for low-dimensionality adds
additional constraints to the already challenging problem of
defining and learning a state for automobiles.

In this paper, we develop a method, which we call
Drive2Vec, of capturing the state of an automobile. Our main
contribution is that we propose a novel way of representing the
vehicle’s state, which we define as a low-dimensional vector
that is predictive of both the short and long-term future of the
car. While standard dimensionality reduction techniques [10],
[15] allow us to understand what the car is currently doing, our
definition of state is more nuanced, as it operates on multiple
granularities at once. We require that the state predicts not
only what the car is about to do, but also what the car will
be doing over the long term. Specifically, in addition to being
able to uncover first-order effects, or short-term actions (i.e.,
about to turn right, slow down, etc.), this embedding must
also contain information about long-term second-order effects,
highlighting the environment that the vehicle is in and the
characteristics of the driver behind the wheel. For example,
the expected long-term average velocity will be very different
if the car is in a crowded city compared to an open highway.
These environmental factors affect the sensor values over the

ar
X

iv
:1

80
6.

04
79

5v
1 

 [
cs

.L
G

] 
 1

2 
Ju

n 
20

18



long-term, and thus can be used to anticipate average values
over long time horizons. The advantages of our Drive2Vec
method are that the state is compact (low-dimensional), it
can be inferred in real-time, it works with both floating point
and boolean-valued sensors, and the state estimator can be
continually improved as data arrives in a streaming setting.

Drive2Vec uses a deep learning model based on stacked
gated recurrent unit (GRU) cells [4], [5]. These GRUs are a
specific type of recurrent neural network (RNN) cell, capable
of learning long-term temporal dependencies in sequential
time series data [16]. Our model takes as input a short segment
of sensor data and returns a low-dimensional embedding
representing the car’s state. We analyze and evaluate our
method on an anonymized dataset, collected by Audi, where
contractors in Ingolstadt, Germany drove modified Audi A3
vehicles equipped with data loggers to store all their sensor
readings. Our dataset contains 665 boolean and floating point
value sensors and was sampled at 10Hz. We develop a method
to encode each sample in just 64 dimensions (i.e. floating point
numbers), less than 10% of the original dataset size. We do
so by taking a short one-second window of time, ending at
that timestep, and passing it through our neural network to
embed it in a low-dimensional format. Even with this reduction
in size, our embedding is able to accurately accomplish a
number of tasks. We evaluate Drive2Vec by using it to predict
the exact values of all 665 sensors in the short-term (up to
three seconds in the future), as well as average sensor values
in the long term (up to 100 seconds), outperforming other
baselines by up to 90%. Next, we use these same embeddings
to learn contextual information that is not in the sensor data,
specifically the identity of the driver. We then examine the
robustness of our method to various embedding sizes, and
we demonstrate the method on three different application case
studies. First, we show how Drive2Vec can be used to auto-
label common driving actions, such as turns and brake slams.
Second, we analyze examples of “hard braking”, showing
that our embeddings are able to identify these risky states
even before the actual braking occurs. Finally, we look at
the temporal evolutions of these embeddings, focusing on
locations where the embedding undergoes a sudden shift. We
see that these sudden shifts occur when performing complex
short-term maneuvers (i.e., turns) while also changing between
different road types, for example from a highway to a rural
road, which affects the long-term forecast as well.

Overall, the main contributions of our paper are:

• We formally define a car’s state as a low-dimensional
representation that is predictive of both its short and long-
term future sensor values.

• We develop Drive2Vec, a deep learning-based method of
learning this state from CAN bus data.

• We evaluate our method on a large dataset containing
thousands of hours of driving data on real roads.

• We show that our approach is accurately able to solve
many useful applications, including driver identification,
auto-labeling of data, and more.

Related work. Learning low-dimensional state embeddings
is a well-studied problem in various fields, from words in
a language [22] to nodes in a network [12]. For sensor
data, methods for capturing the state have typically relied
on approaches that focus on reconstructing the input data,
including autoencoders [15] and principal component analysis
[29]. However, these methods are limited in this setting
because they are designed to capture only the present (i.e.,
what the car is doing at that specific moment), but not
what the car will do in the near-term and long-term future.
With Drive2Vec, in contrast, the same low-dimensional state
can be used across many different applications. One such
application is short-term prediction, which has typically been
solved using Kalman filters [11], [20], a specific type of
dynamic factor model [23], or using Box-Jenkins ARIMA
models [24]. However, these approaches are only meant for
short-term time series forecasting, and it is difficult to extend
them to the various other tasks that we perform. Furthermore,
these methods are not well suited for IoT applications due to
storage and transmission constraints [1], [2], whereas our low-
dimensional embedding is compact, runs in real-time, and can
aggregate data from many sensors and across many vehicles
to continually improve its state estimator. Similarly, there
has been work on driver identification [13], [30] and auto-
labeling of data [26], but these models are typically built for
only one specific purpose. They are unable to transfer across
different prediction types and thus struggle to extend into more
general knowledge-based tasks. There has also been work on
discovering discrete embeddings [14], but such methods can
only express a limited number of states, rather than an entire
multidimensional spectrum of potential candidates. Within
continuous-valued time series predictions, Drive2Vec is the
first approach (to the best of our knowledge) that attempts to
learn an embedding that is predictive of the future at multiple
scales, both in the short and long-term, though the multi-
granularity approach has been utilized in other domains [18].
Even though embedding the state based on predicted future
behaviors is challenging, the many potential applications of
such work makes it a necessary problem to solve.

II. DATASET DESCRIPTION

The dataset was collected by AUDI AG and Audi Elec-
tronics Venture. It contains sensor readings from 10 vehicles,
driven by a total of 64 drivers for a cumulative 2,098 hours
and covering 110,023 kilometers. The 64 drivers, all paid
contractors, drove modified Audi A3’s that stored all of the
car’s sensor readings. To capture and save the data in an
economically efficient manner, an offline device was used to
store all communication from the car’s CAN bus. The sensors
were sampled at various rates, but we synchronized them to
10Hz, the rate at which the majority were sampled.

From this CAN bus dataset, we took every float-valued and
boolean sensor with non-zero variance. This comprised a total
of 665 signals (110 floats, 555 boolean), each of which were
recorded 10 times per second. We note here that we included
every float and boolean sensor, so some sensors changed very



infrequently (i.e., whether the windshield wipers were on/off),
while others changed values at almost every timestep (i.e.,
the steering wheel position). Additionally, since the sensor
readings had different scales and units of measurement (i.e.,
RPM vs. how hard the gas pedal was pressed), all float-valued
sensors were normalized to have zero mean and unit variance.

III. PROPOSED METHOD

Here, we describe our method, which we call Drive2Vec, for
learning a low-dimensional embedding from a short interval of
sensor data. We represent the overall neural network in Figure
1. The network accepts 10 timesteps of sensor readings (10
sequential 665-dimensional vectors), which are transformed by
subsequent layers to a single 64-dimensional vector (which
represents our final Drive2Vec embedding), and finally to a
2,660-dimensional output. Since the data is sampled at 10Hz,
this 10-sample input represents one second of data. These
inputs are fed into a gated recurrent unit (GRU) [5] of size
256. A GRU cell is a type of recurrent neural network (RNN)
with an update gate (zt) and reset gate (rt) that update given
input xt and hidden state ht as

zt = σ(W (z)xt + U (z)ht−1)

rt = σ(W (r)xt + U (r)ht−1),

where W and U are weight parameters learned by the model.
The hidden state then updates as follows:

ht = zt◦ht−1+(1−zt)◦tanh(W (h)xt+rt◦U (h)ht−1). (1)

This GRU yields 10 outputs (1 per timestep), each 256-
dimensional, which is then fed into a second GRU. We stack
these GRU’s because this allows different layers of the RNN
to operate at different levels of abstraction [25]. We then send
the final output from the last timestep (a size 256 vector)
to a series of two dense fully connected layers. The first
layer converts the GRU output from size 256 → 64 using an
exponential linear activation [6]. The output of this first layer
gives us the vehicle’s 64-dimensional Drive2Vec embedding,
which we show in Section IV to be transferrable across a
variety of useful prediction tasks. The final dense layer goes
from 64→ 2, 660, where the 2,660-dimensional output can be
split into four sections, each of size 665. They are:

1) Exact sensor values of all 665 sensors exactly 1 second
after the timestep of the last input. Because our vehicle
state involves both floating points and booleans, we
optimize the booleans with binary cross-entropy [28] and
floats with mean-squared error loss functions.

2) Average sensor values of all 665 sensors over the next
1 second. Because the average value of booleans is
typically a fraction, we use mean-squared error for every
signal (including booleans).

3) 665 average sensor values over the next 10 seconds.
4) 665 average sensor values over the next 100 seconds.
All of the above losses are then summed together and

optimized in TensorFlow using the Adam optimizer [17]. To
train our network, we split the automobile data by session, so

Fig. 1. Our model uses two stacked gated recurrent units (GRUs) followed by
two fully connected layers (FCs) to convert the 1 second sample containing
6,650 readings down to a 64-dimensional Drive2Vec embedding.

that overlapping windows are not split between the training,
validation, and test set. We use 80% of the data to train, leaving
10% each for the validation and test sets.

IV. EXPERIMENTS

Drive2Vec embeddings can be used for a variety of tasks.
Here, we demonstrate the power and generality of our method
by training our 64-dimensional embedding on the Audi data
and analyzing its usefulness across several important predic-
tion tasks. It is important to note here that all experiments
are performed using the exact same low-dimensional rep-
resentation (instead of training a new embedding for each
experiment), since we aim to show that a single embedding,
specifically, the one generated by Drive2Vec, is general enough
to solve all these tasks. First we evaluate its ability to predict
both the short and long-term future sensor values of the car. We
next examine the robustness of our method to the size of the
low-dimensional embedding. Then, we show how Drive2Vec
can infer the identity of the driver behind the wheel, even
though the driver ID is not directly indicated by any of the
sensors. Finally, in Section V, we use these embeddings to
learn actionable and accurate insights about the state of the
car in three real-world case studies. Here, we train our model
on the training set and use the validation set to optimize our
parameters, but all results (in both the experiments and the
case studies) are evaluated on a separate hold-out test set.

We compare our GRU-based method with several baselines:
• Short-only D2V — similar to Drive2Vec, but instead of

the 2,660-dimensional output, only train the network on
the exact sensor values (665 total) at t+ 1 seconds.

• Long-only D2V — similar to Drive2Vec, but only train
on the average sensor values over the next 100 seconds.

• PCA 64 — run principal component analysis (PCA) on
the original 665 sensors to reduce to 64-dimensions.

• Last timestep - repeat the most recent timestep.

Predicting the future. We first use our embeddings to predict
the values of all 665 sensors in both the short and long-term
future. In Table I, we plot the test set error for two tasks:
predicting the exact values of the 665 signals exactly 1 second
in the future (Short prediction), and predicting the average
sensor values over the next 100 seconds (Long prediction).
We note that “Last timestep” simply predicts a repeat of the
most recent 665 sensor values, but Drive2Vec and the other
three baselines are all trained the same way. For these methods,
we take the 64-dimensional embeddings as input and train a
regression model (i.e. a single fully-connected layer) to predict



TABLE I
TEST SET MSE FOR SHORT (EXACT SENSOR VALUES 1 SECOND IN THE

FUTURE) AND LONG (AVERAGE SENSOR VALUES OVER NEXT 100
SECONDS) PREDICTIONS FROM DIFFERENT EMBEDDING METHODS.

Short prediction MSE Long prediction MSE
Drive2Vec 0.020 0.021

Short-only D2V 0.021 0.027
Long-only D2V 0.052 0.021

PCA 64 0.174 0.053
Last timestep 0.204 0.069

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Future Time of Prediction (seconds after end of input)

0.01

0.02

0.03

0.04

0.05

0.06

T
e
s
t 

S
e
t 

M
S
E

Drive2Vec

Long-only D2V

Short-only D2V

Fig. 2. Using Drive2Vec’s embedding to predict the exact sensor values
K seconds in the future. Plot of the MSE vs K. As shown, Drive2Vec
outperforms short-only D2V, even though the short-only predictor is trained
specifically on this short-term prediction task, whereas Drive2Vec is trained
on a multiscale approach for predicting both the short and long-term future.

the 665 sensor values using the training set data. For the short
prediction, we train on the sum of the mean-squared error
(MSE) (for floats) and the cross-entropy (for booleans). For
the long prediction, since even the booleans are represented as
decimals, all signals use MSE. We then evaluate results on the
test set and report the mean-squared error of our predictions.

As shown in Table I, Drive2Vec outperforms all four base-
lines. Compared with predicting the last timestep, the worst-
performing method, Drive2Vec reduces the error by 90.2%
in the short prediction and 69.6% in the long prediction.
Drive2Vec is unique in that it has very low errors in both tasks.
It outperforms Short-only D2V on the short prediction, even
though Short-only D2V is explicitly trained for this specific
task. Similarly, it is tied with Long-only D2V on the long
prediction task. However, those baselines are only trained for
their one task, which they perform well on, but they perform
poorly on the opposite task (Short-only on the long prediction,
and vice versa). Drive2Vec, because it is trained to predict the
sensor values at multiple scales, obtains very strong results on
both tasks, indicating that it is simultaneously able to encode
both short and long-term information in the same embedding.

Short-term predictions. Next, we look more closely at pre-
dicting the state of the car in the near-term future. We train the
same short prediction task as before, except here we predict
the exact sensor values K seconds in the future, varying K
from 0.1 to 3. This measures robustness, ensuring that each
method does not overfit to predicting exactly one second in
the future. For each K, we train a new regression model on
the training set from our 64-dimensional embedding to predict
all 665 sensors. We then evaluate and plot the test set errors in

0 50 100 150 200 250

Drive2Vec Embedding Size (Number of Floats)

0.02

0.03

0.04

M
S
E
 o

f 
1

-S
e
c
o
n
d
 F

u
tu

re
 P

re
d
ic

ti
o
n

Fig. 3. MSE of the short prediction task (exact sensor values 1 second
in the future) vs. embedding size of Drive2Vec. Note that the MSE drops
dramatically until the embedding is of size 64, after which it flattens out.

Figure 2. For simplicity, we only show the results for the three
deep learning-based methods (since PCA and Last timestep
perform nearly an order of magnitude worse across all short-
term predictions). As shown, the error increases with K for
all three methods, meaning they perform better at shorter-term
predictions. Long-only D2V performs significantly worse than
the other two approaches, since it is only trained on predicting
future long-term averages, rather than exact predictions in
the short term. Interestingly, Drive2Vec also outperforms the
short-only D2V method as well. Here, Drive2Vec and short-
only have very similar results at the 1-second offset, but this
gap increases as K moves away from 1 second. This implies
that short-only D2V may overfit to predicting exactly 1 second
in the future, whereas Drive2Vec is more robust to K. That
is, Drive2Vec is able to leverage insights from training on the
long-term future to better predict the sensor values in the short
term. This is because Drive2Vec’s multiscale approach acts as
an implicit regularization on the model, preventing overfitting.

Effect of the embedding size. We next evaluate the robustness
of Drive2Vec by examining the importance of the embedding
size. Recall that our original Drive2Vec method (Figure 1)
used 64 floats to encode the data. However, this number could
be larger or smaller if needed, though there are tradeoffs in
both directions. We train our Drive2Vec model with different
embedding sizes and plot the test set short-term prediction
error (predicting the exact state 1 second in the future) in
Figure 3. As shown, when the Drive2Vec embedding is too
small, it does not contain enough information to accurately
predict the future of the car. As the embedding size increases,
the error goes down, though it begins to flatten out past 64
dimensions. The risk of selecting an embedding that is too
large comes from the potential for overfitting, having a less
interpretable model, and increased storage and transmission
costs. Therefore, even though Drive2Vec could be trained
with any embedding size, our 64-dimensional representation
occupies a desirable point on the tradeoff curve between
accuracy and compactness of our model.

Identifying the driver. Besides the 665 sensors in the car,
Drive2Vec can also be used to infer latent features about the
vehicle. One such latent feature is the identify of the driver
behind the wheel. We note here that none of the sensors



TABLE II
MICRO-F1 SCORE OF DRIVER IDENTIFICATION ACCURACY IN 56-WAY

CLASSIFICATION TASK.

Method Micro F1-score
Drive2Vec 0.513

Short-only D2V 0.490
Long-only D2V 0.506

PCA 64 0.387
Random 0.036

directly indicate the driver identity, but rather that the driver
indirectly affects the values of many of the sensors (based on
habits such as driving style). We take all 56 drivers who exist
in both the training and test sets, and we train a regression
model (with one hidden layer of size 32) to predict the driver
ID from a single 64-dimensional embedding. This is a 56-
way classification problem (with slightly unbalanced classes),
and random weighted guessing would be correct only 3.6% of
the time. We then display the micro-F1 score in Table II. As
shown, Drive2Vec significantly outperforms random guessing,
and its micro-F1 score is 32.6% higher than that of PCA. Our
method also slightly outperforms the short-only and long-only
D2V baselines. As the score implies, a single 64-dimensional
Drive2Vec embedding can correctly identify the driver, out of
the set of 56 potential candidates, 51.3% of the time.

Individual sensor predictions. While all experiments thus far
have reported the average mean squared error (MSE) across
all 665 signals, this error is not evenly distributed across all of
the sensors. In fact, certain sensors are significantly easier to
predict than others, and in general, these results are consistent
regardless of the embedding method. For example, Drive2Vec
has an overall MSE of 0.020 for the short-term prediction
task (exact sensor values 1 second in the future, see Table
I). However, 604 of the 665 sensors had individual MSEs
smaller than this value, including gas pedal pressure (0.001),
the left/right blinkers (both 0.006), and brake pedal pressure
(0.016). On the other hand, many of the sensors with the
highest MSEs are related to the instantaneous acceleration of
the car, which can vary dramatically from timestep to timestep
due to factors such as bumps in the road and are therefore
difficult to predict one full second into the future.

V. CASE STUDIES

Here, we demonstrate how Drive2Vec can be used to better
understand real-world driving data through three case studies.

Labeling common actions. When driving, certain maneuvers
can get repeated many times, such as turning, stopping at a red
light, or changing lanes. As such, it is important for Drive2Vec
to be able to uncover these repeated actions. It is especially
valuable if the Drive2Vec embeddings are able to label these
actions at the beginning (rather than end) of the maneuver.
Here, we take the “top” ten brake pedal slams, gas pedal slams,
and turns in the test set. These were detected heuristically
based on the the maximum difference in brake pedal pressure,
gas pedal pressure, and heading, respectively, over a 0.4
second interval. We then take the Drive2Vec embeddings at
the beginning of these maneuvers, along with 1000 randomly

Fig. 4. t-SNE plot of brake pedal slams, gas pedal slams, and turns, compared
to 1000 random points. The different scenarios have very distinct embeddings.

selected points in the test set, and plot their t-SNE projections
[21] in Figure 4. As shown, the three actions have extremely
distinct embeddings, and the different maneuvers are each
localized in the plot. This demonstrates that the embeddings
of these scenarios have a clear signature that can be used to
distinguish it from other points in the dataset. Therefore, the
Drive2Vec embeddings can be used to auto-label new data in
real time by analyzing the similarity of a streaming embedding
with that of several pre-labeled actions, and “detecting” a
maneuver if the similarity is above a given threshold.

Discovering risky states before they occur. In addition to
labeling data, Drive2Vec can also be used to discover risky
states before they actually occur. Here, we focus on the
brake pedal slam described above (a difference in brake pedal
pressure above a certain threshold in a 0.4 second interval).
These are often the most dangerous moments for the driver, as
the car needs to quickly slow down to avoid an accident. While
there has been much research specifically aimed at emergency
braking [7], our general Drive2Vec embedding can uncover
these risky states as well. We evaluate this hypothesis by
taking every time in the test set that the brake difference was
above a threshold of ε = 25, which yields 122 “hard brake”
examples. Once again, we take the beginning of the interval,
so this embedding occurs before the driver slams on the brake
pedal. We took 80% of these embeddings as our training set,
leaving the remaining 20% as the “positive” examples. The
“negative” examples were the other 8.5 million points in
the original Drive2Vec test set. We then computed a nearest-
neighbor cosine similarity score with the training set for both
the positive and negative examples. To evaluate our results, we
then computed the area under the receiver operating character-
istic (AUROC) score, achieving an AUROC of 0.999983. This
score shows a near-perfect separation between the positive and
negative examples, meaning that almost every “hard brake”
achieves a higher similarity score than every other point out
of the 8.5 million negative examples. Furthermore, the negative
examples with the highest similarity scores were all examples
of “hard brakes” that ended up just below our threshold of
ε = 25. Overall, the very high AUROC score in this example



(a) (b)

Fig. 5. Two examples of turning from a highway to a rural road. In both cases,
the embedding shifts as the turn is made, since both the short and long-term
averages of the different signals change dramatically after this turn.

indicates that Drive2Vec is able to identify this risky state even
before the driver begins to slam the brake pedal.

Temporal evolution of embeddings. An additional benefit
of Drive2Vec is that it can be used to visualize and better
understand a driving session. That is, as a vehicle drives along
the road, the embeddings form a “signature” of the state of the
car at that moment in time. In general, these embeddings vary
smoothly across time. There are slight shifts, for example,
as a car stops at a light or turns at an intersection, but in
general, these embeddings only vary slightly across adjacent
timesteps. However, occasionally, there are times where the
embedding undergoes a large shift in a very short interval.
These occur when the short and long-term future of the car
undergoes a significant shift in expectation. We can analyze
when these events occur by plotting the latitude/longitude with
an RGB marker, colored by the corresponding 64-dimensional
embedding (using PCA to reduce it to 3 dimensions). We
notice that this typically occurs when the car undergoes a
significant environmental shift, as seen in Figure 5 where
we plot two instances of these sharp breakpoints. We see
that in both these examples, the car is turning from a major
highway onto a rural road. As the car makes this turn, the
short-term predictions of the sensor values changes, the sensor
values are very different in turns compared to straightaways.
However, as the car straightens out onto the rural road, the
long-term expected values of these signals changes as well
(slower expected velocity, more expected red lights, etc.). This
causes the Drive2Vec embeddings to exhibit a dramatic shift,
in this case from beige to purple in the RGB markers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed Drive2Vec, a method for
embedding automobile sensor values in a low-dimensional
representation that is able to predict the short and long-term
future of the car. While experiments show that our method is
a very powerful tool, there are several potential directions for
further exploration. We leave for future work the analysis of
our method to different IoT-connected machines that generate
sensor data (i.e., airplanes or ships). Our work could also

be extended to learn different types of embeddings, beyond
a representation that simply predicts future sensor values.
For example, encoding based on “risk profile” of component
failures would allow this work to be used for predictive main-
tenance. Overall, the promising results and various extensions
highlight the practical applicability of Drive2Vec.

REFERENCES

[1] K. Aberer, M. Hauswirth, A. Salehi, “Infrastructure for data processing
in large-scale interconnected sensor networks,” IEEE MDM, 2007.

[2] J. Balinga, R. Ayre, K. Hinton, R. Tucker, “Green cloud computing:
balancing energy in processing, storage, and transport,” Proc. IEEE, 2011.

[3] A. Bemporad, D. Bernardini, R. Long, J. Verdejo, “Model predictive
control of turbocharged gasoline engines for mass production,” SAE WCX,
2018.

[4] K. Cho, B. Van Merrienboer, D. Bahdanau, Y. Bengio, “On the prop-
erties of neural machine translation: encoder-decoder approaches,” arXiv
preprint, 2014.

[5] J. Chung, C. Gulcehre, K. Cho, Y. Bengio “Gated Feedback Recurrent
Neural Networks,” ICML, 2015.

[6] D. Clevert, T. Unterthiner, S.Hochreiter, “Fast and Accurate Deep Net-
work Learning by Exponential Linear Units,” arXiv preprint, 2015.

[7] E. Coelingh, A. Eidehall, M. Bengtsson, “Collision warning with full
auto brake and pedestrian detection - a practical example of automatic
emergency braking,” IEEE ITSC, 2010.

[8] I. Fialho, G. Balas, “Road adaptive active suspension design using linear
parameter-varying gain-scheduling,” IEEE T-CST, 2002.

[9] W. Fleming, “New automotive sensors - a review,” IEEE Sens., 2008.
[10] G. Golub, C. Reinsch, “Singular value decomposition and least squares

solutions,” Numerische Mathematik, 1970.
[11] M. Grewal, “Kalman Filtering,” International Encyclopedia of Statistical

Science, 2011.
[12] A. Grover, J. Leskovec, “node2vec: scalable feature learning for net-

works,” KDD, 2016.
[13] D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber, M.

Roehder, R. Sosic, J. Leskovec, “Driver identification using automobile
sensor data from a single turn,” IEEE ITSC, 2016.

[14] D. Hallac, S. Vare, S. Boyd, J. Leskovec, “Toeplitz inverse covariance-
based clustering of multivariate time series data,” KDD, 2017.

[15] G. Hinton, R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, 2006.

[16] S. Hochreiter, J. Schmidhuber, “Long short-term memory,” Neural
Computation, 1997.

[17] D. Kingma, J. Ba, “Adam: a method for stochastic optimization,” arXiv
preprint, 2014.

[18] C. Lea, R. Vidal, A. Reiter, G. Hager, “Temporal convolutional networks:
a unified approach to action segmentation,” ECCV, 2016.

[19] R. Li, C. Liu, F. Luo, “A design for automotive CAN bus monitoring
system,” IEEE VPPC, 2008.

[20] M. Linderoth, K. Soltesz, A. Robertsson, R. Johansson, “Initialization of
the Kalman filter without assumptions on the initial state,” ICRA, 2011.

[21] L. Maaten, G. Hinton, “Visualizing data using t-SNE,” JMLR, 2008.
[22] T. Mikolov, K. Chen, G. Corrado, J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint, 2013.
[23] P. Molenaar, “A dynamic factor model for the analysis of multivariate

time series,” Psychometrika, 1985.
[24] A. Pankratz, “Forecasting with univariate Box-Jenkins models: concepts

and cases,” John Wiley & Sons, 2009.
[25] R. Pascanu, C. Gulcehre, K. Cho, Y. Bengio, “How to Construct Deep

Recurrent Neural Networks,” ICLR, 2014.
[26] B. Phuyal, “Turn detection algorithm for vehicle positioning,” U.S.

Patent No. 6,502,033, 2002.
[27] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, K. Kuhnert, “A

lane change detection approach using feature ranking with maximized
predictive power,” IEEE IV, 2014.

[28] J. Shore, R. Johnson. “Properties of cross-entropy minimization”, IEEE
T-IT, 1980.

[29] M. Wall, A. Rechtsteiner, L. Rocha, “Singular value decomposition and
principal component analysis,” A Practical Approach to Microarray Data
Analysis, 2003.

[30] B. Wang, S. Panigrahi, M. Narsude, A. Mohanty, “Driver identification
using vehicle telematics data,” SAE Technical Paper, 2017.


	I Introduction
	II Dataset Description
	III Proposed Method
	IV Experiments
	V Case Studies
	VI Conclusion and Future Work
	References

