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Abstract— Bus operators plan the dispatching times of their
daily trips based on the average values of their travel times.
Given the trip travel time uncertainty though, the performance
of the daily operations is different than expected impacting the
service regularity and the expected waiting times of passengers
at stops. To address this problem, this work develops a model
that considers the travel time uncertainty when planning the
dispatching times of trips. In addition, it introduces a minimax
approach combining Monte Carlo evaluations with a Genetic
Algorithm for computing dispatching times which are robust
to travel time variations. This approach is tested in a circular
bus line of a major bus operator in Asia Pacific (APAC)
using 4 months of Automated Vehicle Location (AVL) and
Automated Fare Collection (AFC) data for analyzing the travel
time uncertainty and computing robust dispatching times. In
addition, 1 month of data is used for validation purposes
demonstrating a potential service regularity improvement of
5.5% in the average case and '22% in worst-case scenarios.

Keywords: Tactical Planning; Timetable reliability; Travel
time uncertainty; Robust bus scheduling.

I. INTRODUCTION

The availability of Automated Vehicle Location (AVL),
Automated Fare Collection (AFC) and social media data
has enabled transport authorities to monitor the adherence
of bus operations to their intended schedules [1], [2], [3].
Using data from onboard units and fare payment systems,
transport authorities provide incentives to bus operators to
improve their performance [4]. For instance, bus operators in
Singapore receive up to 2,000 Singaporean dollars per month
for every 0.1-minute improvement of the service regularity
[5].

These types of data can be used for improving the tactical
planning stages of (i) frequency setting; (ii) timetable design
(where the dispatching times of all daily trips are deter-
mined); and (iii) vehicle and crew scheduling [6], [7], [8].
Given that transport authorities incentivize the improvement
of the service regularity, generating robust timetables which
are robust to travel time variations is a significant step
towards meeting the transport authorities’ objectives and
improving the daily operations.

The survey paper of [9] on public transport planning
concluded that using the insights of historical AVL and AFC
data is one of the highest potential areas for improving the
planning of the daily operations. The problem of timetable
unreliability was studied also in the work of [10] which
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showed that the daily bus operations deteriorate significantly
when the actual travel times of buses vary by more than 30%
from their expected values.

This work focuses on the robust bus timetabling1 problem
by introducing a minimax approach for addressing the per-
formance degradation of the daily operations due to the travel
time variations. The robust timetables can facilitate the bus
operators and help them improve their performance levels
without increasing the operational costs (i.e., increasing the
fleet size or hiring more bus drivers).

II. RELATED WORKS

Several works have jointly addressed the bus frequency
settings problem and the bus timetabling problem [11], [12],
[13], [14], [15]. Nevertheless, in most cases the optimization
of the timetable of a bus line is perceived as a standalone
problem and is generally decoupled from the from the
frequency settings problem [16], [17], [18].

When a bus operator plans the dispatching times of the
daily trips of a bus line for determining its timetable, the
expected trip travel times are considered as deterministic.
This results in timetables that do not perform well in practice
because the bus operations are unstable in nature given the
stochasticity of the trip travel times [19]. For this reason,
several works focus on defining optimal slack times for every
daily trip [20], [21], [22]. These slack times can be used as
buffer times that can absorb the unexpected delays of bus
trips due to the road traffic without delaying the dispatching
of future trips which are operated by the same buses.

Typical problem objectives when determining the dis-
patching times of trips in high-frequency services are the
mitigation of bus headway variations for improving the ser-
vice regularity [23] and the generation of practical timetables.
For instance, [24], [25], [26] and [27] proposed to generate
timetables where the dispatching times of all daily trips
are as evenly-spaced as possible for improving the service
regularity and addressing the practicability issue.

Closer to our work, [28], [19], [29] and [30] have con-
sidered the stochastic nature of the trip travel times during
the daily operations. However, [28] was focused on the bus
line synchronization problem, [29] on the reliable frequency
settings problem and [30], [19] on the bus holding problem
during the actual operations without addressing the dispatch-
ing time planning problem.

1since the timetable of a bus line is generated based on the dispatching
times of all daily trips, in this work we use the terms “timetable optimiza-
tion” and “dispatching time optimization of all daily trips” interchangeably
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Focusing specifically on the problem of planning robust
dispatching times for all daily trips, this work contributes
to the state-of-the-art by: (i) incorporating the observed
uncertainty of the bus travel times using historical AVL and
AFC data; (ii) developing a model for timetable optimization
which can handle uncertainty; (iii) introducing a Genetic Al-
gorithm coupled with Monte Carlo evaluations for addressing
the NP-hardness of the robust timetabling problem; and (iv)
analyzing the performance of robust timetables in scenarios
with low and high travel time variability.

III. PROBLEM FORMULATION

A. Modeling the movement of buses

The modeling part of this work relies on the following
assumptions:

• Buses that serve the same line do not overtake2 each
other (first-in-first-out rule);

• Given the focus on high-frequency services, passenger
arrivals at stops are random because the passengers
cannot coordinate their arrivals with the arrival times
of buses (see [31]);

• The capacity of buses can accommodate the passenger
demand;

• The total travel time of a bus trip is affected by the
travel times between stops and the dwell times at stops;

• Passengers use different door channels for boardings
and alightings.

Before proceeding to the modeling, we introduce the follow-
ing nomenclature:

NOMENCLATURE

N Set of daily bus trips of a bus line, where each
daily trip n ∈ N

S Set of bus stops of a bus line, where each bus stop
s ∈ S

δn The originally planned dispatching time of a bus
trip n

x Vector where each xn ∈ x denotes the dispatching
time deviation of a bus trip n from δn (decision
variable of the robust dispatching time optimiza-
tion problem)

Z A set of all potential dispatching time deviation
options (all options are in minutes)

θn,s(x) The departure time of bus trip n from stop s
dn,s(x) The dwell time of bus trip n at stop s
ts,τ Uncertain parameter denoting the travel time be-

tween stop s and s + 1 when a bus trip departs
from stop s at time τ

hn,s(x) The headway between bus trip n and its preceding
trip n− 1 at stop s

an,s(x) The arrival time of bus trip n at stop s
γ The required time per passenger boarding
bs,% The total number of passenger boardings at stop s

during the %th hour of the day

2a common assumption used in related works (see [19])

T A pre-defined time before which the last trip of
the day should have been already dispatched

ψ The required layover time after completing a bus
trip

The dispatching times, (δ1, ..., δn,...), of the daily trips of a
bus line, where N = {1, ..., n, ...} is the set of all daily trips,
can be initially considered as evenly-spaced across the day.
The decision variable of the robust dispatching time planning
problem is a vector of the dispatching time deviations x =
{x1, ..., xn, ...} from the evenly-spaced dispatching times.

To avoid impractical dispatching times which cannot be
implemented in practice, we do not allow significant dis-
patching time deviations from the evenly-spaced option. For
this reason, each dispatching time deviation xn , n ∈ N can
take values from a discrete set Z = {z1, ..., zi, ...} which
contains a limited number of dispatching time deviation
options.

For a bus line that serves S = {1, ..., s, ...} bus stops, the
travel time for traversing a segment between any stop pair s
and s + 1 can be different from time to time. For instance,
the travel time for traveling from one stop to another can
be significantly higher during peak hours compared to the
off-peaks. This effect is captured in this work by splitting
the daytime into 1440 minutes and allowing the travel time
for traversing a link3 to vary based on the minute of the
day the link is traversed. Therefore, the link travel times are
modeled as a matrix T ∈ R(|S|−1)×1440

+ where each ts,τ ∈ T
denotes the expected link travel time for traversing a link
that connects stops s and s+1 when a bus starts to traverse
the link within the τ th minute of the day.

The departure time, θn,s(x), of any bus trip n ∈ N from
any stop s ∈ S can be calculated based on the link travel
times and the dwell times at stops as:

θn,s(x) =

{
δn + xn if s = 1

θn,s−1(x) + ts−1,τ + dn,s(x), ∀s ∈ S \ {1, |S|}
(1)

where eq.1 is a recursive formula. In eq.1, if a bus trip
departs from the first stop, s = 1, its departure time is
δn + xn. If departs from another stop, s ∈ S \ {1, |S|},
then its departure time is equal to the departure time from
the previous stop, θn,s−1(x), plus the link travel time for
traveling from stop s − 1 to stop s plus the dwell time at
stops s which is denoted as dn,s(x). In eq.1, the link travel
time from stop s − 1 to stop s is ts−1,τ and the minute τ
within which the bus trip n starts to traverse link s− 1 is:

τ = bθn,s−1(x)c (2)

where θn,s−1(x) is expressed in minutes.
The dwell time dn,s(x) of a bus trip n at stop s depends

on the number of passenger boardings and alightings. In this
study, the dwell time is not linked to the number of alightings
for modeling simplification purposes since boarding times
exceed alighting times in most cases [32].

3in this work, a link is the segment between two consecutive bus stops
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At this point, we should note that in actual operations
the alighting times might impact the dwell times at stops
in the case where passengers use the same door channels
for boardings and alightings [33]. Nevertheless, the main
focus of this study is bus services that use the front door for
boardings and all other doors for alightings. In such case,
assuming that passenger arrivals at stops are random, the
dwell time of a bus trip n at one stop s can be expressed as:

dn,s(x) =
bs,%

60(min/hour)
(θn,s(x)− θn−1,s(x)) γ (3)

where γ is the required time per passenger boarding and
bs,% the hourly passenger boardings at stop s assuming that
bus trips n and n−1 depart from stop n within the %th hour
of the day.

The headway hn,s(x) between bus trip n and its preceding
bus trip n− 1 at stop s is:

hn,s(x) = an,s(x)− an−1,s(x) (4)

where an,s(x), an−1,s(x) are the arrival times of bus trips
n and n − 1 at stop s. The arrival time an,s(x) is equal to
the departure time from the previous stop s−1 plus the link
travel time from stop s− 1 to stop s. For instance,

an,s(x) = θn,s−1(x) + ts−1,τ ∀s ∈ S/{1} (5)

Equations 1, 5 capture the movements of all bus trips of
a bus line and can return the departure, arrival and dwell
times at stops for all daily trips given the travel time values
and the dispatching time deviations, x, from the originally
planned dispatching times.

B. Modeling the constraints

1) Layover time constraints: The layover time for a bus
that finished one bus trip is the minimum required time
before starting its next trip. The layover time is equal to the
required time for moving from the last stop of the finished
trip to the first stop of the next trip (known as deadheading
time) plus the recovery time for the bus driver (in most cases,
bus drivers must take a short break after completing a bus
trip).

If one bus operates trips n′ and n one after the other and
a layover time ψ ≥ 0 is required after finishing trip n′, then
the layover constraint is:

an′,|S|(x) + dn′,|S|(x) + ψ ≤ δn + xn ∀n ∈ N \ {1} (6)

The constraint of eq.6 dictates that the dispatching time of
a trip n, δn +xn, should be equal or greater than the arrival
time of the previous trip n′ which was operated by the same
bus at the last bus stop |S| plus the dwell time at stop |S|
plus the required layover time ψ. Evidently, the total number
of layover time constraints can be up to |N | − 1.

2) Schedule sliding constraint: In order to maintain the
duration of the daily operations, the last trip of the day, n =
|N |, should be dispatched before a pre-defined time, T . This
ensures that the daily operations will not be prolonged.

If the last trip of the day is operated after the completion
of trip n∗, then:

an∗,|S|(x) + dn∗,|S|(x) + ψ ≤ T (7)

C. Objective function

As discussed in the introduction section, transport au-
thorities provide monetary incentives to bus operators for
improving the service regularity. As stated in [23], a typical
key performance indicator (KPI) which measures the per-
formance of high-frequency services is the excess waiting
times of passengers at stops. In this KPI, the actual headways
of buses should vary as little as possible from the desired
headways to ensure that the actual passenger waiting times
are close to the expected ones.

Following this KPI, the objective of our robust dispatch-
ing time optimization problem is to minimize the average
squared deviation of the actual headways from their desired
values at all bus stops:

f(x) =

√√√√√ 1

|S|(|N | − 1)

∑
s∈S

∑
n∈N\{1}

(
hn,s(x)− h∗s

)2

(min)

(8)
where h∗s is the desired/ideal headway at any stop s ∈ S.

IV. ROBUST OPTIMIZATION OF TRIP
DISPATCHING TIMES

A robust optimization of the dispatching times of all daily
bus trips focuses on finding a solution of dispatching time
deviations, x, which is robust to the inherent uncertainty of
the link travel times T.

The minimax method [34] is one of the most commonly
used methods in robust optimization. The minimax method is
a decision-making method in which many problem solutions
are ranked based on their worst-case performance in the
presence of uncertainty and the optimal decision is the one
with the slightest worst outcome.

If for a link travel time, ts,τ , we have a set of historical
observations from AVL data which are stored in a set Bs,τ ,
then the link travel time parameter, ts,τ , is uncertain and can
take any value from the set Bs,τ . By allowing the parameter
ts,τ to take any value from the set Bs,τ , one can examine
the worst-case performance of a solution x that determines
the dispatching times of the daily trips.

The objective of the robust optimization is to find the
dispatching time modifications, x, that minimize the worst-
case value of the objective function given the uncertainty of
the link travel time parameters as it is expressed below:

min
x

max
T
f(x,T) (9)

where each ts,τ ∈ Bs,τ and
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f(x,T) =

√√√√√ 1

|S|(|N | − 1)

∑
s∈S

∑
n∈N\{1}

(
hn,s(x,T)− h∗s

)2

(10)
Therefore, the robust dispatching time optimization prob-

lem considering the physical constraints and the constraints
related to the movement of buses can be formulated as:

min
x

max
T
f(x,T)

s.t. Equations 1-5
an′,|S|(x,T) + dn′,|S|(x,T) + ψ ≤ (δn + xn),

∀n ∈ N \ {1}
an∗,|S|(x,T) + dn∗,|S|(x,T) + ψ ≤ T

where ts,τ ∈ Bs,τ , ∀s, τ
xn ∈ Z, ∀n ∈ N

x1 = 0
(11)

The robust optimization problem of eq.11 has a nonlinear
objective function and the problem is combinatorial since the
decision variables of the dispatching time deviations, x, can
take values from the discrete set Z. Given its combinatorial
nature, computing robust dispatching times is an NP-hard
problem and, for at least a class of instances, the problem
cannot be solved with exact optimization methods due to its
computational complexity.

V. SOLUTION METHOD
Given the computational intractability of the proposed ro-

bust dispatching time optimization problem, a metaheuristic
solution method is introduced. A typical metaheuristic, such
as a genetic algorithm (GA), can converge to a near optimal
solution without scalability issues (however, it cannot be
guaranteed that this solution is a globally optimal solution).

The work of [35] was one of the first on GAs. A typical
GA contains a number of population members. Each popula-
tion member is a GA chromosome and represents a solution
of the optimization problem. In this work, each chromosome
has |N | genes and each one of the genes represents the
dispatching time deviation of the n-th trip from the value
δn.

The main stages of our proposed GA are: (1) encoding
the initial population; (2) evaluating the fitness of each pop-
ulation member using Monte Carlo simulations; (3) parent
selection for offspring generation; (4) crossover; and (5)
mutation.

A. Encoding

For a GA population P = {p1, ..., p|P |}, each population
member pi ∈ P is a potential solution of the robust dispatch-
ing time optimization problem. At the encoding stage, the
genes of each population member pi are: (pi1, pi2, ..., pi|N |).
At the initialization stage, each gene can take a random value
from the set Z that contains all dispatching time deviation
options.

B. Fitness Evaluation and Population Member Selection
If a population member pi ∈ P satisfies the constraints of

eq.11, then its fitness is evaluated; otherwise it is discarded
and replaced by a new member. The fitness of a population
member that satisfies all constraints is evaluated by calcu-
lating the cost of max

T
f(pi,T). The cost max

T
f(pi,T) is

approximated by sampling link travel values ts,τ from the
corresponding uncertainty sets Bs,τ and returning the maxi-
mum value of f(pi,T) after many Monte-Carlo simulations
that examine a large number of link travel time scenarios.

For a population member pi ∈ P, each Monte Carlo
simulation is an experimentation that evaluates the value
of f(pi,T) for link travel time values which are randomly
sampled from the set T. After performing a pre-defined
number4 λ of Monte Carlo simulations, the link travel times
of the simulation that returned the highest f(pi,T) cost are
selected. This utilization of Monte Carlo simulations inside
the GA for evaluating the fitness of each population member
differentiates our GA and enables it to tackle the minimax
problem.

One population member pi ∈ P is more fit for reproduc-
tion if its max

T
f(pi,T) value is low. Using the well-known

roulette-wheel selection method [36], population members
with better fitness have a higher probability of being selected
for reproduction. In the roulette-wheel selection method, the
probability of each population member pi ∈ P to be selected
for reproduction is proportional to its fitness value divided by
the sum of the fitness values of all other population members:

max
T

f(pi,T)∑
pj∈P

max
T

f(pj ,T)
.

C. Crossover and Mutation
For each pair of parents which are selected from the

initial population using the roulette-wheel selection method,
a cross-over occurs at a randomly selected crossover point to
produce two offsprings (recombination). The same process
is repeated until the total number of generated offsprings is
equal to the population size |P |.

In the mutation stage, a mutation can occur in any gene of
an offspring allowing the exploration of new information that
does not belong to the parents. In this work, each gene of an
offspring has a very small probability, $, to be replaced by
a random value from the set Z of dispatching time deviation
options.

D. Population Evolution and Termination
After completing the above stages, the initial population

is replaced by the new generation. This procedure is re-
peated resulting in population evolutions until reaching a
pre-determined limit of population generations, µmax. This
procedure is summarized in figure 1.

Theorem 1: For a pre-defined number of Monte Carlo
simulations, λ, and a pre-defined limit of population evo-
lutions, µmax, the total number of computations until the

4the number of Monte Carlo simulations, λ, should be sufficiently high
for increasing the probability of obtaining the worst-case link travel times
for a given solution pi
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termination of the algorithm is λ|N ||S||P |µmax and the
computational complexity is polynomial.

Proof: For a population with |P | population members
the fitness of each population member pi ∈ P needs to
be evaluated at each population generation. For evaluating
the fitness of each population member we need to perform
λ Monte Carlo simulations where at each simulation we
evaluate the values of Eq.11 that return the value of f(pi,T)
for the randomly selected link travel times which are used
in this simulation after performing |N ||S| computations
for defining the values of the recursive functions of Eq.1-
5. Therefore, the evaluating the fitness of each population
member requires λ|N ||S| computations and the fitness of all
population members in the population λ|N ||S||P |. Thus, if
the number of population generations until the termination of
the algorithm is µmax, then the total number of computations
is λ|N ||S||P |µmax.
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Fig. 1. GA-based robust dispatching time optimization for determining the
dispatching times of all daily trips

VI. CASE STUDY

The effect of the robust optimization of the dispatching
times of buses is tested using real AVL and AFC data from a
high-frequency circular bus service in APAC. The examined
bus line has a total number of |N | = 132 daily trips. It covers
7.5 km and serves 22 bus stops.

TABLE I
PARAMETER VALUES

ψ (layover times) 3 min
γ (extra time for each pass. boarding) 3 sec
T (latest dispatching time of last daily trip) 6:59 pm
h∗s (desired headway at each stop s ∈ S) 5.5 min
λ (Monte Carlo simulations for each population member) 1,000
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Fig. 2. Population generations of the GA until converging to a robust
dispatching time solution

The available AVL and AFC data cover a five-month
period. The dataset is split into two sets. The first set contains
data from the first four months5. The second set contains
data from the last month and is used for validation. In more
detail, the robust dispatching times are computed based on
historical data from the first four months and their robustness
against the travel time variations is tested by evaluating their
performance at each one of the 30 remaining days.

The values of the parameters for deriving a robust
timetable for the circular bus line are summarized in table I.

Following the steps of the GA-based robust dispatching
time optimization for all daily trips, the algorithm is pro-
grammed in Python 2.7 using the Distributed Evolutionary
Algorithms in Python (Deap) package [37]. The fitness
function for evaluating the performance of the population
members is provided by the mathematical model of eq.11
and is programmed in Python 2.7.

The GA-based robust dispatching time optimization is
initialized with a population size of |P | = 100 mem-
bers. The fittest member of the initial population genera-
tion, named as pgen=1, has a worst-case performance of
max

T
f(pgen=1,T) = 5.3 min as presented in figure 2. This

means that when the dispatching times of all daily trips,
pgen=1, are applied; then, the worst-case link travel times
T will lead to an average squared headway deviation of 5.3
min from the desired headways.

As presented in fig.2, the fittest population members of
the new generations of the GA do not have an improved
worst-case performance until generation 21. After genera-
tion 22 and until generation 50 there is some instability
since the fittest population members of some generations
have a significantly improved performance while others do
not. After generation 51 the GA stabilizes and the fittest
population members of all generations until the termination

5the observed link travel times from the first four months are used for
defining the sets Bs,τ , ∀s, τ
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Fig. 3. Bus headways at each bus stop throughout the day at the worst-case
scenario of link travel times
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Fig. 4. Average squared deviation from the desired headways at each bus
stop at the worst-case scenario of link travel times

of the algorithm exhibit a worst-case squared deviation from
the desired headways of 1.68-1.82 min.

Before proceeding to the validation, in fig.3 we present
the headways of all daily trips in the worst-case scenario of
link travel times and in fig.4 the theoretical upper bound of
improvement when using the robust dispatching times instead
of the originally planned ones. For performing this task, we
compute the worst-case performance of the squared headway
deviation at all bus stops when the robust and the original
dispatching times are applied. This worst-case performance is
computed by using the worst possible link travel time values
from the observed 4-month data. In such case, the average
squared headway deviation from the desired headways is
improved by '22% when using the robust dispatching times
as presented in fig.4.

Notwithstanding the above, the worst-case link travel times
are not expected to occur in a typical day. Therefore, the
actual improvement of the headway deviation can be much
lower than 22%. For this reason, in the validation stage
we use the observed link travel times from the last month
of operations to evaluate the performance of the headway
deviation when using the robust and the originally planned
dispatching times.

The performance of the originally planned dispatching
times and the robust ones at each day of the last month which
is used for validation is presented in figure 5. From figure 5,
one can observe that the average squared daily deviation of
the actual headways from their desired values is improved
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Fig. 5. Average squared deviation of the actual headways from their desired
values for each one of the 30 days

when using the robust dispatching times in 25 days6 out of
the 30 days of the month.

This performance is summarized in figure 6 using the
Tukey boxplot convention [38]. In this convention, Q1 is the
first quartile, Q2 the mean and Q3 the third quartile, min. the
lowest datum still within 1.5 the interquartile range (IQR) of
the first quartile and max. the highest datum still within 1.5
IQR of the third quartile. All other values outside the [min.,
max.] set are outliers.

In this month, the observed average improvement of the
headway deviation when using the robust dispatching times
is 1.54−1.63

1.63 = 5.5%. More importantly, the max. value of the
boxplot is improved by 8.5% when using robust dispatching
times demonstrating an improved performance at extreme
link travel time scenarios in the long run. In contrary, the
interquartile range (IQR) of the robust dispatching times
is IQR:= Q3 − Q1 = 1.58 − 1.50 = 0.08 min and is
equal to the observed IQR when implementing the originally
planned dispatching times. This finding shows that even if the
deviation of the actual headways from their desired values
is improved when using robust dispatching times, the robust
dispatching times cannot guarantee the extinction of headway
deviations when the link travel times vary from time to time.
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Fig. 6. Validation results

6in the remaining five (5) days, the originally planned dispatching times
performed better. The actual link travel times of those days were very close
to their expected values providing an advantage to the original dispatching
times
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VII. CONCLUSIONS

This work modeled the dispatching time optimization
problem in the presence of travel time uncertainty and pre-
sented a GA-based approach for computing dispatching times
which are robust to travel time variations. This approach
was tested in a circular bus line of a major bus operator in
APAC using 4-months of AVL and AFC data for computing
dispatching times that are robust to the observed link travel
time variations.

The last month of the operational data was used for
validation demonstrating an improvement potential of 5.5%
on the average squared deviation of the actual headways
from their desired values. In addition, the analysis showed
that, given the uncertainty of the link travel times, the daily
operations of buses can vary significantly even if a robust
schedule is applied.

In future research, the impact of applying robust dispatch-
ing times to the in-vehicle travel time of passengers can be
examined. Finally, an interesting future research topic can be
the consideration of the uncertainty of passenger demand by
expanding the model of this study.
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