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Abstract— Near-field depth estimation around a self-driving
car is an important function that can be achieved by four
wide-angle fisheye cameras having a field of view of over
180◦. Depth estimation based on convolutional neural networks
(CNNs) produce state of the art results, but progress is hindered
because depth annotation cannot be obtained manually. Syn-
thetic datasets are commonly used but they have limitations.
For instance, they do not capture the extensive variability in
the appearance of objects like vehicles present in real datasets.
There is also a domain shift while performing inference on
natural images illustrated by many attempts to handle the
domain adaptation explicitly. In this work, we explore an
alternate approach of training using sparse LiDAR data as
ground truth for depth estimation for fisheye camera. We
built our own dataset using our self-driving car setup which
has a 64-beam Velodyne LiDAR and four wide angle fisheye
cameras. To handle the difference in view-points of LiDAR
and fisheye camera, an occlusion resolution mechanism was
implemented. We started with Eigen’s multiscale convolutional
network architecture [1] and improved by modifying activation
function and optimizer. We obtained promising results on our
dataset with RMSE errors comparable to the state-of-the-art
results obtained on KITTI.

I. INTRODUCTION

Depth estimation from single camera images is an impor-
tant basic task for self driving cars such as driver assistance
systems to solve localization and perception problems. Pre-
dominantly, the challenge is an arduous process and it cannot
be decoded directly from bottom-up geometric cues. A single
captured image scene may be congruous with infinite real
world scenarios [2]. Successful approaches have relied on
structure from motion, shape-from-X, binocular and multi-
view stereo. These techniques hinge on the assumption of
prior knowledge about the characteristic appearance and
multiple observations of the scene of interest that are avail-
able. The aforementioned can occur via multiple viewpoints,
layout and size of object needs, cues such as shading, or
observations of the scene under different lighting conditions.
To overcome this limitation, there has recently been a rise
in the number of works that pose the task of single image
depth estimation as a supervised learning problem [1], [2],
[3]. These methods seek to directly predict the depth from
a single RGB image for each pixel through deep learning
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models that have been modeled on large collections of
ground truth depth data.

Humans excel at monocular depth estimation by exploit-
ing cues such as motion parallax, linear perspective, shape
from shading, relative size and occlusion [4]. Full scene
understanding with our capability to precisely estimate depth
appears to bolster from the combination of both top-down
and bottom-up cues [5].

For supervised deep learning a large amount of training
data is required in order to achieve high accuracy and to
generalize on new scenes. In indoor environments, RGB-D
cameras are used to generate ground truth depth data for
this task. However, strong sunlight has an adverse effect on
infrared interference and make depth information of those
sensing devices extremely noisy. In outdoor applications,
especially in the domain of self driving cars, LiDAR or other
laser scanners-are used to capture ground truth data. Since
measurements from 3D lasers have usually a sparse nature,
the depth variations are captured with less details than visible
in the image.

Additional to the use of real data, synthetic rendering of
depth maps are used to generate ground truth data. Rendered
images do not unveil the scene and fail to implement real
image noise characteristics-which are the two drawbacks of
this method [6]. Also, there is an inefficiency to generalize
on new scenes by the model trained on this approach.

The motivation of this paper is to provide a baseline for
single frame depth estimation based on sparse Velodyne data
as ground truth for training. This paper builds upon the
authors’ previous work published in a short paper [7] and
the contributions of this paper include:

1) Demonstration of a working prototype purely trained
on sparse Velodyne LiDAR data.

2) Demonstration of fisheye camera depth estimation us-
ing CNN.

3) Adapting training data to handle occlusion due to
difference in camera and Velodyne LiDAR viewpoint.

4) Tailoring the loss function and training algorithm to
handle sparse depth data.

The rest of the paper is structured as follows. Section II
provides a survey of convolution neural networks (CNN)
based depth estimation. Section III discusses the details of
the network architecture, loss function tailoring and training
algorithms. Section IV summarizes results on our internal
fisheye camera dataset and provide a comparison with pub-
licly available KITTI results. Finally, Section V concludes
the paper and provides potential future directions.
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II. RELATED WORK

It has been noted that in recent years, several deep learning
based approaches to monocular depth estimation are trained
in a supervised way - which requires a single input image -
with no assumptions about the scene geometry or types of

objects which are present. In monocular depth estimation
only single images are used at the inference time. Saxena
et al. [8] pioneered the supervised-learning based approach
called Make3D patch-based model. The input images are
initially over-segmented into patches and the 3D location
and orientation of local planes are estimated which illustrates
each patch. Markov Random Fields are used to combine
the monocular cues with the stereo correspondences. The
drawback of planar based approximations including [9] is
realistic outputs can not be generated as they lack global
context since the estimates are made locally. They can be
hindered when it comes to modeling of thin structures.

Liu et al. [3] formulated an approach for depth estimation
as a deep continuous Conditional Random Fields (CRF)
learning problem. Instead of hand-crafted features such as
unary and pairwise terms, Liu used deep convolutional neural
fields that permitted the CNN features of unary and pairwise
potentials end-to-end for training by utilizing continuous
depth and Gaussian assumptions on the pairwise potentials.

Ladicky et al. [10] improved the per pixel depth estimation
to a lucid classifier estimating only the probability of a pixel
present at an arbitrarily fixed canonical depth. After appropri-
ate image transformations, the probability of any other depths
can be achieved by implementing the same classifier. The
vulnerability of independent approaches of depth estimation
and semantic segmentation are aimed directly by improving
and generalizing the overall approach.

Karsch et al. [11] recommended a k-Nearest-Neighbor
(kNN) transfer mechanism which can achieve better align-
ment which hinges on SIFT Flow [12] to estimate depths
from single images of static backgrounds. They accom-
plished better estimation with the scene of interest in videos
with dynamic foreground coupled with augmentation of the
latter with motion information. A major drawback of this
approach is a requirement of a complete training dataset to
be available at inference time.

In the last few years, it has been observed that object
classification and recognition [13], [14], [15] reap great suc-
cess with the application of Convolutional Neural Networks.
CNNs perform classification of a single or multiple object
label for a complete input image and apply bounding boxes
on a few objects in each scene of an image. In addition
to this, a variety of tasks like pose estimation [16], stereo
depth [17] and instance segmentation [18] incorporate CNNs.
Most of these models use CNNs to find only local features, or
generate descriptors of discrete proposal regions; in contrast,
Eigen’s network uses both local and global views to predict
a variety of output types.

Laina [19] illustrated that dense depth maps can be pro-
duced by using ResNet-based encoder-decoder architecture.
Their approach is demonstrated to predict dense depth maps

in indoor scenes using RGB-images for training. Through
example images [20], [21] it is found that the idea of depth
transfer can be used to predict depth map or integrate depth
map prediction with semantic segmentation [1], [10], [22] in
supervised training.

Single-image based depth estimation has various hard-
ware-based solutions like performing depth from defocus
using a modified camera aperture proposed by Levin et
al. [23] and the Kinect v2 uses time-of-flight and active stereo
to record depth.

We have incorporated Eigen’s [1] core multi-scale archi-
tecture to adapt to a single task of estimating depth with
an output resolution twice the original. We could achieve
similar qualitative results with a sparse dataset, obtained from
Velodyne HDL-64L rotating 3D laser scanner with valid
depth points ranging from 3k-25k after occlusion removal.

III. MODEL ARCHITECTURE

Our model offers several architectural improvements to [1]
which is initially based on Eigen et al. [2]. We adopted
a simple architecture for Scale 1 based on AlexNet [13]
to achieve real time on an embedded platform Nvidia TX
2. However, the usage of new model architectures such as
ResNet-50 [24] which have a bigger field of view could
improve the results. These models take images of bigger
dimensions as input and hence can provide a better global
view of the image to the learning algorithm. Depending on
the whole image area, a multi-scale deep neural network first
predicts a coarse global output and refines it using finer-
scale local networks. This scheme is described in Fig. 1. The
model is deeper with more convolutional layers compared
to [2]. Second, with the added third scale from [1] at higher
resolution, bringing the final output resolution up to half the
input, or 284 px×80 px for our sparse LiDAR fisheye camera
dataset. In addition, we use swish [25] as the activation
function rather than the mostly preferred rectified linear unit
(ReLU) [26]. Finally, we adopt Adam optimizer [27] which
yields faster converging instead of the stochastic gradient
descent (SGD) used by Eigen et al. [1], [2]. Multi channel
feature maps were passed similarly to [1] avoiding the flow
of output predictions from the coarse scale to the refine scale.

a) Scale 1: Full-Image View: The first scale of the
neural network analyses the global structure of the image and
extracts global features. Global understanding of the scene
requires an effective use of depth cues like object locations,
vanishing points and alignment of structures [1]. The local
view of the image is inadequate to capture these features.
Scale 1 is based on an ImageNet-trained AlexNet [13]
with initialization of pre-trained AlexNet weights only on
convolutional layers. The global understanding of the image
is achieved by two fully connected layers at the end. A very
large field of view is obtained as each spatial location in
the output connects to all the image features. The neural
network takes fisheye images of size 576 px × 172 px as
input. The output of the scale is a 64-channel feature map
with a resolution 142 px× 40 px.
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Scale 1
Size 142x41 71x21 36x11 36x11 36x11 1x1 36x10 144x40

(AlexNet)
#convs 1 1 1 1 1 – – –
#chan 96 256 384 384 256 4096 64 64
ker. sz 11x11 5x5 3x3 3x3 3x3 – – –
Ratio /8 /16 /16 /16 /32 – /16 /4
stride 4 1 1 1 1 – –

Scale 2

Layer 2.1 2.2 2.3 2.4 2.5 upsamp
Size 284x82 142x40 142x40 142x40 142x40 284x80
#chan 96+64 64 64 64 1 1
ker. sz 9x9 5x5 5x5 5x5 5x5 –
Ratio /4 /4 /4 /4 /4 /2
stride 2 1 1 1 1

Scale 3

Layer 3.1 3.2 3.3 3.4 final
Size 284x82 284x80 284x80 284x80 284x80
#chan 64 64 64 1 1
ker. sz 9x9 5x5 5x5 5x5 –
Ratio /2 /2 /2 /2 /2
stride 1 1 1 1

Fig. 1. Multi-scale architecture for depth prediction on raw fisheye images
with a sparse velodyne (HD64L) ground truth. The input to the network is
576x172. Occlusion correction is essential, if velodyne points are mapped
to the fisheye eye image plane, because of the different mounting positions
of camera and LiDAR (see Section III-D).

b) Scale 2: Predictions: This scale incorporates a nar-
row view of the image and makes depth predictions at a
resolution one-fourth of the input image [1]. While making
predictions, the global scene information supplied by the
Scale 1 is also considered by concatenation of feature maps.
The input to this scale is the same RGB image which
was given as input to Scale 1. Scale 2 corrects the coarse
prediction it receives from Scale 1 to align with local details
such as object and car edges, by concatenating the feature
maps of the coarse network with those from a single layer
of convolution and pooling. The output of the second scale
is a 284 px×80 px prediction for our sparse fisheye cameras
dataset, with a single channel as a gray scale image.

c) Scale 3: Higher Resolution: Scale 3 refines the
predictions made by Scale 2. It contains a set of convolu-
tional operations with a small stride that can blend detailed
structure of the image into the predictions. The alignment of
output to higher-resolution details is further refined which
produces detailed spatially coherent depth map predictions.
The final linear layer of this scale predicts the depth map
with a resolution of 284 px× 80 px.

A. Sparse ground-truth depth maps

A Velodyne HDL-64ES2 sensor can fire only 64 beams of
lasers at different vertical angles with a vertical field of view
of 26.8◦. Hence the depth maps obtained from the projection
of the LiDAR 3D points are sparse. Due to rotary motion of

the Velodyne LiDAR sensor and movement of the vehicle
while data recording was made, points that are far away
had poor reflectivity. Therefore the extracted depth maps are
sparser for scenes composed of far away objects.

B. Scale-Invariant Error

The sparse nature of the ground truth depth maps is
considered in the design of the loss function. We have
adopted the loss function as described by Eigen et al. [2]
which is a l2-loss with a scale-invariant term. There is a
lot of uncertainty regarding the global scale associated with
the image, since we consider only a single image for depth
prediction. The scale-invariant loss considers this scaling
effect and produces the same loss for two scenes that differ
only by the scaling factor. Last linear layer in the third scale
of the architecture predicts the depth, which is compared to
the ground truth depth map. The loss function is defined by
equation 1,

Loss(p, p∗) =
1

n

∑
i∈V

d2i −
1

n2

(∑
i∈V

di

)2

(1)

where p is the pixel wise set of predictions from the neural
network. p∗ represents the ground truth depth map. Hence,
di = pi − p∗i is the difference for pixel i. The ground truth
depth map is sparse, i.e. not for all pixels exists an equivalent
depth measurement. We define a set of valid pixels V ⊂ P ∗,
with V = {p1...pi...pn}, where n is the number of valid
pixels within the ground truth depth map [2]:

Loss(p, p∗) =
1

n

∑
i∈V

(log pi − log p∗i + α(p, p∗))2. (2)

For a given (p, p∗), the error is minimized by α. The
value of α is α(p, p∗) = 1

n

∑
i∈V (log p

∗
i − log pi). The scale

that best aligns to the ground truth is given by eα for any
prediction p. The error is same across all the scalar multiples
of p, hence the term scale invariance as mentioned in [2].

An equivalent form of metric was obtained by Eigen et
al. [2] by setting di = log pi − log p∗i to be the difference
between the prediction and ground truth at pixel i,

Loss(p, p∗) =
1

n2

∑
i,j∈V

(
(log pi−log pj)−(log p∗i−log p∗j )

)2
(3)

The error is demonstrated in equation 3 by comparing the
relationships between pairs of pixels i, j in the output: each
pair of pixels in the prediction must differ in depth by an
amount similar to that of the corresponding pair in the ground
truth to have a low error. Our fisheye dataset is extremely
sparse due to the nature of LiDAR sensors, the loss function
is adapted to this sparsity. By masking out pixels that do
not have a valid depth value, the loss is calculated only
on pixels which have depth values. This facilitates efficient
feature extraction by the neural network. In addition to the
scale-invariant error, we evaluate our method using the error
metrics used in [2], [3] as described in section IV.
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Fig. 2. Illustraion of occlusion due to LiDAR’s viewpoint being higher
than the fisheye camera’s viewpoint. 3D points from the object (person) will
be mapped to image plane even though it is not visible from camera.

C. Training-Model

We train our model in a single pass in an end-to-end
fashion compared to [1], [2] where the first two scales of
the network were trained jointly. For each gradient step,
the entire image area is considered for training. Pre-trained
weights from AlexNet [13] are used. ConvNet is incorporated
as a fixed feature extractor for our dataset and the last fully-
connected layers are removed. The fully connected layers are
initialized randomly with values from a normal truncated
distribution. Scale 2 and Scale 3 are randomly initialized.
The dataset contains 60 000 images from fisheye camera
and sparse Velodyne LiDAR scans as ground truth with
validation and test set of 5000 images each. We trained
our model with a batch size of 20 using the Adam [27]
optimization algorithm, with β1 = 0.9, β2 = 0.999 and
ε = 10−8. We adopt an exponential decay function to lower
the learning rate as the training progresses, with an initial
learning rate of λ = 10−4. The function decays every 7500
steps with a base of 0.95. For the non-linearities in the
network, we used swish [25] activation function instead of
the commonly used rectified linear units (ReLU) [26] which
tend to work better on deeper models. The swish function is
defined as f(x) = x · σ(x) [25], where σ(x) = (1+ e−x)−1

is the sigmoid function. The interesting aspect about the
swish is that it does not monotonically increase compared
to other activations functions like ReLU. The problem of
dead neurons arises as the parameter will not be updated if
the gradient is 0, since gradient descent being the parameter
update algorithm. We initially experimented by adopting
different proposed alternative activation functions such as
scaled exponential linear units (SELU) [28], exponential
linear units (ELU) [29] and leaky ReLU [30]. However, we
found that swish performed best.

D. Occlusion Correction

The sensor fusion of the data will be correct, if both
camera and the Velodyne LiDAR scanner beholds the world
from the same viewpoint. However, for technical reasons in
our vehicle the fisheye camera is in the front and the LiDAR
is placed at the top as seen in Fig. 2. LiDAR perceives the
environment behind objects that occlude the view for the
camera. This problem of occlusion results in wrong mapping
of depth-points that are not visible to the camera. It is hard
to solve, since occluded points are projected adjacently to
unoccluded points [31].

To solve this problem, we adapted a distance based
segmentation technique with morphological filters as shown
in the Fig. 3. Instead of directly projecting points from

Raw Image

Occlusion Correction

Visible 
Points

Occluded
Points

Layer 
Generation

Fig. 3. Visualization of the distance based segmentation technique with
morphological filters. LiDAR points are projected to corresponding layers
and are removed if they are occluded by dilated parts of a neighboring layer.

Fig. 4. Illustration of Occluded Velodyne Ground Truth (left) and Dis-
Occluded Velodyne Ground Truth (right)

the LiDAR into the image plane of the fisheye camera,
we introduce I layers within the camera view located at
a distance dlayer

i , i = 1, . . . , I . Each LiDAR point will be
projected onto the layer next to it. We apply a morphological
filter that dilates points within each layer to fill the sparse
regions (in Fig. 3 dilated parts of the layers are colored blue).
A point at a distance dpoint is regarded as occluded, if a
layer i exists with dlayer

i < dpoint. Otherwise the valid point
is projected onto the image plane of the fisheye camera.

IV. RESULTS

The model is completely trained on our internal dataset.
Our dataset contains 55 000 images obtained from raw
fisheye camera and sparse Velodyne HDL-64E rotating 3D
laser scanner as ground truth. Points without depth value are
left unfilled without any post-processing. Eigen’s model [1]
handles missing values by eliminating them in the loss func-
tion. The input images are down-sampled to 576 px×172 px
primarily to get faster inference and training times.

The ground truth depth for this dataset is captured at
various intervals using a Velodyne HDL-64E rotating 3D
laser scanner, and are sampled at irregularly spaced points.
Conflicting values are found when constructing the ground
truth depths for training, since sensor records data at a
set maximum frequency of 10Hz and the fisheye cameras
record data at 30Hz. Time synchronization is essential as
the sensors capture data at different frequencies. Each spin
of the LiDAR sensor is considered as a frame and carries a
time-stamp associated with it. Similarly, each image frame
recorded by the fisheye camera carries a time-stamp. For
the purpose of synchronization, time-stamps provided with
the recordings are used. We resolve conflicts by choosing the
depth recorded closest to the RGB capture time in Intempora
RTMaps (Real-Time Multisensor Applications) framework.

The training set was collected by driving around Paris,
France and various parts of Bavaria, Germany. The training
set includes scenes from the city, residential and sub-urban



TABLE I
QUANTITATIVE RESULTS OF LEADERBOARD ALGORITHMS ON KITTI 2015 [32] DATASET AND OUR APPROACH ON VALEO’S FISHEYE DATASET

RMSE RMSE (log) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Approach Supervised cap lower is better higher is better

Mancini et al. [33] Yes 0− 100m 7.508 0.524 0.196 - 0.318 0.617 0.813
Eigen et al. [2] coarse 28×144 Yes 0− 80m 7.216 0.273 0.194 1.531 0.679 0.897 0.967
Eigen et al. [2] fine 27×142 Yes 0− 80m 7.156 0.270 0.190 1.515 0.692 0.899 0.967
Liu et al. [34] DCNF-FCSP FT Yes 0− 80m 6.986 0.289 0.217 1.841 0.647 0.882 0.961
Ma et al. [35] Yes 0− 100m 6.266 - 0.208 - 0.591 0.900 0.962
Kuznietsov et al. [6] Yes 0− 50m 3.531 0.183 0.117 0.597 0.861 0.964 0.989
Zhou et al. [36] (w/o explainability) No 0− 50m 5.452 0.273 0.208 1.551 0.695 0.900 0.964
Zhou et al. [36] No 0− 50m 5.181 0.264 0.201 1.391 0.696 0.900 0.966
Godard et al. [5] No 0− 50m 4.471 0.232 0.140 0.976 0.818 0.931 0.969

Ours fine 80×284 Yes 0− 50m 1.717 0.236 0.160 0.397 0.816 0.934 0.969

categories of our raw dataset. These are randomly shuffled
and fed to the network. We train the entire model for 80
epochs and test prediction takes 3.45 s/batch with a batch
size of 20 images (0.17 s/image).

The evaluation of accuracy in our method in depth predic-
tion is using the 3D laser ground truth on the test images.
We use the depth evaluation metrics used by Eigen et al. [2].
Exemplary predictions are shown in figure 5. The qualitative
results show that image regions without sufficient large
ground truth data points (e.g. sky), the model fails to predict
reasonable values.

A protocol evaluation is applied and results are shown by
discarding ground-truth depth below 0m and above 50m
while capping the predicted depths into 0m − 50m depth
interval. This implies, we set predicted depths to 0m and
50m if they are below 0m or above 50m, respectively.

In Table I, we show how our approach performs on Va-
leo’s fisheye dataset. Furthermore the results of leaderboard
algorithms on KITTI 2015 [32] are reproduced. For lack of
a better comparison, we use this as a proxy to illustrate that
we obtained comparable RMSE on our sparse fisheye dataset.
It should be noted that although we predict a dense depth
map, the sparse dataset only allows us to take a fraction of
the predicted values into consideration for error calculation.
To tackle this problem we plan to refine our model on a
synthetic dataset, close to our Valeo’s fisheye dataset, that
allows a full verification of the predicted depth. First tests
show promising results with excluded sky.

V. CONCLUSION

Even though the camera/LiDAR setups are different, the
results provide a reasonable comparison to KITTI on perfor-
mance of monocular depth regression using sparse LiDAR
input. In future work, we aim to improve the results by
using more consecutive frames which can exploit the motion
parallax and better CNN encoders. We also plan to augment
the supervised training with synthetic data and unsupervised
training techniques.
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