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Abstract

This paper analyzes the impact of providing car drivers with predictive informa-
tion on traffic signal timing in real-time, including time-to-green and green-wave
speed recommendations. Over a period of six months, the behavior of these 121
drivers in everyday urban driving was analyzed with and without access to live traf-
fic signal information. In a first period, drivers had the information providing ser-
vice disabled in order to establish a baseline behavior; after that initial phase, the
service was activated. In both cases, data from smartphone and vehicle sensors was
collected, including speed, acceleration, fuel rate, acceleration and brake pedal posi-
tions. We estimated the changes in the driving behavior which result from drivers’
receiving the traffic signal timing information by carefully comparing distributions of
acceleration/deceleration patterns through statistical analysis. Our analysis demon-
strates that there is a positive effect of providing traffic signal information timing to
the drivers.

1 Introduction

Vehicle-to-Infrastructure (V2I) systems have been the subject of intense interest in recent
years, offering the promise of significant reductions in fuel consumption and greenhouse
gas and other emissions, as well as safety improvements. While there have been many
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testbed studies that support these promises, as well as anecdotal evidence from limited
deployments, the effectiveness of various V2I mechanisms in real-world has not been
fully demonstrated. Many factors that could impact, and possibly negate the anticipated
benefits, such as driver compliance, distraction, and the impact of other drivers’ behav-
ior are difficult to estimate before wide-scale trials. In order to increase transportation
authorities’ willingness to deploy V2I systems, it is important that real-world studies be
conducted to gather data that can serve to evaluate these factors. Such studies would, ide-
ally, compare a statistically significant number of individual drivers’ performance with
and without V2I assistance, under a variety of driving conditions, for long enough to
explore “novelty” effects (e.g., whether drivers stop paying attention once they become
habituated to the technology).

One example of V2I technology consists in providing real-time information about up-
coming traffic signals, which could bring 8-15% energy savings [11, 12]. However, most
studies have focused on modeling and simulation [1, 10] or “professional driver on closed
course” studies [12], which may not capture real-world complex factors. This technology
could also reduce the number of accidents at signalized intersections. However, only real-
world implementation would demonstrate whether that would be the case, and would
also uncover any potential unintended consequences - technology supposed to improve
safety, such as red-light cameras, sometimes produce counterintuitive results [3].

To help achieve the anticipated benefits, DSRC (Digital Short-Range Communications)
is a possible communication technology that would allow the infrastructure to commu-
nicate with approaching vehicles, using specialized roadside and in-vehicle equipment.
While DSRC offers many benefits, including nearly instantaneous relay of information,
this approach requires a significant investment in new infrastructure.

Connected Signals has developed and demonstrated a complementary approach to
relaying signal information to vehicles that exploits existing connections between traf-
fic signals and municipal traffic management systems (TMSs), and existing connections
between TMSs and the Internet, to access signal data. Cellular technology is used to com-
municate with vehicles. This approach avoids the need to deploy special-purpose hard-
ware at each intersection and in each vehicle. A number of pilot deployments have been
completed in cities in the US, New Zealand, and Australia. Given that a large fraction
of urban traffic signals are connected to TMSs, and that vehicles increasingly have built-
in cellular connectivity, this approach offers the prospect of being able to connect many
signals to many vehicles almost immediately at very low cost. Signal information can be
accessed through Connected Signals’ EnLighten R© smartphone app, as well as directly
through integrated systems that have been developed with a number of major vehicle
OEMs, including BMW.

2 Study Design

In this study, Connected Signals (CS) data was broadcast to the drivers in one of two
forms: through the vehicle infotainment unit for the drivers of BMWs equipped with
the functionality, or through CS’ EnLighten smartphone app. Special versions of each
were produced to accommodate the study’s needs. The initial fielded version supports
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signal count-downs and “green-light-assist” information that tells drivers whether they
would make an upcoming signal at their current speed. A sample screenshot is shown
in Figure 1. The display indicates that the light is currently green and will remain so
for 28 seconds. The green arrow shows that, at the current speed, the car will arrive at
the intersection during the green phase. The application is available in selected cities,
including San Jose, CA, where the field study was conducted.

Figure 1: BMW EnLighten display: next light will be green, based on current speed

The study involved recruiting roughly 400 drivers. With the drivers’ consent, data on
vehicle position and speed, acceleration, braking, and (where possible) fuel consumption
was collected. This data was transmitted to servers in the cloud, where it was merged
with contemporaneous signal-state information for later, offline, analysis.

Drivers who spend significant portions of their driving time both in and out of the
covered areas were recruited. This allows their behavior to be compared longitudinally,
making it possible to detect habituation effects and eliminate biases that might occur in
simple sequential “without data/with data” trials. Data collection was run for approx-
imately six months, to ensure that a meaningful amount of data was collected for each
driver, and that each driver experienced a variety of driving conditions.

When in covered areas, drivers were provided with predictive signal information
telling them, when possible, whether they would make or miss the next signal at their
current speed, a recommended speed to make the next signal, and countdowns for red
signal durations when they are stopped. For safety reasons, speed recommendations
were limited by the current speed limit, and red-light countdowns stopped at 5 seconds
before the signal changes to force drivers to rely on the physical traffic signal. At that
time, a chime also sounded to alert drivers to return their focus to driving in case they
may have become distracted while waiting for the signal to change.

3



The experimental design for the study is intended to maximize our ability to deter-
mine the effects of signal data availability, given the constraints of what can readily be
obtained from a collection of privately owned vehicles and a self-nominated group of
participants.

A number of steps were taken to minimize-as much as possible-the effects of such fac-
tors as driver and vehicle variability, habituation, and differing driving conditions in and
out of signal coverage. First of all, during an initial period, drivers were not provided
with signal information over a sufficient number of trips to establish a baseline. During
that time, information was collected on drives and correlated with real-time signal state
information. This allows determination of how drivers respond to the signal state infor-
mation they get in the normal way (looking at the lights) without additional predictive or
guidance information.

Secondly, throughout the study, data was collected from trips both inside and outside
the signal-coverage area. Since the locations (but not the states) of signals outside of cov-
erage are known, this helps distinguish between changes in drivers’ behavior that result
from access to signal data and changes that result from other factors such as weather or
traffic conditions. While this is not a perfect comparison, it should provide reasonable
indicators of the significance of the observed results.

Finally, each driver was assigned a unique ID that was used to associate all their
drives. This allows changes in driver behavior to be analyzed longitudinally over the
course of the study, including between control and signal-informed driving conditions.
The unique IDs were created so they cannot be inverted to identify particular drivers to
ensure the privacy of drivers in the study, and all data was anonymized using these IDs
as it was received.

Although the characteristics of the study’s drivers and their route selections cannot
be controlled for, the ability to compare individual drivers longitudinally, both with and
without signal data, over an extended period should minimize the influence of such fac-
tors.

For those vehicles with integrated signal information capabilities, the necessary infor-
mation was captured directly from the participating vehicles. For vehicles without direct
integration, a special-purpose version of EnLighten was developed to acquire the neces-
sary data from the smartphones’ sensors. For each trip, time-series data was be collected
on:

1. Vehicle position, heading, and speed

2. Number and duration of stops

3. Acceleration and deceleration profiles

4. Energy consumption (if available)

5. Availability, timing, and content of provided signal information

6. Actual signal state (if known).
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This information was associated with the vehicle type and driver ID. All data was sent
to the cloud both to facilitate provision of signal-state predictions to the vehicle and for
recording for subsequent analysis.

Since baseline and longitudinal data without signal provisioning was collected in ad-
dition to data with signal information, it should be possible to reliably estimate the effects
on energy consumption and safety and estimate the impact of signal time information.

3 San Jose Data

We analyze data from two sources: smartphone and CAN bus. The CAN bus data are
collected via OBDII interface. The data was observed during the period from 2016-09-
13 to 2017-02-09. Table 1 provides number of observations (in thousands) and number
of active and inactive trips from CAN and phone. An active trip is when the feedback
system was on. Phone observations were collected from GPS and accelerometer sensors.
CAN signals are vehicle dependent. Different manufacturers broadcast different sets of
signals via the OBDII interface.

Dataset Obs (A)/103 Obs (I)/103 Trips (A) Trips (I)

CAN Speed 6461 9941 2535 4406
Phone Speed 3172 3753 4661 6803
HMM 2408 2918 2961 4359
Phone Acceleration 2852 3861 4733 8033
CAN Acc. Pedal D 2171 3325 2306 3911
CAN RPM 1088 1726 2482 4315
CAN Throttle 1088 1727 2450 4249
CAN Acc. Pedal E 1085 1662 2307 3904
CAN Throttle R 1068 1636 2299 3844
CAN Throttle B 1051 1591 2268 3754
CAN Fuel Rate 19 62 79 165
BMW RPM 998 488 214 57
BMW Fuel 916 460 214 57
BMW Acceleration 9 171 41 13
BMW Location 73 44 165 56
BMW Start/Stop 13 2 214 57
BMW Brake 9 0 41 3
Feedback Time 414 0 2570 0
Feedback Green 152 0 3303 0

Table 1: Number of active (A) and inactive (I) observations and trips, Number of obser-
vations are in thousands.

Observations collected from CAN bus data is collected at irregular frequency, with
most of the observations being collected at frequency of 3 Hz. On the other hand, phone
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data was observed at regular frequency of 1 Hz. Figure 2 shows the empirical distribution
of the frequencies at which data was collected from both sources.
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Figure 2: Histogram of observations’ frequency from (a) CAN bus and (b) phone sensors

The irregularity of the CAN observations’ frequency is most likely due to WiFi con-
nection disruptions. The data from ODBII dongle was transmitted to the phone via WiFi
connection and then the phone would send data to the back-end server.

There are 13154 road segments from which the data was observed. Out of those, 3620
were road segments on which drivers would receive information about traffic light tim-
ing. Road segments on which traffic light information is available we will call active
segments. As shown in Figure 3, most of the road segments in the central part of San Jose
are active.
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Figure 3: Active Road Segments. Road segments colored in red are active

Further, most of the data was collected in the central part of San Jose. Maps on Figure 4
show a 0.01% sample of observations from the analyzed data set.
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Figure 4: Sample of locations where data was recorded

7



3.1 Data Processing

Data from phone’s GPS sensor was matched to road segments using Hidden Markov
Model (HMM) [6, 4]. Missing observations were considered to be at random. Plot 5 shows
distribution of durations of missing observations. There is a heavy tail for durations of
missing observations among CAN signals. This is likely due to the connectivity issues
between OBDII dongle and the phone that collects the data.

Missing Period [s]
10 20 30 40 50

0
50

0
10

00
15

00

Missing Period [s]
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0
20

00
60

00
10

00
0

(a) CAN (b) Phone

Figure 5: Histogram of duration of missing data from CAN and phone.

When we calculate derivatives of location to calculate the speed, we simply remove
the observation with time jumps. We also observed that some of the trips had long se-
quence of zero speed observations. We removed those zero observations from analysis.

To address the issue of noise we truncated observations with values that are beyond
physical limits. Speed was truncated to be inside [0, 160] mi/h miles per hour and accel-
eration was truncated to be inside [−6, 4] m/s2. Further we used Kalman smoothing to
remove sharp acceleration spikes and changes in speed that violate basic laws of vehicle
dynamics.

3.1.1 Kalman Smoothing

We formulate dynamics of the speed and acceleration observations as a state-space model

yt = Fθt + v, vt ∼ N(0, V) (1)
θt = Gθt−1 + w, w ∼ N(0, W) (2)

Where θt = (st, at) vector with speed st and acceleration at. Further,

F =

(
1 0
0 1

)
, G =

(
1 ∆t
0 1

)
We used

V =
(

0 1
)

, W =

(
1 0
0 0.2

)
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Thus, we consider that change in speed from time step to time step as normally dis-
tributed with mean 0 and variance 0.5 and change in acceleration follows a normal distri-
bution with mean 0 and variance 1. For each of the trajectories, we used µ0 = (0, 2) and
C0 = 103× diag(2, 2). Figure 6 shows the result of applying Kalman smoothing (red line)
to noisy speed and acceleration signals from phone GPS sensor (black line).
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Figure 6: Observations Smoothed with Kalman Filter

3.1.2 Dynamic Time Warping

Signals collected from CAN did not have associated locations. To add location attribute to
each of the CAN signals, we joined CAN records with the phone records, which do have
location attributes. Since the data was collected at different frequencies, a simple data
base join operation that looks for equal time stamps would not work. We used dynamic
time warping (DTW) [5] to join the CAN and phone datasets. DTW finds an optimal
alignment between two time series datasets. It “warps” one of the sequences to match the
other one. Given two time-dependent sequences a = (a1, . . . , aN) and y = (y1, . . . , yn),
DTW calculates the optimal warping path that minimizes the total distance between time
series

ρp(a, b) =
L

∑
l=1

c(apa(l), ypb(l))→ minimizep,

here p is the path function p(l) = (pa(l), pb(l)) which for each index l calculates cor-
responding indexes in a and b vectors. In our application the cost function c(x, y) =
| time(x)− time(y)| is the distance between the time stamps of each individual observa-
tions.

4 Analysis of Information Effect on Driving Behavior

We applied data cleaning and filtering techniques described in the previous section to the
datasets. Further, to remove bias, we only compared records from those roads where traf-
fic signal information was available. The resulting cleaned phone speed data set contains
1,093,506 active observations and 1,311,666 inactive observations. An active observation
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was recorded when information about traffic signal timing was provided to the driver
and inactive observations were recorded when no such information was provided.

First, we compare summary statistics for both active and inactive groups. The means
for acceleration values are given in Table 2.

Status Mean positive acceleration Mean negative acceleration
Inactive 0.7626 -0.767
Active 0.746 -0.741

Table 2: Mean for positive and negative acceleration values

A one sided Welch two-sample t-test for the difference in the means µinactive − µactive
confirms that the difference is significant. For positive acceleration the 95% confidence in-
terval for the difference is (0.014, ∞) and for negative accelerations, interval is (−∞,−0.023)
with p-value 10−16 in both cases.

Further, we performed the t-test for the means of CAN signals. Results of analysis of
the CAN signals is shown in Table 3.

Signal Inactive Mean Active Mean Conf. In-
terval

Pedal D 57.534 57.719 (-0.225,-
0.145)

RPM 1285.8 1098.4 (185.07,189.77)
Throttle 50.769 48.862 (1.8435,1.9692)
Acceleration Pedal 55.944 62.959 (-7.0984,-

6.9321)
Throttle Relative 20.458 17.207 (3.185,3.3175)
Throttle Position 79.808 90.074 (-10.366,-

10.166)
Fuel Rate 9420.4 3222.3 (5743.2,6653)
BMW RPM 5183.5 5343.2 (-165.73,-

153.74)
BMW Fuel 32708 32430 (211.14,344.98)

Table 3: Analysis of the means of CAN signals.

We also performed t-test for individual road segments, however, even for the most
traveled roads of the network, the sample sizes were not large enough to make conclusive
statements. Table 4 shows the means and results of t-test for the top 10 most traveled
roads in San Jose.
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Road ID Mean Inactive (# obs) Mean Active (# obs) p-value
24166 0.826 (886) 0.751 (2686) 0.0013
77790 0.656 (1001) 0.649 (1514) 0.3904
22025 0.664 (813) 0.668 (2733) 0.5813
20566 0.626 (1392) 0.738 (1595) 1.0000
9028 0.722 (220) 0.587 (440) 0.0104
12686 0.708 (422) 0.666 (1064) 0.1287
80357 0.653 (3172) 0.722 (257) 0.9413
80356 0.494 (2054) 0.677 (183) 0.9999
9717 0.848 (655) 0.922 (1162) 0.9741
24552 0.510 (702) 0.518 (2161) 0.6511

Table 4: Comparison of mean acceleration values for individual roads.

The higher mean acceleration/deceleration values in the inactive group show that the
information did have a positive effect. The difference in the means, though, can be re-
sult of many drivers to accelerating “slightly faster” without information or as a result of
presence of sharp acceleration patterns in the data. To answer this question we need to an-
alyze the sharp acceleration patterns. Statistically speaking we are interested in behavior
of the extreme acceleration/deceleration observations, a.k.a. tail observations.

Thus, instead of analyzing means, we need to analyze the entire distribution of the ob-
servations. Figure 7 shows the empirical distribution (histogram) for acceleration/deceleration
for both active and inactive groups.
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Figure 7: Histogram for (a) Positive and (b) Negative acceleration values

Active values have more mass around modes of the distribution, while the distribu-
tion for inactive values has a heavier tail. The Kolmogorov-Smirnov test confirms the em-
pirical observation that distributions are different. We perform a Kolmogorov-Smirnov
test to compare empirical cumulative distributions. Figure 8 shows the empirical cumu-
lative distribution functions (CDF) for acceleration values for two groups of trips (ac-
tive/inactive).

The Kolmogorov-Smirnov D−-statistic equals 0.016 and the p-value is 10−16. Thus, we
accept the alternative hypothesis that the CDF of inactive values lies below that of active
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Figure 8: Empirical cumulative distribution for acceleration observations from active
group (solid line) and inactive group (dashed line).

values for acceleration values.
Figure 9 shows the empirical cumulative distribution functions (CDF) for deceleration

values for two groups of trips (active/inactive).
The Kolmogorov-Smirnov D+-statistic equals 0.021 and the p-value is 10−16. Thus, we

accept the alternative hypothesis that the CDF of inactive values lies above that of active
values for deceleration observations.

4.1 Extreme Value Theory

The Kolmogorov-Smirnov test confirms that the distributions of the active and inactive
groups differ in their tails. To further quantify the difference of the tail observations, we
use Extreme value theory (EVT) [2]. EVT was developed to analyze extreme climate events
and sharp market movements [9]. For example, Sigauke et. el. [8] use EVT for electricity
demand modeling, and [7] provide a statistical model combined with EVT for electricity
markets.

We are interested in predicting the frequency at which a variable exceeds a certain
threshold. For example, we consider acceleration greater than 3 m/s2 to be aggressive
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Figure 9: Empirical cumulative distribution for deceleration observations from active
group (solid line) and inactive group (dashed line).

driving and are interested in understanding the frequency of those events. Let y de-
note our variable of interest, for example acceleration, and consider the exceedence over
threshold events {y | y > u}. Then the probability of this event has a limiting generalized
Pareto (GP) distribution, so that

P(y ≤ a | y > u)→ H(a) := 1−
(

1 + ξ
a− u

σ

)−1/ξ

+

.

Here (u, σ, ξ) are the location, scale and shape parameters, σ > 0 and z+ = max(z, 0).
H(a) is called Generalized Pareto (GP) distribution. The Exponential distribution is ob-
tained by continuity as ξ → 0.

To verify that this theoretical result holds for a given dataset, we can use the following
property of the excedence function, empirically if y follows Generalized Pareto distribu-
tion, then for ξ < 1 and u > 0, we have

E(y− u | y > u) =
σ + ξu
1− σ

.

An empirical plot of mean excess threshold should, therefore, be close to straight line
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with slope ξ/(1− ξ). Figure 10 shows that for our dataset this identity holds. Thus, we
can use GP distribution to analyze the tails behavior.
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Figure 10: Mean excess plot for active and inactive trips.

We fit the GP distribution and use it to calculate what threshold is expected to be
exceeded every 24 seconds. Table 5 provides the result.

Acceleration Deceleration
Active 2.18 -2.26

Inactive 2.36 -2.31

Table 5: Level exceeded every 24 seconds of the observation

The formal analysis of tails using GP distribution confirms our empirical observation
that the inactive group has heavier tails.

5 Discussion

The main contribution of this paper is the development and application of statistical tech-
niques for analysis of driving data collected from smartphone and vehicle sensors. We
analyzed two groups of observations: active and inactive. Active users received traf-
fic information and inactive useres did not. We compared the means of the accelera-
tion/deceleration observations and found that active drivers have smoother driving pat-
terns. Our analysis demonstrates that there is a positive effect of providing traffic signal
information timing to the drivers. Further, we analyzed extreme acceleration and deceler-
ation patterns (tail observation). We showed that extreme acceleration and decelerations
arise less frequently in the active group. The difference in the mean observations is not
large. For example mean acceleration among active group is 0.7626 m/s2 and it is 0.746
m/s2 for the inactive group, which is a 2.2% reduction. However, the difference among
extreme accelerations/decelerations is more pronounced. We observed that every 24 sec-
onds 2.18 m/s2 is expected to be exceeded by active group and 2.36 m/s2 for the inactive
group. Thus, the reduction is 7.6%.
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There are many directions for future research. These include development of Bayesian
analysis techniques which allow to “pool” data from multiple regions to derive metrics
specific to individual road segments or intersections. Further, development of statistical
models that use type of information provided as inputs would support understanding
how drivers react to different types of messages. It will be useful to understand how
changes in driving behavior impact vehicle emissions and safety metrics. For example,
will smoother driving cycles lead to less accidents at the intersections and how will this
impact fuel consumption and CO2 emissions?

Finally, the data presented here are dependent on the level of accuracy of Connected
Signals’ predictive signal data and the particular presentation(s) of that data to drivers
used for the study. More study on the effects of varying presentations and various accu-
racy requirements would clearly be beneficial.
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