
 

 

 

 

Abstract— An algorithm to cluster mobility-on-demand trips 

considering road network structure is developed in this paper.  

The benefits of our network partition algorithm are 

demonstrated in numerical simulations, showing that we can use 

fewer vehicles and can serve more customers with slightly longer 

wait time by including predicted future travel demand in trip 

assignment, compared with the benchmark reactive control 

policy.  

Index Terms—Ride-share, Vehicle Routing, Road Network 

Partition, Intelligent Transportation System 

I. INTRODUCTION 

Mobility-on-demand (MOD) services such as Uber and 
Lyft have brought significant changes, especially in urban 
areas with dense population. When multiple passengers share 
the same vehicle (e.g., Lyft Line and UberPOOL), the service 
can reduce the number of vehicles on the road and reduce 
congestion and energy consumption.  

Today’s MOD fleet management largely reacts to trip 
requests without utilizing predicted future supply and travel 
demand distribution.  Continuous approximation [1] is used to 
study the dynamics of fleet and influence of large fleet to 
congestion. To control the fleet directly, algorithms such as 
mixed integer programming [2], heuristic [3] and graph based 
decomposition [4] methods demonstrated that current travel 
demand for taxis in New York city can be fulfilled with 15% 
of the existing fleet [5]. A privacy-preserving algorithm was 
developed [6] to protect the location information of passengers 
without incurring significant performance drop. However, the 
potential of the fleet is not fully utilized due to the nature of 
reactive control policy. 

 Knowledge of travel demand distribution plays a vital role 
in the control of MOD fleet. For carpool service with private 
cars, travel data can be used to identify optimal combined trips 
for carpooling and can reduce daily car mileage by 44% [7]. 
Intelligent transportation techniques such as connected 
automated vehicle provide richer information about travel 
demand and enable centralized coordination for the MOD 
fleet. Han et al. [8] showed that with driverless MOD fleet, the 
direct control approach is 29% more efficient compared with 
current price-based indirect control. For service provided by 
commercial fleet, travel demand distribution can be used to 
control the idling vehicles for rebalancing [8]–[10] to better 
meet future trip requests when carpooling is not allowed. A 
sampling-based algorithm is also proposed to control ride-
sharing fleet using predicted future trip request information 
[11]. However, the travel location distribution is either 
characterized with clusters from geometric coordinate of 
locations [7] or grid-based discretization [9], neither of which 
takes the structure of the road network into consideration. 

Since travel demand can be characterized as a random 
Origin-Destination variable on the road network, ignoring the 
underlying network structure can be problematic. To better 
describe the travel location distribution considering the 
structure of the road network, we propose an algorithm based 
on multidimensional scaling (MDS) [12] to project the 
locations on the road network onto an Euclidean space, and 
characterize the travel locations with Dirichlet Process 
Gaussian Mixture Model (DPGMM) [13]. The projection 
allows us to obtain better clustering results compared with the 
geometric coordinate-based methods. To utilize the demand 
distribution information for fleet management, we developed 
a fleet control algorithm based on the work in [5]. We propose 
a Kullback–Leibler (KL) divergence [14] regularization based 
control policy to balance current trip requests and future travel 
demand distribution. We assume that the demand distribution 
is known, and the fleet can be controlled directly to take 
assigned trips and to rebalance to be better prepared for future 
demands.  It should be noted that we do not assume the future 
trips are known exactly, but their probability distribution is 
known. In our numerical study, travel demands are generated 
by POLARIS [15], a mesoscopic agent-based transportation 
model calibrated with data from the Safety Pilot Model 
Deployment (SPMD) project [16]. The calibration dataset 
consists of trip information from up to 2,800 vehicles since 
2012.  

The main contributions of this work are: 1) a travel location 
clustering algorithm considering the road network structure; 2) 
a ride-sharing fleet control policy considering future travel 
demand distribution for more efficient service.  

The rest of this paper is organized as follows: Section 2 
presents the proposed travel location clustering algorithm. 
Section 3 presents the formulation of demand regularized ride-
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Fig. 1 Snapshot of shared trips of ride-share fleet operation with 900 

vehicles serving 4% of travel demand during evening rush hour (17:00-

18:00) in Ann Arbor 

mailto:xnhuang@umich.edu
mailto:hpeng@umich.edu


 

 

 

sharing fleet optimization. Section 4 presents the simulation 
results. Conclusions and future work are given in Section 5. 

II. TRAVEL LOCATION CLUSTERING 

To characterize travel location distribution with the road 

network structure taken into consideration, we model the 

original road network with a Euclidean space approximation. 

With this approximation, we characterize the distribution of 

travel locations with the Lebesgue measure. 

A. Multidimensional Scaling (MDS) 

The MDS method is used to find the optimal Euclidian 
space that preserves pairwise distance in the network space. 
MDS can be formulated as an optimization problem defined as  

𝑚𝑖𝑛𝑥1,…,𝑥𝑁 (
∑ (𝑑𝑖𝑗
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where 𝑑𝑖𝑗  is the pairwise distance between points 𝑖 and 𝑗,  
𝑥𝑖 , 𝑥𝑗 ∈ ℝ

𝑚 are the vectors corresponding to point 𝑖 and 𝑗 in 

the projection space, and m is the dimension of the projection 
space.  𝑝 is the power transformation used by metric scaling, 
𝑁 is the total number of projected points. Since the projection 
space is Euclidian, the approximated distance is 

‖𝑥𝑖 − 𝑥𝑗‖
2
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When 𝑝 is 1, the MDS is known as the classical MDS and 
can be solved with eigen-decomposition by transferring 
distance to inner product through double re-centering 
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where 𝐷 is the distance matrix, 𝐷 = {𝑑𝑖𝑗}, 𝐼𝑛 is the identity 

matrix and 1 is the column vector with 1 as all its entries. With 
this transformation, vectors in the projection space can be 
obtained by eigen-decomposition of 𝐺, which gives 

𝑥𝑖
∗ = √𝜆𝑖𝑢𝑖 , 𝑖 = 1…𝑚 (4) 

where 𝜆𝑖 is the 𝑖-th largest eigenvalue of 𝐺, and 𝑢𝑖 is the 
corresponding eigenvector. When 𝑝 ≥ 2, the optimization 
problem can be solved using the steepest gradient method [12] 
where the solution of the classical MDS is used as the initial 
point for the numerical algorithm. In the following analysis, 
we use non-classical MDS with 𝑝 = 2 to approximate the 
pairwise distance in the non-Euclidean road network space. 

The distance matrix is obtained by calculating the pairwise 
lowest cost path distance between every pair of links in the 
capacity-normalized traffic network. The capacity-normalized 
traffic network is defined as a weighted directed graph with 
nodes associated with links of the original road network and 
edges associated with the movements. An edge from node 𝑖 to 
node 𝑗 exists if link 𝑗 is adjancent to link 𝑖 and if vehicle can 
travel from link 𝑖 to link 𝑗 (one-way road link is an example of 
when this is not the case). The weight of the edges is defined 
as  

𝑤𝑖𝑗 =
1

2
(
𝑙𝑖
𝑣�̅�𝑛𝑖

+
𝑙𝑗

𝑣�̅�𝑛𝑗
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where 𝑙𝑖 , 𝑙𝑗 are lengths of links 𝑖 and 𝑗, 𝑣�̅�, 𝑣�̅� are the travel 

speeds, which can be the posted speed limits of the road links 
if no real-time traffic information is available, 𝑛𝑖 , 𝑛𝑗 are lane 

numbers of the corresponding links. The graph is connected 
since there is no isolated links in the traffic network. The 

pairwise distance is solved using linear programming based on 
the Bellman inequality, which is the dual of Bellman-Ford 
algorithm [17] and can be solved efficiently with optimization 
solver such as Gurobi [18] which we used. The approximation 
performance with different projection space dimension is 
shown in Fig. 2, with mean and standard deviation marked 
with error bars.  

In the following analysis, we choose 18 dimensions for the 
Euclidean space approximation, and the mean absolute 
percentage error (MAPE) converges as indicated by the red dot 
in Fig. 3.  The MAPE for distance approximation is 5%, which 
is sufficient to preserve the pairwise distances of the original 
road network. 

B. Location Distribution Characterization 

In the literature, travel location distribution is frequently 
characterized using Cartesian coordinate in the geometric 
space [7], which ignores road network structure information. 
With the approximation of link locations in the projected 
Euclidean space, we can analyze the location distribution in 
the projected space using the Lebesgue measure, which 
preserves the original distances in the network. In the 
following analysis, we assume that the origin and destination 
of each trip are sampled from the location distribution, and the 
union of origins and destinations is defined as locations of 
interests. Since we do not assume knowing the number of 
locations of interests, we use the DPGMM to model the 
random variable. DPGMM is a Bayesian nonparametric 
extension of the Finite Gaussian Mixture Model whose 
probability density function can be expressed by: 

where 𝑋 is the random variable for travel locations, 𝑓𝑋(𝑥) is 
the overall density function, 𝜋𝑘 is the mixing coefficient for 
each component, 𝑓𝑋,𝑘(𝑥) is the density for each component, 

which follows a multivariate Gaussian distribution. Instead of 

 
Fig. 2 Approximation Error with Different Approximation Dimension 

 
Fig. 3 MAPE for different approximation dimension 
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a fixed component number 𝐾, DPGMM assumes the model 
consists of infinite components, i.e. 𝐾 → ∞ in (6). With this 
method, not only the parameters for each mixture component 
but also the number of mixture components can be inferred 
from data. In this way, the locations of interests are modeled 
as the mean of each mixture component, and travel demand 
can be modeled as a multinomial distribution with the 
discretization achieved using the mixture model. The posterior 
of parameters of the DPGMM is inferred through collapsed 
Gibbs sampling, which is an approximate inference algorithm 
based on Markov Chain Monte Carlo (MCMC) sampling and 
known to be unbiased asymptotically compared with other 
approximate inference methods such as variational inference. 
The process is summarized as follows. Denote 𝑐𝑖 ∈ {1, … , 𝐾}  
as the indicator variable of the component for each data point, 
which is a discrete random variable parameterized by 𝜋 

For Dirichlet process model, 𝐾 → ∞. The parameters are 

modeled with their corresponding conjugate priors, i.e. 

Dirichlet distribution for 𝜋 and Gaussian-Wishart distribution 

for mean 𝜇 and covariance Σ of each component. 

𝑃(𝜋) = 𝐷𝑖𝑟(𝜋|𝛼0) = 𝐶(𝛼0)∏ 𝜋𝑘
𝛼0−1

𝐾

𝑘=1
(8) 

  𝑃(𝜇, Σ) = 𝑃(𝜇|Σ)𝑃(Σ) 

 =∏ 𝑁(𝜇𝑘|𝑚0, 𝛽0Σ𝑘)𝑊(Σ𝑘
−1|𝑊0, 𝑣0)

𝐾

𝑘=1
(9) 

where 𝛼0, 𝑚0, 𝛽0,𝑊0, 𝑣0 are the hyperparameters. For 

simplicity, we denote {𝑚0, 𝛽0,𝑊0, 𝑣0} the set of 

hyperparameters for the Gaussian-Wishart distribution as 𝛾. 

The hidden variables include the indicator variable 𝑐𝑖 and the 

model parameters 𝜋, 𝜇, Σ. At each step of collapsed Gibbs 

sampling, we sample 𝑐𝑖 conditional on the rest of the data 

points and random variables from the posterior  

𝑝(𝑐𝑖 = 𝑘|𝑐−𝑖 , 𝑥, 𝛼0, 𝛾) 
                 ∝ 𝑝(𝑐𝑖 = 𝑘|𝑐−𝑖 , 𝛼0)𝑝(𝑥|𝑐−𝑖 , 𝑐𝑖 = 𝑘, 𝛾) (10) 

where 𝑐−𝑖 is the set of indicator variables for other samples 

except 𝑖, 𝑐−𝑖 = {𝑐𝑗 , 𝑗 ≠ 𝑖, 𝑗 ∈ ℕ, 1 ≤ 𝑗 ≤ 𝑁}, 𝑁 is the sample 

size for the entire dataset. Since the prior for other parameters 

are well-defined, the inference can be carried out in a closed 

form. Thus, no sampling is required to obtain the posterior of  

𝜇 and Σ once 𝑐𝑖’s are sampled for all data points. 

The likelihood term can be obtained in a closed form from 

the Gaussian-Wishart distribution, and the prior term can be 

defined by the Chinese Restaurant Process (CRP). The 

resultant cluster assignment follows the pattern that the 

probability of a new sample belonging to a cluster is 

proportional to the number of samples already in the cluster. 

𝑝(𝑐𝑖 = 𝑘|𝑐−𝑖 , 𝛼0) =

{
 

 
𝑁−𝑖,𝑘

𝑁 + 𝛼0 − 1
If 𝑘 ≤ 𝐾

𝛼0
𝑁 + 𝛼0 − 1

If 𝑘 = 𝐾 + 1
(11) 

where 𝑁−𝑖,𝑘 is the sample size of data belong to cluster 𝑘 for 

other samples except 𝑖, 𝐾 is the current number of clusters 

already realized. In this way, as the sample size 𝑁 goes to 

infinity, the number of clusters can go to infinity, indicating 

that the model is more complex with more samples acquired. 

 DPGMM is used to identify the clusters for travel 

locations in the projected Euclidean space. The clustering 

result from DPGMM is used to partition the network and 

define the sample space for travel demand distribution, which 

is defined on the origin-destination region pairs. 

III. TRAVEL DEMAND REGULARIZED ASSIGNMENT 

Our fleet control algorithm is based on the graph 

decomposition method proposed in [5]. The algorithm can 

solve the trip matching and routing problem for ride-sharing 

for thousands of vehicles and customers fast enough for real-

world implementation. We further improve the algorithm to 

take knowledge of future travel demand distribution into 

consideration.  

A. Real-Time Ride-share Trip Assignment 

As a start point, we reproduce the work in [5]  by assuming 

the road network is static and solving all optimal routes 

considering only travel time offline. Including dynamic road 

network information is done later. The trip assignment 

algorithm is based on a shareability graph. The graph is 

defined as undirected graph with nodes defined as customers 

and vehicles. An edge exists between two customers if a 

vehicle can depart from the origin of one of the customers and 

fulfill the travel demands of both customers without violating 

travel time constraints. An edge exists between a vehicle and 

a customer if the demand can be served by the vehicle without 

violating travel time constraints. Then a necessary condition 

for a trip to be feasible is that the customers of the trip can 

form a clique with one vehicle present in the shareability 

network. A clique is a subgraph such that every node is 

connected to every other node within the same clique. It’s 

noted that the cliques do not need to be maximum cliques in 

the shareability graph. The cliques in a graph can be found 

with Bron-Kerbosch algorithm [19] with worst case time 

complexity 𝑂(𝑑𝑛3𝑑/3) where 𝑛 is the number of nodes and 𝑑 

is degeneracy of the graph, which is a measure of sparseness. 

In this way, instead of evaluating cost of trips for every 

possible combination of customers and vehicles, one can 

solve single-vehicle-multiple-customer problems for every 

clique. 

Trip scheduling for each clique is a traveling salesman 

problem with pickup and delivery. The problem can be solved 

with multiple algorithms. If the number of customers is small, 

(e.g., less than 5), the exact solution can be found by Dynamic 

Programming in less than 1 sec on a standard desktop 

computer. Heuristic based algorithms such as T-share [20] 

can be used to find the solution if the problem size is large.  

After all feasible trips were found through solving the 

scheduling problem for all cliques, the optimal trip 

assignment problem can be formulated and solved through 

Integer Linear Programming (ILP). In this Section, we briefly 

summarize the formulation from [5] and the additional 

regularization term for demand distribution is presented in 

next section. 

The cost for each customer consists of wait time and delay 

time. Wait time is defined as time between the customer travel 

request and time of pickup. Delay time is defined as the 

difference between planned travel time and the shortest travel 

time after pickup, which is from the fastest path solution from 

origin to destination. The cost of a trip is defined as wait time 

𝑃(𝑐𝑖|𝜋)~𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝜋1, … , 𝜋𝐾) (7) 



 

 

 

plus delay time for all customers, denoted as 𝑐𝑡
𝑖 for trip 𝑖. The 

states of the system are 𝛿𝑡 which is the indicator variable for 

trip/clique and 𝛿𝑐 which is the indicator variable for a 

customer. If at an assignment instant, there are 𝑚 feasible 

trips from TSP step and 𝑛 customers, then 𝛿𝑡 = {𝛿𝑡
𝑖 ∈

{0,1}, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚} and 𝛿𝑐 = {𝛿𝑐
𝑖 ∈ {0,1}, 𝑖 ∈ ℕ, 1 ≤

𝑖 ≤ 𝑛}. 𝛿𝑡
𝑖 is 1 if trip 𝑖 is selected and 𝛿𝑐

𝑖  is 1 if customer 𝑖 is 

assigned. The objective function is  

∑ 𝑐𝑡
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1
+∑ 𝐷(1 − 𝛿𝑐

𝑖)
𝑛

𝑖=1
(12) 

where 𝐷 is the penalty for unserved customers. The constraint 

for vehicle is that each vehicle can only serve one trip  

∑ 𝑎𝑗
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1
≤ 1, ∀𝑗 (13) 

where 𝑎𝑗
𝑖 is the indicator variable for vehicle 𝑗 and trip 𝑖, 𝑎𝑗

𝑖 =

1 if vehicle 𝑗 can serve trip 𝑖. The constraint for customer is 

that a customer is either assigned or ignored 

∑ 𝑏𝑗
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1
+ (1 − 𝛿𝑐

𝑗
) = 1, ∀𝑗 (14) 

where 𝑏𝑗
𝑖 is the indicator variable for customer 𝑗 and trip 𝑖, 

𝑏𝑗
𝑖 = 1 if customer 𝑗 can be served by trip 𝑖. With linear 

constraints and the objective function, the trip assignment 

problem is an integer linear programming. For online 

optimization, we follow [5] to keep a pool of customers and a 

customer is removed from the pool if it’s picked up by vehicle 

or cannot be served within the time constraint. If a customer 

is ignored, a vehicle from the idling fleet is assigned to serve 

the vehicle with minimum wait time as the objective.  

B. Travel Demand Regularization 

The algorithm developed in [5] is limited by its reactive 

nature. The follow-up work [11] uses a sampling method to 

keep track of demand distribution. However, with 400 

samples of future demands the computation time increased 

significantly. Since the dimension of the demand distribution 

is 𝐾2 where 𝐾 is the number of partitions of the network, the 

sample size needed to characterize the distribution can be 

large. To balancing the fleet assignment and potential travel 

demand, we propose a regularization based on KL divergence 

between vehicle empty space distribution and travel demand 

distribution. We model the vehicle space distribution and 

travel demand distribution as a multinomial distribution 

defined on origin-destination region pairs, which forms a 

finite discrete sampling space. For an assignment instant, the 

distribution of vehicle space can be obtained from maximum 

likelihood estimation and the demand distribution is assumed 

to be known. The KL divergence is an asymmetric 

measurement of difference between two distributions, and is 

defined as  

𝐾𝐿(𝑞 ∥ 𝑝) =∑ 𝑞𝑖 log
𝑞𝑖
𝑝𝑖𝑖

(15) 

where 𝑞𝑖 is probability for OD pair 𝑖 in the demand 

distribution and 𝑝𝑖  is probability for OD pair 𝑖 in the vehicle 

space distribution. The vehicle space distribution can be 

estimated by the trip plan from the TSP step 

where 𝑠𝑗 is the number of available space for vehicle 𝑗, 𝛿𝑣,𝑗
𝑖  is 

the indicator variable for vehicle 𝑗, the value is 1 if the vehicle 

is traveling between OD pair 𝑖. The denominator is the total 

available space for the fleet, which can be approximated by 

the total space of fleet minus the number of customers, which 

is a constant. Thus, we can focus on the numerator in the 

optimization. The demand distribution is assumed to be 

known and invariant to trip assignment 

𝐾𝐿(𝑞 ∥ 𝑝) = −∑ 𝑞𝑖 log 𝑝𝑖
𝑖

+ 𝑐𝑜𝑛𝑠𝑡     

                               = −∑ 𝑞𝑖 log∑ 𝑠𝑗𝛿𝑣,𝑗
𝑖

𝑗𝑖
+ 𝑐𝑜𝑛𝑠𝑡 (16)

 

Since the log function is concave, we can apply Jensen’s 

inequality [21] to the nonlinear term to get the upper bound of 

the KL divergence 

𝐾𝐿(𝑞 ∥ 𝑝) ≤ −∑ 𝑞𝑖∑ 𝛿𝑣,𝑗
𝑖

𝑗
log 𝑠𝑗

𝑖
+ 𝑐𝑜𝑛𝑠𝑡 (17) 

This approximation transforms the nonlinear KL 

divergence to a linear function for indicator variable 𝛿𝑣,𝑗
𝑖 . In 

this way, we can put the regularization term into the objective 

function as an additional linear term. With the additional 

indicator variable for the vehicles, the constraint for vehicle 

assignment changes to an equality constraint 

∑ 𝑎𝑣
𝑖 𝛿𝑡

𝑖
𝑚

𝑖=1
+∑ (1 − 𝛿𝑣,𝑗

𝑖 )
𝑗

= 1, ∀𝑗 (18) 

And the new objective function is  

∑ 𝑐𝑡
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1
+∑ 𝐷(1 − 𝛿𝑐

𝑖)
𝑛

𝑖=1
                        

          −𝑤𝑅∑ 𝑞𝑖∑ 𝛿𝑣,𝑗
𝑖

𝑗
log 𝑠𝑗

𝑖
(19)

 

where 𝑤𝑅 is the weighting parameter for regularization. With 

the approximation applied, the objective function and 

constraints are linear, thus the problem is still an ILP which 

can be solved efficiently. It should be noted that generally 

integer programming is hard to solve due to the combinatorial 

nature. However, to solve an integer programming efficiently 

is beyond the scope of this research and we use Gurobi to 

solve the optimization problems. 

IV. RESULTS AND DISCUSSION 

In this section, we present the traffic network partition 

results using the proposed algorithm. The traffic demand is 

generated using POLARIS. In this study, we focus on demand 

generated during the evening rush hour (17:00-18:00) on 

weekdays. However, the algorithms developed can be 

extended to deal with time-varying demand distribution 

which can be modeled as a piece-wise constant function. We 

first present the results of road network partition, then using a 

numerical simulation to demonstrate the demand distribution 

regularized fleet control.  

A. Road Network Partition 

To evaluate the performance of clustering algorithm, we 
used the origins and destinations of trips generated from 17:00 
to 18:00 on a weekday by POLARIS. The heat map of the 
origins and destinations is shown in Fig. 4(a). The network 
partition result from our proposed algorithm using DPGMM 
in the projected Euclidean space is shown in Fig. 4(b). 30 

𝑝�̂� =
∑ 𝑠𝑗𝛿𝑣,𝑗

𝑖
𝑗

∑ ∑ 𝑠𝑗𝛿𝑣,𝑗
𝑖

𝑗𝑖

(20) 



 

 

 

components were identified with the Bayesian nonparametric 
algorithm, with different clusters in the original network space 
indicated with different color. With the partition result, travel 
demand can be described with a discrete random variable 
following multinomial distribution with sampling space size 
900. 

 The benchmarks for traffic network partition are 

clustering algorithms applied in the geometric Cartesian 

coordinate space including density based algorithm GMM 

and distance based algorithm k-means [14]. Since the traffic 

network partition we are interested in is clustering data in the 

network space instead of studying the connectivity of the 

network itself, the community detection algorithms [22] are 

out of scope for our evaluation. Since the component number 

needs to be specified for k-means, to make the evaluation a 

fair comparison, instead of using Bayesian nonparametric 

algorithm to identify component number for GMM and our 

proposed algorithm, we use the Expectation-Maximization 

(EM) algorithm to identify parameters for the mixture models. 

The performance metric we selected is mean travel time to 

cluster center, with travel time for each road section generated 

from POLARIS during the studied hour. Since our objective 

for clustering is to approximate the infinite dimensional travel 

demand distribution with finite dimensional discrete 

distribution, short within-cluster travel time is desirable so the 

locations within each cluster can be approximated with the 

cluster center. The average travel time to cluster center for 

different cluster algorithms are shown in Fig. 5, with right 

axis showing average travel time reduction with our algorithm 

compared with k-means in blue. The histogram for mean 

travel time to cluster center for different clusters with 30 

mixture components is shown in Fig. 6. Since GMM in the 

Cartesian coordinate failed to generate enough clusters, the 

histogram is not included. 

As shown in Fig. 5, GMM with geometric coordinate 

cannot fit model with more than 13 components from the data 

and more components would result in ill-conditioned 

covariance matrices during iterations of EM algorithm. 

However, this doesn’t mean that more clusters would overfit 

the data since the actual cluster number can be estimated with 

our Bayesian nonparametric algorithm, which is 30. The 

failure to identify additional mixture components is due to the 

lack of network structure information. The results indicate 

that with the right number of mixture component, our 

algorithm can reduce in-cluster travel time by more than 10% 

compared with clusters in geometric coordinate as shown in 

Fig. 5.  Also, as indicated in Fig. 6, with the same number of 

clusters, our algorithm have shorter travel time for all clusters 

compared with the benchmark, and the variance for 

distribution is smaller, with standard deviation 11.82 sec 

compared with 16.88 sec indicating that the network is 

partitioned more uniformly compared with the benchmark. In 

the next section, we use a numerical simulation to 

demonstrate that a good partition can benefit fleet control. 

 
 

(a) (b) 
Fig. 4 (a) Locations of interest heatmap generated by POLARIS simulation from 17:00 to 18:00 on weekdays in Ann Arbor (b) network partition using the 
proposed algorithm with DPGMM in the projection space for POLARIS generated demand 

 
Fig. 5 Mean travel time to cluster center for all clusters using different 

cluster algorithm 

 
Fig. 6 Mean travel time for each cluster with cluster number=30 



 

 

 

B. Numerical Results for Ride-Sharing Control 

We randomly selected 4% of the trips generated during the 

studied time as demand for the shared mobility fleet. The trip 

generation rate is 35~40 new trips every 30 sec and we follow 

the re-optimization strategy every 30 sec from [5]. The 

simulation period for our study is 30 min. We fix the fleet size 

at 900 and the vehicle capacity is 4. The wait time constraint 

is 2 min, and the delay time constraint is 4 min. The 

benchmark algorithm is the reactive policy. Our proposed 

algorithm is denoted as DPGMM. We assume the fleet is 

perfectly balanced initially, achieved through sampling the 

vehicle initial locations randomly from the trip origins. The 

pairwise travel times between all pairs of roads are calculated 

offline using the average speed from POLARIS during the 

studied period. The performance metrics are shown in Fig. 7. 

During the simulated period, all customers are served. As 

shown in Fig. 7(a), our proposed algorithm results in more 

customers per operating vehicle, indicating more efficient 

operation of the fleet. Besides that, as shown in Fig. 7(b), with 

normalized distance defined by fleet total travel distance 

normalized with number of served customers, the 

regularization also decreased the normalized travel distance 

of the fleet, which reduces the operation cost for the service 

provider. With the additional regularization term, a larger 

idling fleet is kept during the operation before all vehicles are 

assigned, meanwhile same number of customers are served 

with the proposed algorithm, indicating the fleet is utilized 

more efficiently. Since the regularization is achieved through 

weighted sum of KL divergence cost and the travel time cost, 

the regularization term results in an increase for mean 

customer wait time by 12%. However, it should be noted that 

both algorithms can serve 87% of customers within the time 

constraints. The results also indicate that the commonly used 

static network assumption is too strong. If the static network 

assumption holds, all trips should satisfy the wait time 

constraint, which is not the case as shown in Fig. 7 (c), 

indicating that with 900 vehicles in operation, the travel time 

changes in the network. 

V. CONCLUSION AND FUTURE WORK 

We proposed a road network partition algorithm based on 

MDS and DPGMM. The partition is used to discretize the 

travel demand distribution. It can be integrated with fleet 

control strategy to utilize the fleet more efficiently with our 

proposed regularized assignment algorithm. However, 

currently we still have the static traffic network assumption, 

which results in performance degradation in our dynamic 

simulation. For our next step, we will improve the robustness 

of ride-sharing control algorithm to include traffic dynamics 

in the control strategy design.   
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Fig. 7 Performance Comparison for Benchmarks: (a) Average planned customer number per vehicle; (b) Total travel distance normalized by number of served 

customers; (c) Customer wait time histogram for on time planned customer 


