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Spatiotemporal Motion Planning with Combinatorial Reasoning for
Autonomous Driving
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Abstract— Motion planning for urban environments with
numerous moving agents can be viewed as a combinatorial
problem. With passing an obstacle before, after, right or left,
there are multiple options an autonomous vehicle could choose
to execute. These combinatorial aspects need to be taken into
account in the planning framework. We address this problem by
proposing a novel planning approach that combines trajectory
planning and maneuver reasoning. We define a classification
for dynamic obstacles along a reference curve that allows us to
extract tactical decision sequences. We separate longitudinal
and lateral movement to speed up the optimization-based
trajectory planning. To map the set of obtained trajectories to
maneuver variants, we define a semantic language to describe
them. This allows us to choose an optimal trajectory while also
ensuring maneuver consistency over time. We demonstrate the
capabilities of our approach for a scenario that is still widely
considered to be challenging.

I. INTRODUCTION
A. Motivation

Autonomous driving intends to relieve the driver of the
task of driving, thus promising great improvements in terms
of safety and comfort. With encouraging solutions for the
perception task enabled by deep learning, the behavior gen-
eration remains one of the biggest challenges for autonomous
driving in order to achieve full autonomy. The behavior
generation problem is to find an optimal motion regarding
safety and comfort under the premise of obeying traffic
rules, vehicle kinematics and dynamics. Satisfying real-time
demands to ensure reactiveness to dynamic obstacles in
critical scenarios is a key challenge for all motion planning
algorithms [1].

A typical urban scene is presented in Fig. 1. The blue
ego vehicle needs to overtake the stationary yellow vehicle
and consider oncoming traffic and pedestrians crossing the
street. Planning architectures that separate tactical maneuver
selection and trajectory planning create handicaps in these
types of situations. First of all, the separation may lead
to sequences of high level actions that are physically not
feasible. While this is typically handled by introducing
additional safety margins, it limits the planner’s ability to
navigate in highly constrained environments with multiple
obstacles. Second, if the tactical planner does not take the
topology of the planning problem into account, the high-level
sequence of actions passed to the trajectory planner may not
be consistent with the past.
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Fig. 1: A typical urban scenario: Pedestrians crossing the street,

a parked vehicle (yellow) blocking part of the lane and oncoming
traffic (red). The ego vehicle is displayed in blue.

B. Related Work

Spatiotemporal motion planning approaches can be di-
vided into path-velocity decomposition approaches [2],
sampling-based approaches [3, 4] and optimization methods
using Model Predictive Control [5].

Planning architectures which decouple the spatiotemporal
problem into path- and speed-profile planning reduce the
computational costs by a considerable amount. The de-
composition into a high-level path planning problem and a
trajectory planning problem works well for traffic circles or
simple crossings when a predefined path does not change.
However, path-velocity decomposition provides poor results
for complex scenarios with moving obstacles.

Sampling-based methods are able to deal with non-convex
constraints. McNaughton et al. [3] present a spatial-temporal
state-lattice-based approach based on dynamic programming.
Due to the necessary state discretization with lattice-based
methods, it is only suitable for highway driving. Werling
et al. [4] propose a state-lattice based implementation that
generates sampled quintic polynomials. The jerk-optimal
trajectories are first selected in local coordinates and then
transformed to Cartesian coordinates to check for collisions.
This computationally expensive transformation combined
with the curse of dimensionality resulting from a high state
space discretization limits the ability of this approach to
reactively avoid obstacles.

Creating multiple trajectories in a receding horizon fashion
introduces the problem of consistent trajectory selection over
time. Gu et al. [6] use a sampling-based trajectory planner
to obtain trajectory candidates for the combinatorial motion
planning problem. In order to avoid oscillation between
multiple maneuvers, they group the generated trajectories
by topological properties afterwards and impose consistency
over time. Sontges and Althoff [7] use a similar concept of
topological grouping for the analysis of reachable sets. Each
driving corridor then corresponds to a different high-level
decision sequence.

Local optimization methods formulating the motion prob-
lem as an optimal control problem do not suffer from any
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discretization errors in contrast to sampling based methods.
Ziegler et al. [5] present a spatiotemporal non-linear local
optimization scheme. Due to the non-linear model formu-
lation, computation time highly depends on the quality of
the initialization. As this approach only guarantees to find
local optima, it requires a preprosessing layer decomposing
the combinatorial space to set up collision constraints for
each maneuver variant [8]. However, a generic constraint
generation for complex scenarios still poses a major problem
to the decomposition of the state space.

In order to deal with the combinatorial aspects, Zhan et al.
[9] introduce a planning framework that plans longitudinal
and lateral spatial movements separately to reduce compu-
tational costs. They use a layered graph-search approach
and combine lateral and longitudinal motion using quadratic
optimization. They classify environmental objects into point-
overlap, line-overlap and undecided-overlap to deal with the
combinatorial aspect. However, their search-based approach
introduces longitudinally discretized actions that may not
cover the optimal solution.

C. Contribution of this Paper

In this work, we propose a planning approach which
plans trajectories for multiple maneuver types. We adapt the
idea from [9] of a generic environmental representation of
obstacles along the ego vehicle’s reference curve but apply it
to optimization based planning. This way, we acknowledge
the combinatorial aspect of motion planning and reduce the
number of maneuvers passed to the trajectory planner. We
generate maneuver envelopes, that represent constraints to
fully characterize a local trajectory optimization problem.
Based on the optimization programs proposed in [10, 11], we
separate longitudinal and lateral motion planning to reduce
the computational costs. We calculate optimal trajectories
in local coordinates for multiple maneuver types. We then
need to select the best maneuver based on motion optimality
and maneuver consistency, which is why we group the
planned trajectories to maneuver variants. We will use the
idea of topological trajectory grouping from [6] and apply
it to an optimization-based trajectory planner to allow for a
reasoning about the planned maneuver variant.

To summarize, we contribute

« a novel approach for a fused trajectory planning and
maneuver selection, solving the existing problem of
feasibility of pre-defined maneuvers,

e an optimization-based framework able to deal with
combinatorial options and

o the demonstration of the technical abilities in a chal-
lenging scenario.

This work is further organized as follows: Section II
defines the problem this paper aims to solve. The proposed
method is presented in Section III. Section IV evaluates the
algorithm’s abilities followed by a discussion in Section V.

II. PROBLEM STATEMENT AND DEFINITIONS

Envelope Planner

* decomposition of * reasoning about

workspace maneuver variants

« selection of variant

trajectories for feasible

maneuver envelopes
maneuver variants

Trajectory Planner

{+ planning inside homotopy

« seperated longitudinal and lateral planning

Fig. 2: Architectural overview of the proposed method consisting
of an envelope planner passing homotopic planning candidates to
a trajectory planner. The solved trajectories are passed back and
evaluated for optimality and semantic consistency.

and comfortable trajectory, roughly following the reference
curve. The motion planner must account for static and
dynamic obstacles. A superior strategy module responsible
for high-level decisions like lane changes passes both a
reference curve and a reference velocity v,y to the trajectory
planning module. This way, map-based information such as
recommended velocities while turning can be incorporated in
the planning module. The trajectory planner should output a
sequence of states in world coordinates that can be passed
to a trajectory tracking controller. This work omits the
uncertainty about the state of other traffic participants.

Fig. 2 shows an architectural overview of our approach. An
envelope planner decomposes the spatiotemporal planning
problem into multiple sub-problems, which we will call
maneuver envelopes. These maneuver envelopes are then
passed to the trajectory planner. Each envelope leads to a
local optimization problem, for which a set of homotopic
trajectories exists. Homotopic trajectories are co-terminal
trajectories that can be continuously deformed from one to
another without intersecting an obstacle [12]. We will use
these maneuver envelopes to impose linear collision avoid-
ance constraints to the local optimization problem instead of
relying on a suitable initialization.

However, the maneuver envelopes do not contain the
temporal passing order of the objects O;, which motivates us
to adapt the definition of a maneuver variant from [8] to be
a set of homotopic trajectories. Following the ideas of [6],
we distinguish different maneuver variants using topologi-
cal distinction (How does the trajectory avoid obstacles?)
and sequential distinction (What overtaking order does it
follow?). Sontges and Althoff [7] argue that obeying the
mathematical definition of homotopy does not lead to a
grouping of trajectories suitable for autonomous driving. In
order to semantically describe the planned trajectories for
reasoning in III-C, we construct our semantic language L as
following:

L:=LthenL || Ois passedH || LandL (1)

Given a reference curve as a series of points with no  With
requirements on smoothness, we aim to find a collision-free 0 .= {Oz} 2)
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and
H:=left || right 3)

We state events to happen sequentially (then) or simul-
taneously (and).

III. PLANNING AND REASONING FRAMEWORK
A. Combinatorial Decomposition

We introduce an environment representation and decom-
pose the combination problem into convex sub-problems. We
define longitudinal and lateral rules for formulating convex
state constraints for each obstacle type. This set of rules
essentially allows us to reduce the number of sub-problems.

Spatiotemporal Environmental Representation

Based on the predicted motion of the obstacle in relation to
the reference curve of the ego vehicle, we construct convex
hulls around the obstacle. We then derive free space-time
decision envelopes Ctof‘ for each obstacle o and decision A
in a local reference system as

0,A

long,max Smazx

0,A
oA lonAg7min - Smin c ]_22+2nS (4)
tp - 0, - .

lat,mazx dleft(sz)

o0,A d..; S

lat,min rzght( Z)

at each prediction time step ¢, with the arc length s and
the perpendicular offset d. n, denotes the number of spatial
sampling points s;. This formulation allows us to represent
obstacle-related longitudinal and lateral constraints in local
coordinates independently of the future ego motion of the
vehicle.

The longitudinal constraints are derived by calculating the
spatial length at which the projected occupied space of the
obstacle overlaps with the free-space of the ego vehicle along
the reference line. We approximate this free-space with a
polygon with the width of the ego vehicle’s current lane. The
lateral constrains are derived based on a distance calculation
between the reference line and the obstacle at each spatial
support point s;.

Inspired by Zhan et al. [9], we classify obstacles into
non-overlapping (Fig. 3(a)), line-overlapping (Fig. 4(a)) and
point-overlapping (Fig. 5(a)) obstacles. For non-overlapping
obstacles, there exists no intersection between the obstacle’s
predicted future motion and the reference path of the ego
vehicle. Fig. 3(a) shows an example where the obstacle is
parallel to the reference path (e.g. oncoming traffic). We limit
the set of tactical decisions for this class of obstacles by
stating that the ego vehicle should only pass the obstacle on
the side of the reference path (Table I). Therefore, a decision
on which side to avoid the obstacle is not needed. Fig. 3(b)
displays the resulting state constraints and a possible ego
trajectory avoiding the obstacle.

Line-overlapping obstacles are characterized through a
line-wise overlapping to the vehicle’s configuration space

fend |

Send

(@ (b)

Fig. 3: (a) illustrates the motion of a non-overlapping obstacle in a
local reference frame along the reference curve with the arc length
s and the lateral offset d. Blue reference points represent the ego
vehicle’s reference curve. As there is no overlap with the reference
curve, the obstacle only needs to be considered laterally. (b) shows
the resulting lateral constraints (orange). The projected occupied
space of the obstacle is shown in red. A possible trajectory of the
ego vehicle is color-coded in orange indicating temporal progress.

along the reference curve. This could for example be a pre-
ceding vehicle. Fig. 4(b) shows the imposed state constraints
by a preceding vehicle slowing down the ego vehicle.

N
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Fig. 4: (a) shows the motion of a line-overlapping obstacle. As
displayed in (b), the obstacle type needs to be accounted for
longitudinally, imposing state constraints on the spatial coordinate
s.

Point-overlapping obstacles have a fixed entry point and a
fixed exit point from the configuration-space defined through
the reference path. This could be vehicles at an intersection,
pedestrians on a crosswalk or other agents intersecting with
the reference path. Fig. 5 displays our constraint formulations
for the combinatorial options for a point-overlapping obsta-
cle. We define four possible options: Passing the pedestrian
before or after, or avoiding it on the left or right, see Fig.
5(c)). For each of them, we derive longitudinal and lateral
state constraints. As Fig. 5(e) shows, when maintaining speed
intending to avoid the obstacle, lateral constraints for left
or right need to be considered. The lateral constraints for
passing before and after are illustrated in Fig. 5(d) and 5(f).

The possible options for each obstacle class are summa-
rized in Table L.

TABLE I: Tactical decisions for passing or avoiding obstacles.

Obstacle Type Possible Tactical Decisions A ;

A1 Ao A3z Ay

Point-overlapping  before  after right left
Line-overlapping after right left
Non-overlapping right/left
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Fig. 5: (a) illustrates the motion of a point-overlapping obstacle. (c)
shows the combinatorial options passing the obstacle before (green),
after (purple) or avoiding it left or right (orange). The respective
lateral constraints for the maneuvers passing before (d), avoiding
left or right (magenta and orange) in (e)) and passing after (f) are
displayed.

Combinatorial Planning Scheme

For each prediction time step ¢,, we derive the maneuver
envelopes C{Z by creating all combinations of the obstacle’s
free space-time decisions envelopes CtAp and merging them
according to

. 0,A
min long,max
max 0,A
Cm _ a. long,min Yoi. A (5)
tp T : o,A 1=
min lat,max
0,A
max lat,min

Fig. 6 displays a tree with the tactical decisions for a
set of a point-overlapping, a non-overlapping and a line-
overlapping obstacle. Traversing the tree from the root to a
leaf will be called maneuver sequence m for the remainder
of this paper. Invalid maneuver envelopes are pruned, such
as if dieft < drighe With diepy > 0 and dpigne > 0. As the
number of sequences grows exponentially with the number
of obstacles, we plan to reduce this set even further in the
future by the use of heuristics.

The valid maneuver envelopes are passed to the trajectory
planner. The constraints of each maneuver envelope form a
convex state space, making sure the trajectory planner can
only converge to one optimum. First, a longitudinal trajectory
candidate is generated for each envelope. If the problem

1st obstacle

2nd obstacle

3rd obstacle

Fig. 6: Tactical decisions for a scene with three obstacles: a
point-overlapping obstacle (1st), a non-overlapping obstacle (2nd)
and a line-overlapping obstacle (3rd). The red line indicates a
tactical decision sequence, that represents a maneuver envelope.
The sequential ordering of the objects is not encoded here.

is infeasible, the formulation as a linear quadratic program
allows us to quickly terminate the optimization if it does
not converge. For all longitudinal candidates, we optimize
the lateral behavior. If successful, we add the trajectory
to the set of possible maneuvers. By reason of functional
safety, we add a collision check in Cartesian coordinates
for the projected motion to make sure that the coordinate
transformations did not introduce any error that may lead to
collisions. The optimal trajectory in regard to a set of criteria
can then be selected from the set of possible trajectories (see
Section III-C). The model predictive control is sped up by
reusing the previous solution as an initialization.

B. Trajectory Planning

The trajectory planning algorithm is running in a receding
horizon fashion. In this section, we will mainly discuss
a single optimization run representing a Model Predictive
Control stage. In order to separate longitudinal and lateral
motion, the trajectory optimization problem needs to be
defined in a local reference frame as in [10, 13], so-called
Frenet coordinates. Frenet coordinates define the motion
along a reference curve I'(s) through the arc length s and
the lateral offset d (see Fig. 7).

The decomposition into longitudinal and lateral motion
allows us to handle the desired behavior separately, as e.g. the
longitudinal motion may be subject to a high-level decision
making entity. The spatial decomposition also simplifies the
computational complexity of the motion planning scheme
as it allows to formulate the trajectory planning problem
through two linear sequential optimization programs. Addi-
tionally, the separated motion formulation allows to construct
linear safety constraints for each motion.

In the following paragraph, we present the key ideas from
the optimization schemes introduced in [10, 11]. As the
formulation uses a linearized model, no iterative scheme
for approximating the non-linearity is needed, which signifi-
cantly simplifies the problem and reduces the computational
complexity.
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Fig. 7: Vehicle model along a reference curve I in local street coor-
dinates [10]. The blue waypoints indicate a discrete representation
of the reference curve. The arc length s, the perpendicular offset
d to the reference curve and the orientation of the vehicle 6 define
the vehicle state. dq, d2, ds define the system output.

Optimal Control Problem

Both longitudinal and lateral optimization schemes in-
troduced in [10, 11] formulate constrained optimal control
problems. With a linear model and a quadratic cost function,
the control problem can be formulated over a prediction span
N and solved using the batch method [14]. Given a state
matrix A(t), an input matrix B(t), an error matrix E(t)
and an output matrix C(t), the continuous system model

(1) = A(t)z(t) + B(t)u(t) + E(t)z(t) (6)
y(t) = C(t)z(t) @)

can be discretized using Euler integration leading to
&(k+1) = A(k)x(k) + B(k)a(k) + E(k)2(k)  (8)
g(k) = C (k)& (k). ©)

By stacking together sequential states using the batch
method, the quadratic program is transformed into a sequen-
tial quadratic program which can be solved using standard
SQP solvers. With the discrete step size k being represented
by an index, the state vector sequence can be written as

T ~T

x=[&], ..., &%]. (10)

The state input u, the state output y and the error z are
defined analogously. The costs can then be formulated as

J(X7uaxref) = [X*Xref]TQ[X* Xref] +uTRu7 (11)

where R and Q denote cost weight matrices and X,y
denotes the reference state. Formulating states x; as outputs
1; allows to express systems constraints as input constraints

Ue,j-
Longitudinal Trajectory Planning

We use the linear time-variant system model presented by
Gutjahr et al. [11]. The system model simplifies to

where « = [s,v,a, j] denotes the state and u = [i] denotes
the input. Gutjahr ef al. [11] define the system output to
constrain s and a. We extend this to include the velocity v, as
it allows us to prohibit backward motion. The system output
is thus defined as y = [s, v, a}. The respective continuous
state matrices can be found in the Appendix. For the cost
function (11), the cost weight matrices Q (k) and R(k) are
defined as

~

Q(k) = diag(ws (k), wy (k), wa(k), w; (k) (14)

and

R(k) = [wu (k)] . (15)

We end up solving the following longitudinal planning
problem for each valid maneuver envelope m:

Vm muin J(x,u, Trey) (16a)
s.t. YVt € [to,to+ T (16b)
i() = f(@ (), u(t) (160)
Umin < U(t) < Upaa (16d)
Ymin(t) < Y(t) < Ypa. (1) (16e)
with
Ymas(t) = [Clongimaz () Vmaa(t),  amaa(t)],  (172)
Ymin() = [Congimin (), Vmin(t), amin(t)] . (17b)

We express the output constraints as input constraints using
batch matrices, cf. [11].

Lateral Trajectory Planning

We use the linear time-variant system model presented
in [10] with the state x = [d,@,ﬁ,@r,mr], the input u =
[<], the output y = [d1,ds,d3, | and the error z = [k, ].
The respective continuous state matrices can be found in
the Appendix. The cost function minimizes the distance to
the reference line d, the orientation difference between the
vehicle and the reference line 6 — 6,., the curvature s and the
change of curvature 4. The usage of an explicit reference
state &,.s iS not necessary, as all state variables are desired
to be zero. Formally, this leads to

wq (k) 0 0 0 0
0 wo (k) 0 —wy(k) 0
Qk)=1| 0 0 wek) 0 0| (18
0 —wg(k‘) 0 wg(k) 0
0 0 0 0 0
and
R(k) = [wyu(k)] . (19)

The linearized model is only valid for small deviations 6 —6,..
The formulation can deal with reference curves even with
high and discrete curvatures. This would allow the usage of
a search-based path planner without a computationally costly
post-optimization such as the one from [15]. The distance to
obstacles is calculated based on the static reference curve.

(1) = A(t)x(t) + B(t)u(t), (12) i . " .
This means that the otherwise costly collision check is
y(t) = Cx(t), (13)  computed only once for each successful optimization instead
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of for each iteration step. Finally, we solve the following
lateral optimization problem for all valid maneuvers m, for
which the longitudinal planning succeeded.

Ym  min J(x,u) (20a)
st. Vte [to, to + T] (20b)
&(t) = f(z(t), u(t)) (20c)
Umin S u(t) S Umax (20d)
ymzn (t) S y(t) S ymaz (t) (206)
with

yzzaw = [Ezgt,max (t), Ezgt,max (t)7 Ez’gt,max (t)7 Kmax (t)} ’

(21a)
y::;za = |:5l7(7;t,min(t)7 Eln;t,'rnin(t)7 Ezgt,min(t)ﬂ Kmin (t):|

(21b)

We make use of the batch approach again to express output
as input constraints, cf. [10]. From the longitudinal planning,
we know the longitudinal motion s(t), which we use to
transform the spatial-dependent ¢}, to time-dependent El’gt
Similar to [10], we use slack variables to relax the constraints
for d; 2 3 for the first three optimization support points, as the
model error leads to infeasibilities close to obstacles when
being used in a receding horizon fashion.

C. Reasoning and Maneuver Variant Selection

After the construction of homotopic maneuver envelopes
and their trajectory optimization, we need to select the best
trajectory. For this, we first define our trajectory costs as

n

1 . 2 .
Jiraj = -~ Z [wr,aa?+wr,j]?+wr,<i (di—day;) +wr,k’€i2}-

i=1
(22)
We incorporate comfort measures with the curvature deriva-
tive K;, the longitudinal acceleration a; and the jerk j;. We
also integrate the proximity to other obstacles d; — d,.¢,; as
a safety measure into the cost functional. d,.; represents
the maximum possible distance to the left and right side

1
dregi = 5 (dresui + drignt,i). 23)

Despite using an optimization-based planning approach,
the temporal consistency of the selected maneuver will not
necessarily hold, which potentially may lead to oscillating
behavior. First of all, the receding horizon concept and
the uncertainty of the environment provide new information
to the trajectory planner at every planning stage. Second,
the solutions obtained from the trajectory planner are only
suboptimal as we simplify the trajectory planning to two
separate planning tasks. This motivates to include a consis-
tency cost term J.,,s Which penalizes switching between
maneuver sequences. To quantify the costs, we need to
describe the semantic consistency of the maneuver to the
one previously selected. The semantic description needs to
contain both topological as well as sequential information.
As the maneuver envelopes from Section III-A do not

TABLE II: Weights for trajectory optimization

Ws | Wy Wa | Wj w: wy wo | we | wg

b
0 10 [ 10 | 102 | 10® [ 102 [ 10 | 10 | 103

TABLE III: Weights for reasoning

Wr,aq Wr 4 Wo d Wr i Wr,c

10 10 102 103 30

contain sequential information, we refer to the semantic
language which we defined in Section II to map our obtained
trajectories back to a maneuver variant. Similarly to [7],
we construct two-dimensional surfaces U, along s and ¢
in the three-dimensional domain for each obstacle O;. The
intersection points between the ego trajectory 7 and U;
yield the sequential information ¢;. The signed distance to
the obstacle at t¢; yields the topological information. This
can be seen as an abstract function mapping possibly many
trajectories onto one maneuver variant.

With these information, the semantic description for a
maneuver variant can be automatically extracted from a given
trajectory. It allows us to reason about the related maneuver
variants and calculate the consistency costs

M
Jcons = Wy, (Nmam - ; 5(Lj,ti 7é Lj,tifl))7 (24)

where N, .. denotes the maximum number of elements in
the language sequences at time ¢;, M the number of similar
language items between the description Ly, ; at the current
time step and the previous time step L, , ;. For each similar
item L; in shared order, 4(-) outputs 1, otherwise 0. This
semantic reasoning adds an additional safety layer to our
selection process. In the future, it could be enhanced by
adding uncertainty information from the object detection
module or incorporating occlusion.

The total costs Jyoq; for the selection process are then
defined by

Jtotal = Jtraj + Jeons - (25)

IV. EVALUATION

We apply the proposed method to an urban driving sce-
nario similar to the motivating example of this paper (see Fig.
1) with a crossing pedestrian O; at v = 0.5ms™! (green),
a static obstacle Os (yellow) and oncoming traffic O3 at
v = 10ms~?! (red). The chosen parameters are displayed in
Table 11, Table III and Table IV.

Fig. 8 shows the free space-time envelopes CZ;A at a single
prediction step ¢, = 2.4s for the maneuver envelope m;s5.
With the decision to pass the pedestrian on the right, the

TABLE IV: Parameters for planning and prediction horizons

Horizon N dt[s]
Longitudinal Trajectory Optimization 20  0.2s
Lateral Trajectory Optimization 20 0.2s
Prediction 10 0.4s
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TABLE V: Maneuver envelopes mi4 and mis with decisions A;
for each obstacle O;.

Maneuver Envelope m Decisions A ;
O1 O> O3
miq after  right left

mis right right  left

free-space resembles that by the left boundary going around
the predicted occupancy of the pedestrian. The predicted
oncoming traffic participant does not intersect with the lane
of the ego vehicle and thus with the free-space. Based on the
decision to pass the standing vehicle on the left, the right
boundary goes of the free-space goes around the obstacle.
The merged free space-time maneuver envelope ¢, is dis-
played below (blue). In cartesian coordinates, it resembles
the intersection of all the decision envelopes Cfpl’g’A. As we
operate in Frenet coordinates, we calculate it according to
equation (5).

. . .. A
Fig. 8: Free space-time decision envelopes Cf’sl ‘o
P

at tg = Os for the prediction step t,6 = 2.4s for the maneuver
envelope mis5. The merged free space-time maneuver envelope
¢™M5 s displayed below.

tpelto

for each obstacle

Fig. 9 shows the outcome of the full simulation over
time. At tg = Os, the planner chooses to execute M4,
which means passing after the pedestrian. See Table V for
a full explanation of the maneuver. Note that for ¢, Cznlll‘*to
includes the full lane length, as the pedestrian will not have
entered the lane at ¢,;. For all following prediction steps,
the pedestrian has to be taken into account either through
longitudinal or lateral decision making. Because of this, the

free-space envelopes Ctm;‘* o end before the pedestrian.
p2...

At tg = 1.2s, the planner changes from mq4 to mqs.
2115 vt thus do not stop before the pedestrian, but avoid

him on the right, similar to Fig. 8.

The ego vehicle thus avoids the stationary vehicle, goes
back to the ego lane and around the pedestrian while main-
taining its initial speed. By modifying the optimality criteria,
we could select a more defensive driving style.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a fused trajectory optimization
and maneuver selection by introducing a generic decision
mechanism to derive maneuver sequences and a semantic

t=0s

—

|  E—

Fig. 9: Vehicle movement at top = 0s, t¢ = 1.2s , t12 = 2.4s and
t1s = 3.6s. The optimal free space-time maneuver envelopes ¢
are also displayed for the each prediction time step.

language to reason about the maneuver of each obtained
trajectory. By separating longitudinal and lateral motion in
the trajectory planner, we simplify the constraint formulation
as well as the planning problem, which thus allows us
to compute multiple trajectories. Note that the maneuver
selection framework could be used with other trajectory plan-
ners as well. As demonstrated in the simulation results, the
novel approach can plan comfortable and safe spatiotemporal
trajectories in complex urban driving scenarios.

The growing number of maneuver types with the number
of obstacles still poses a major problem. We will investigate
other approaches for the spatiotemporal topological analysis
in the future, with the emphasis of discarding infeasible
maneuver types. Machine Learning could be used as a heuris-
tic to reduce the number of combinatorial sub-problems.
Mixed integer quadratic programming could be investigated
to improve the selection of the best trajectory. Other semantic
information such as traffic rules could be incorporated into
the semantic selection process. Accelerating the computation
of the decision envelopes will need to be addressed in
future work. We plan to implement the framework in C++
to investigate and improve the real-time capabilities of our
approach and to allow for a real-world validation on a full-
size research vehicle. In the future, we plan to investigate
the possibility of incorporating prediction uncertainty and
interaction awareness and the robustness against occlusions.
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APPENDIX
A. Notes on Longitudinal Optimal Control Problem

The continuous system matrices for the longitudinal plan-
ning scheme stated in Section III-B are

0100
00 10
A(t)=0001, (26)
0000
B(t)=1[0 0 0 1] (27)
and
1 000
Ct)=10 1 0 0 (28)
0010

B. Notes on Lateral Optimal Control Problem

For the lateral planning problem described in Section III-
B, the system matrices are

0 v(t) 0 —ov() O
0 0 wt) 0 0
At)=10 0 0 0 01, (9
0 0 0 0 o)
0 0 0 0 0
B(t)=[0 0 1 0 0], (30)
1 0 0 O 0
1 12 0 =1/2 0
c) =1 /z 0 f/l 0 (D
0 0 1 0 o
and
Et)y=[0 0 0 0 1]. (32)

C. Notes on Batch Formulation for Optimal Control Problem
The batch matrices are defined as following:

1 T N-1 T
A= | AT (H Al_q> ( 11 AN_l_q>
q=0 q=0

(33)
By 0 .. 0
A, B, B, - 0
B= : ' :
N-1
< H AN+0—q) B, Any_1By_2 By
=1
’ (3%)
C,
C= 35)
Cn

€ is derived similarly to B.
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