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Multi-Session Visual Roadway Mapping
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Abstract— This paper proposes an algorithm for camera
based roadway mapping in urban areas. With a convolutional
neural network the roadway is detected in images taken
by a camera mounted in the vehicle. The detected roadway
masks from all images of one driving session are combined
according to their corresponding GPS position to create a
probabilistic grid map of the roadway. Finally, maps from
several driving sessions are merged by a feature matching
algorithm to compensate for errors in the roadway detection
and localization inaccuracies. Hence, this approach utilizes
solely low-cost sensors common in usual production vehicles
and can generate highly detailed roadway maps from crowd-
sourced data.

I. INTRODUCTION

The development of advanced driver assistance systems
and autonomous vehicles has drawn increasing attention in
recent years. A central aspect of these systems is the precise
perception of the surrounding environment including other
traffic participants, infrastructure and the roadway. Besides
the processing of sensor data, it is also necessary for these
intelligent systems to employ highly detailed maps of the
environment [1], especially maps specifying the roadway
course. The creation of these maps with conventional sur-
veying methods is very time consuming and costly [2].

A. Existing Roadway Mapping Approaches

One approach to generate roadway maps with highly
detailed information is using aerial image data. Mattyus et al.
[3] enhance open street map data with further information
like the exact width and the centerline of the streets by
utilizing aerial footage from multiple datasets. Pink et al. [4]
employ aerial images to detect and map the exact position of
lane markings on the roads. Although these algorithms yield
useful additional map information, up-to-date aerial footage
is hardly publicly available and important road parts might
be occluded by surrounding trees or buildings.

Due to these issues, there are many ground-vehicle-
based approaches to create roadway maps. Roh et al. [5]
and Ishikawa et al. [6] present methods which employ a
sophisticated sensor setup for the generation of digital maps.
These systems are based on cameras and lidar sensors, which
are mounted on the mapping vehicle, while the localization
is done with a high precision GPS system, odometry and
multiple inertial measurement units. Ishikawa et al. [6] make
use of a multi-sensor fusion to determine the position of lane
markings and traffic signs whereas Roh et al. [5] take advan-
tage of a Simultaneous Localization and Mapping (SLAM)
approach to create lane and 3D maps in sub-meter accuracy.
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(a) Google Maps satellite image
with manually created roadway label.
(aerial imagery © 2018, Google)

(b) Roadway grid map created with
our approach.

Fig. 1. Comparison of a manually labeled roadway map and the result of
our approach which uses solely camera images and GPS pose measurements.
The map is a combination of data from 12 recording sessions.

Nevertheless, these methods rely on many highly specialized
and expensive sensors. Therefore, further approaches try to
employ a much reduced sensor setup. In [7] the road mapping
is performed by only utilizing a stereo camera, an inertial
navigation system (INS) and a consumer-grade GPS. The
sensor data of the INS and GPS are combined to reduce
their inaccuracies, while the stereo camera is employed to
determine the 3D position of extracted landmarks.

When generating maps of complex road segments, it is
necessary to cover all the relevant street parts with multiple
recent measurement sessions. For the systems mentioned
above this leads to a high demand for labor and a large ef-
fort to provide specialized measurement vehicles. Therefore,
[8] and [9] present frameworks for precise road mapping
with low-cost sensors, which are used in usual production
vehicles. In order to improve the mapping results based
on imprecise sensor data, they combine the measurements
from multiple sessions of a certain road segment. However,
Schreiber’s graph-based SLAM approach [8] relies on lane
markings in the middle of the roadway, because they are
employed for the map representation. The approach of [9]
works only on highways since they are using a Lane Marking
Based Visual Odometry (LMBVO) to increase the accuracy,
which is developed for highly standardized roads.

B. Our Roadway Mapping Approach

In this paper we propose an algorithm for an automatic,
visual roadway mapping of urban areas with no restrictions to
the properties of the street. The approach solely uses a stereo

© 2018 IEEE This version is published under German Copyright Law

https://doi.org/10.1109/ITSC.2018.8570004


camera and a GPS-based localization module, which are part
of the standard equipment of commercially available cars
today. Since there is no additional hardware needed nor any
trained staff to use our system, the whole mapping procedure
can be realized via crowd sourcing. All the measurement
data from drives of regular customers can be recorded and
combined to generate a large scale, high resolution and up-
to-date map of the existing road system.

The dataset used for the evaluation within this paper was
collected by an experimental vehicle in public road traffic. It
consists of multiple recording sessions of the same route,
driven in both directions, on different days with various
lighting and weather conditions. A session is defined as a
continuous drive of the whole course in one direction. The
collected data comprises images from a stereo camera and
its corresponding disparity maps. In our experiments a front
view stereo camera is used, but in general there are no
constraints to the type or position of the camera. A mono
camera would also be sufficient with only minor limitations.
Furthermore, for each image there is an associated global
pose. This global pose is obtained from GPS measurements
fused with the wheel odometry of the car.

The proposed algorithm performs the following steps.
First, a convolutional neural network detects the roadway
in the camera image. Subsequently, the generated roadway
mask is transformed into bird’s-eye view by an inverse
perspective mapping. The roadway masks from all images
of one single driving session are fused together to one prob-
abilistic grid map of the roadway. Due to inaccuracies of the
localization, the maps of several sessions are locally shifted
compared to their actual positions. To compensate for these
errors, we combine maps from various sessions by matching
prominent roadway features and warping the maps locally.
Additionally, we propose a method to combine maps which
were created from driving sessions with different driving
directions and therefore cover different spatial areas. Figure 1
depicts the resulting roadway map from our algorithm in
comparison to a manually labeled ground truth.

C. Paper Overview

The remainder of this paper is organized as follows:
Section II explains the necessary preprocessing steps to
generate bird’s-eye view roadway masks from the camera
images. The main contribution of this work is illustrated
in Section III, where the creation of a single map for one
session and the following combination of multiple sessions
is depicted. Afterwards, the proposed algorithm is evaluated
in Section IV. Finally, Section V concludes the results and
gives an overview of possible future work.

II. PREPROCESSING: GENERATING A ROADWAY MASK

In the preprocessing a bird’s-eye view roadway mask is
extracted from each image provided by the vehicle’s camera.
A convolutional neural network is used for the roadway
detection. The result of this detection is improved further
with a plausibility check based on depth information from the
disparity map. Afterwards, the roadway mask is transformed
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Fig. 2. Overview of the preprocessing procedure to generate a bird’s-eye
view roadway mask for a single image frame.

Fig. 3. Example of the roadway detection with a convolutional neural
network. We used a pretrained segmentation network and retrained it with
a small set of labeled images from our camera.

into bird’s-eye view, which simplifies the map creation.
Figure 2 illustrates the whole preprocessing pipeline.

A. Roadway Detection

Today there are various approaches for roadway detection
in images. However, in recent years it became apparent that
deep convolutional neural networks can achieve an outstand-
ing performance in image classification and segmentation
[10]–[12]. Teichman et al. [13] developed an algorithm espe-
cially designed for roadway detection in RGB images, which
won the first place in the “Kitti Road Detection Benchmark”
in 2016 [14]. This neural network consists of an encoder and
a decoder network. The encoder network is a multi purpose
object detection network, which uses the pretrained VGG
[15] model weights. The decoder part upsamples the output
of the encoder to generate an output roadway mask with the
size of the input image. We retrained this pretrained network
with a set of 60 labeled images from our camera utilizing
training data augmentation. With this retraining dataset we
already obtained an accuracy of 97.3% on our apart test
dataset. In this case the small number of training samples
is sufficient since the encoder is already pretrained and the
decoder is initialized as bilinear upsampling. An example of
the resulting roadway detection is illustrated in Fig. 3.

Despite the already satisfying performance of the roadway
detection algorithm, the neural networks might still produce
partially false roadway masks. Thus we implement a subse-
quent plausibility check. Since a stereo camera is used in our



setup, a disparity map is available for each input image pair
[16]. The disparity map is employed to determine the 3D
position of each image point [17]. This information is used
to check if the height of every detected roadway point lies
within a certain range around the ground level. If a point’s
position is too high, the point is presumably a false prediction
and is removed from the roadway mask.

B. Inverse Perspective Mapping

After obtaining a validated roadway mask for each image,
the mask is transformed from the camera’s perspective into
bird’s-eye view. Therefore, an inverse perspective mapping
from image coordinates to vehicle coordinates is employed,
where the vehicle’s coordinate system has its XY -plane on
the roadway surface. This is done by assuming a pinhole
camera model [17] and leaving out the height component
ZV since all road points are assumed to lie on the roadway
plane, i. e. ZV = 0. The resulting homography H yields a
direct mapping from image points (x, y) to points (XV , YV )
on the roadway plane and is given by the equation
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This homography contains the intrinsic camera parameters f ,
ox and oy , as well as the extrinsic camera parameters rij and
ti. To improve the perspective mapping, we also incorporate
camera movements in relation to the roadway plane. Acceler-
ations of the vehicle and uneven roadway surfaces make the
car pitch and roll which would distort the inverse perspective
mapping. In order to compensate for these rotational changes,
we again use the 3D points computed from the disparity
map. We first select all 3D points which correspond to image
points lying inside the roadway mask. From this roadway 3D
point cloud we estimate the parameters of the roadway plane
by using an iterative weighted linear least squares algorithm
[18]. The relative pitch and roll angle of this plane are
then used in the inverse perspective mapping. After these
preprocessing steps the resulting bird’s-eye view roadway
masks are utilized in the actual roadway mapping procedure
which is described in the following section.

III. ROADWAY MAPPING

In this section, we first give an overview of the roadway
mapping procedure followed by a detailed description, how
a map is generated for a single driving session and how these
maps are later combined into one final grid map.

A. Mapping Procedure Overview

Our proposed mapping procedure consists of three steps.
In the first step, a map is generated for every session by
accumulating the computed bird’s-eye view roadway masks
into a grid map. To determine the position and orientation
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Fig. 4. Overview of the roadway mapping procedure consisting of single-
session map generation, multi-session map combination and the final map
combination of the driving directions d1 and d2.

of each mask within the map, we use the global pose
which combines GPS measurements and wheel odometry.
This single-session map generation is the first step in our
procedure, as depicted in Fig. 4. Since the view of the
roadway is sometimes partially obstructed by obstacles, like
parked vehicles, and the global pose is imprecise, the map
created by one session is insufficient for a precise and
complete mapping of the roadway. Hence, several maps are
combined to overcome these issues in the second step. Since
the localization is locally varying, the single session maps
cannot be combined by simply overlaying and averaging
them. They first have to be locally warped to compensate
for localization errors. Therefore, prominent feature points
are detected and matched between the maps considering the
variance of the global pose. Based on these feature point
matches, the maps are warped and overlaid to form combined
maps. The maps are combined separately for each direction,
since parts of the roadway are only visible when driving in a
certain direction. A direct combination of maps of different
driving directions would therefore lead to unwanted results.
Thus, in the last step of our mapping procedure, the two
combined maps, one for each direction, are merged into one
final roadway map with a special combination method.

B. Single-Session Map Generation

To generate a single-session grid map, each bird’s-eye
view roadway mask from the preprocessing is transformed
into the map coordinate system using the corresponding
global pose. The roadway map is a grid consisting of
20 cm × 20 cm cells1. Each pixel of each roadway mask i
is assigned to one cell c in this grid map according to its
transformed 3D position. Before combining the individual

1We have chosen a 20 cm-grid as a suitable trade-off between resolution
and computational cost. However, higher map resolutions up to one cen-
timeter are possible. The achievable map resolution depends on the image
resolution, the used roadway detection distance and the positioning accuracy.



roadway pixels, they are weighted with the value

ξc,i =
1√

X2
c,i + Y 2

c,i

. (2)

This weight contains the euclidean distance between the
vehicle and the 3D point [Xc,i Yc,i 0 ]

T. We weight the road-
way pixels with the inverse of this distance for two reasons.
Firstly, the accuracy of the roadway detection decreases over
distance, i. e. it becomes less reliable for more distant pixels.
Secondly, the resolution of the 3D points is also declining
with increasing distance to the camera. Using this weighting
we compute for each map cell c the probability p(mc|I) of
being part of the roadway given all images I of one session.
The combination formula is

p(mc|I) =
∑

i∈Ĩ ξc,i∑
i∈Î ξc,i

, (3)

where the subset Î ⊆ I consists of all images which contain
a 3D point corresponding to cell c. The images where the
3D point is also classified as part of the roadway, constitute
the subset Ĩ ⊆ Î ⊆ I . Due to this combination of partly
redundant roadway masks, errors in the roadway detection of
individual images as well as the influence of moving objects
on the roadway is reduced.

C. Feature-based Multi-Session Map Combination

In some sessions, there may be obstacles on the street,
i. e. parked cars or construction sites, which are blocking the
sight of parts of the roadway and thus prevent these roadway
parts from being mapped. Additionally, the generated maps
contain errors due to the localization inaccuracies of the
global pose. In order to compensate for these deficiencies,
maps from multiple sessions are combined by warping them
on the basis of extracted feature points.

The Harris corner detector [19] is used to find prominent
features in every roadway grid map. The first map is taken
as reference and for every detected feature of the first map a
small patch of 55 px× 55 px, centered on the feature point,
is extracted. This corresponds to an area of approximately
11m×11m in metric size, which roughly covers a complete
road intersection and this patch size has proven to yield
the best results in our approach. The patch from the first
map is compared via cross-correlation [20] to slightly larger
patches of 65 px×65 px centered on the feature points in the
other maps. Only pairs of features with a distance less than
the assumed inaccuracy of the global pose are compared in
this correlation analysis. By sliding the smaller patch from
the first map over the larger patch in the other maps, a
matrix of cross-correlation coefficients is created for each
pair of features. If the maximal cross-correlation coefficient
in this matrix is higher than a specified threshold, the features
are considered to be a match. The position of the highest
maximal coefficient is used to refine the shift estimation
of the feature’s position. For the warping we only consider
features that have been successfully detected and matched in
most of the roadway maps. Insignificant features which are

(a) Map combination by simple overlay.

(b) Local shift of one map computed from matched features.

(c) Combined map by feature matching and local warping.

Fig. 5. Comparison of simple map overlay and the map combination
by feature matching and warping. Subfigure (a) shows the combination
by simple overlay. In subfigure (b) the local shifts (green lines) for some
exemplary cells (yellow dots) are shown. These shifts are computed from
the shifts of the feature points (red dots) by interpolation. Subfigure (c)
depicts the resulting combined map using the warping displayed in (b).

contained in only a few maps are discarded. Therefore, each
map k contains an individual number of features Nk.

To average out the localization error, the computed feature
points are shifted to the center of all corresponding features.
The cluster center εn of the features fn,k from all Kn maps
containing the corresponding feature is calculated by

εn =
1

Kn

Kn∑
k=1

fn,k. (4)

Consequently, the shift dn,k for a feature point in map k is
dn,k = εn− fn,k. These feature shifts are used to determine
the shift for all map cells to align the individual maps with
the combined map. For map k the shift dc,k of cell c is
computed from all feature shifts dn,k by

dc,k =
1∑Nk

n=1 ζc,n

Nk∑
n=1

ζc,n dn,k, (5)

with weights ζc,n = e−
||c−εn||2

2σ2 . (6)

The Gaussian weighting function ζc,n ensures that only
the shifts of close feature points have an impact on the
calculation of (5). The σ is chosen such that it covers an
area, in which the localization errors presumably correlate,
e. g. 30m. With the computed shifts for each map cell the
roadway probability p(mc) in the combined map yields

p(mc) =
1

M

M∑
k=1

p(mk
(c+dc,k)

). (7)



To illustrate this procedure, Fig. 5 shows a map section
with a straight road and two junctions. In Fig. 5(a) three
maps are simply overlaid by averaging the cell values without
warping. It is clearly recognizable that the roadway grids
are not coextensive, due to the localization inaccuracies.
Hence, each map is warped as depicted in Fig. 5(b). At the
exemplary yellow dots, the local shifts are visualized by
green lines. These cell shifts are based on the shifts of the
red marked feature points. Figure 5(c) depicts the resulting
combined map, generated by feature matching and local
warping. The roadways from the individual maps, which are
merged together by this procedure, are now coextensive on
their average position. The localization error of the single-
session maps is thereby averaged out.

D. Final Map Combination

The resulting combined roadway maps from the previous
step are still separated by driving direction. In the last step
these two maps are joined together. Since some areas of
the roadway can only be seen when driving in one certain
direction, this combination should not be done by simple
averaging. Important details would be lost if such a naive
combination would be used. Therefore, we developed a
combination formula where a high cell confidence in either
of both maps results in a high confidence in the final map,
even though the confidence in the other map might be very
low. On the other hand, if the confidences are low in the maps
of both directions, the confidence in the final map should be
even lower. Following these considerations, we compute the
confidence for the cells in the final roadway map by

p(m̂c) = κ2max + (1− κmax) · κmin, (8)

where κmax and κmin are

κmax = max
(
p(md1

c ), p(md2
c )
)

and

κmin = min
(
p(md1

c ), p(md2
c )
)
.

While the first term of (8) is dominant if there is a high
roadway confidence in one map, the second term becomes
dominant if there is only a low or moderate confidence for
both directions. The resulting final roadway map, created
by the complete procedure described above is depicted in
Fig. 1(b) and is evaluated in detail in the next section.

IV. EVALUATION AND RESULTS

In the following, the results of our approach are discussed
and evaluated utilizing labeled aerial images as ground truth.
First, the quality of the generated roadway map is surveyed
by projection into the original camera images. Subsequently,
we demonstrate the advantage of our method over a naive
averaging approach. Finally, we compare our final result to
different intermediate results and to standard roadway map
data by inspecting precision, recall and F1-score.

A. Roadway Map Projection into the Camera Image

For a first assessment of the quality of our final roadway
grid map, we projected the roadway map into the original
camera images. The final roadway map is generated from a

Fig. 6. Projection of our roadway grid map into the camera image. The
map nicely covers the visible roadway and furthermore indicates roadway
in currently occluded or distant areas.

set of driving sessions and thus can not directly be projected
into the images of one specific session due to the global
pose errors of that specific session. This issue is addressed
by using the calculated shift data to re-warp the combined
map to fit the specific session containing the image. In Fig. 6
we show the warped combined roadway map visualized in
the image as a green lattice. In the image, the roadway
map nicely covers the actual road and is neither shifted nor
skewed. Currently unrecognizable parts of the roadway, like
junctions and far away road sections, are already indicated
by the projected roadway map. In addition, due to the
combination of several driving sessions, even areas which are
currently obscured by other vehicles are labeled as roadway.

B. Used Reference Data

For a quantitative evaluation of our results we manually
labeled the roadway of our course in Google Maps aerial
imagery with a pixel size of 9 cm × 9 cm. Figure 7(a)
shows an example section of the created ground truth map.
The ground truth is downscaled to fit the resolution of our
roadway map. To compare our roadway map, which contains
continuous confidence values p(m̂c), to this binary ground
truth, we apply a threshold. In the following evaluation we
will also discuss the influence of the threshold value.

C. Comparison to Naive Averaging

First, we compare our proposed local map warping
method, shown in Fig. 7(d), to a naive averaged overlay ap-
proach (Fig. 7(b)). For both approaches their specific optimal
threshold value was determined, i. e. the threshold yielding
the highest F1-score compared to the ground truth. Clearly,
the thresholded result of the proposed method, shown in
Fig. 7(e), outperforms the simple averaging approach in
Fig. 7(c), where entire road parts are lost.

We further investigated the effect of the threshold value:
When varying that value for the naive averaging approach,
it is possible to achieve a similarly high F1-score for the
complete course as with our approach. However, the depen-
dency on the threshold is quite different. By simply averaging
the single-session maps, the confidence in the middle of
the actual roadway is very high. It then gradually bottoms
out to the roadsides. This confidence topology provides a
sweet spot, where an optimal threshold can be found to fit
the ground truth quite well, resulting in a high F1-score.
However, the threshold range in which the F1-score is good
is very small and important details are lost as shown in
Fig. 7. This behavior is not very robust and furthermore, it
is hard to find the optimal threshold when no ground truth



(a) Aerial image with manu-
ally created label in green.
(imagery © 2018, Google)

(b) Combination of 12 driv-
ing session by naive averaged
overlay.

(c) Resulting roadway mask
when applying an optimal
threshold of 0.36 to (b).

(d) Combination of 12 driv-
ing session with our pre-
sented approach.

(e) Resulting roadway mask
when applying an optimal
threshold of 0.53 to (d).

Fig. 7. Exemplary comparison of roadway map results for a naive averaging approach and our method.
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Fig. 8. Comparison of the F1-scores depending on different thresholds for
a naive averaged overlay approach and our proposed combination method.
The presented method has a much wider range of thresholds which yield a
high F1-score. The solid lines highlight F1-scores of 0.8 and higher.

is available. Figure 8 illustrates this issue. Furthermore, the
optimal threshold value for the averaging approach is below
50%, which is a rather illogical choice, since it includes
also roadway cells which were classified as road in less
than half of the images. Using our proposed approach, a
high F1-score can be reached by a much wider and more
meaningful range of thresholds. This is due to the fact, that
our created confidence map has much sharper edges and
more distinct details than a simply averaged map.

D. Roadway Map Comparison

To assess the benefits of the presented multi-session map
combination in more detail, various roadway maps from
different stages of our approach and standard roadmap data
from HERE are compared to our ground truth. In order to
achieve comparability, the same threshold is applied to all
of the maps. We only consider cells with confidences over
0.66 as roadway which is a quite conservative but reason-
able choice for the threshold. Figure 9 shows the resulting
precision, recall and F1-score values. The final results of our
approach are visualized as red circles for different numbers
of combined sessions. To illustrate how the combination of
multiple sessions improves the mapping results, evaluation
points from intermediate combination stages are also visual-
ized. The crosses represent maps from one single session,
either in direction d1 or d2. In these cases, the average
F1-score is about 0.73. In addition, measures from multi-
session maps of only one driving direction are displayed as
squares. For those maps precision and recall both increase
with the number of considered maps. Combining both driving
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Fig. 9. Precision, recall and F1-score for different stages of our approach
and for standard roadway map data (HERE). The attached numbers indicate
the quantity of the combined driving sessions.

directions to one final roadway map leads to an F1-score
of 0.84 for 12 sessions. However, the precision decreases
slightly since the maps of d1 and d2 still suffer from minor
localization inaccuracies, which leads to a slightly broader
roadway after their combination.

When comparing our final map to roadway maps that are
the common standard today, clear advantages are apparent.
The F1-score of the standard roadmap evaluated with our
ground truth is illustrated as a black diamond in Fig. 9. Its
F1-score of 0.76 it is much lower than the F1-score of
our map and it additionally has quite low precision. The
advantage of our proposed method in capturing roadway
details is also visible in Fig. 10, where a section of the
roadway containing a traffic island is depicted. The real
course of the road is shown in the aerial image in Fig. 10(a)
and the manually labeled roadway in Fig. 10(b). In the color
coded evaluation of the standard roadway map in Fig. 10(c),
the lack of precision can be seen by the red false-positive
areas and the blue false-negative areas. It is clear that the
traffic island is not represented in this standard map. In
addition, the position of the roadway is slightly shifted. On
the other hand, the map created by our approach (Fig. 10(d))
contains the traffic island with great detail and only small
misclassifications (red and blue areas) are visible.

In conclusion, we could identify two main benefits of our
approach. Firstly, the combination of various maps from mul-
tiple driving sessions increases the map quality significantly



(a) Aerial image
from Google
Maps.

(b) Manually
created roadway
label.

(c) Evaluation
of a standard
map (HERE).

(d) Evaluation
of our crowd-
sourced map.

Fig. 10. Comparison between a standard roadway map and the results
of our approach. The colors represent true-positives (green), false-positives
(red) and false-negatives (blue). Manually labeled aerial images are used as
ground truth. (aerial imagery © 2018, Google)

Fig. 11. By comparing our roadway map to the current roadway detection,
additional useful information can be extracted, e. g. parking spots on the
roadside.

in comparison to single-session maps. Secondly, by locally
warping and combining different maps, a considerable qual-
ity improvement in comparison to a naive map combination
and to a common standard map is achieved.

V. CONCLUSION

This paper proposes an algorithm for the creation of
highly detailed roadway maps of urban areas based on low-
cost sensors. Therefore, roadway masks are computed from
camera images by a convolutional neural network and are
subsequently stitched together using the global pose of the
vehicle. The main contribution of this paper is the fusion of
multiple detections in a probabilistic roadway grip map and
the combination of multiple driving sessions by a feature-
based map warping to correct localization inaccuracies.

While our roadway maps can be directly used in intelli-
gent vehicles, they can also be employed to generate even
more information. After obtaining a map as proposed, the
comparison of the map and the current roadway detection
can be used to identify temporarily occupied roadway space.
This allows an easy detection of moving objects, parking
spots or construction sites. For example, Fig. 11 illustrates
how parking spots are identified. Furthermore, the proposed
mapping pipeline could also map additional information
extracted from the images like lane markings or the texture
of the road surface. For these attributes our procedure with
perspective mapping and map combination can be utilized in
exactly the same way as for the roadway probability.

In the future, it should be investigated, how the combi-
nation of even more driving sessions would improve the
results and how to merge maps from different overlapping
routes. The proposed mapping procedure easily scales to
larger mapping areas since all procedure steps influence only
a limited local area. Moreover, a specially designed feature
detector and matcher could be employed that utilizes more
roadway-specific knowledge to improve and accelerate the
combination of multiple sessions.
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