
Estimating Train Delays in a Large Rail Network
Using a Zero Shot Markov Model

Ramashish Gaurav
Nutanix Technologies India Pvt Ltd

Email: ramashish.gaurav@nutanix.com

Biplav Srivastava
IBM T J Watson Research Center, USA

Email: biplavs@us.ibm.com

Abstract—India runs the fourth largest railway transport
network size carrying over 8 billion passengers per year. However,
the travel experience of passengers is frequently marked by de-
lays, i.e., late arrival of trains at stations, causing inconvenience.
In a first, we study the systemic delays in train arrivals using n-
order Markov frameworks and experiment with two regression-
based models. Using train running-status data collected for two
years, we report on an efficient algorithm for estimating delays at
railway stations with near accurate results. This work can help
railways to manage their resources, while also helping passengers
and businesses served by them to efficiently plan their activities.

I. INTRODUCTION

Trains have been a prominent mode of long-distance travel
for decades, especially in the countries with a significant land
area and large population. India, with a population of 1.324
billion people in 2016, has a railway system of network route
length of 66, 687 kilometers, with 11, 122 locomotives, 7, 216
stations, that served 8.107 billion ridership in 2016 [7]. The
Indian railway system is fourth largest in the world in terms
of network size. However its trains are plagued with endemic
delays that can be credited to (a) obsolete technology, e.g.,
dated rail engines, (b) size, e.g., large network structure and
high railway traffic, (c) weather, e.g., fog in winter months in
north India and rains during summer monsoons countrywide.

In this paper, we take the initial steps in understanding and
predicting train delays. Specifically, we focus on the delays of
trains, totaling 135, which pass through the busy Mughalsarai
station (Station Code: MGS), over a two year period. We build
an N -Order Markov Late Minutes Prediction Framework (N -
OMLMPF) which, as we show, predicts near accurate late
minutes at the stations the trains travel to. To the best of our
knowledge, this is the first effort to predict train delays for
Indian rail network. The closest prior work is by Ghosh et
al. [4] [5] who study the structure and evolution of Indian
Railway network, however, they do not estimate delays. Our
analysis is complementary and agrees with the characteristics
of the busiest train stations that they find. We now define the
problem, outline contributions, and present our approach.

Problem Statement: Given a train and its route informa-
tion, predict the delay in minutes at an in-line station during
its journey on a valid date.

A. Contributions

Our main contributions are that we:

• as a first, present the dataset of 135 Indian trains’ running
status information (which captures delays along stations),
collected for two years. We plan to make it public.

• build a scalable, train-agnostic, and Zero-Shot competent
framework for predicting train arrival delays, learning
from a fixed set of trains and transferring the knowledge
to an unknown set of trains.

• study delays using n-order Markov Process Regression
models and do Akaike Information Criterion (AIC) and
Schwartz Bayesian Information Criterion (BIC) analysis
to find the correct order of the Markov Process. Most of
the 135 trains follow 1-order Markovian Process.

• discuss how the train-agnostic framework can leverage
different types of trained models and be deployed in real
time to predict the late minutes at an in-line station.

The rest of paper is arranged as follows. We first discuss
the data about train operation and its analysis in Section II
and then present the proposed model in Section III. Next,
in section IV, we outline the experiments conducted with
two different regression models: Random Forest Regression
and Ridge Regression and give an exhaustive analysis of our
results. Finally, we conclude with pointers for future research.

II. DATA PREPROCESSING AND ANALYSIS

This section gives details of train information we collected
for a span of two years from site [10]. Table I gives the
statistics.

A. Data Collection and Segregation

We considered 135 trains that pass through Mughalsarai
Station (MGS), one of top busiest stations in India. For them,
we collected train running status information (Train Data) over
the period of March 2016 to February 2018. A train’s Train
Data consists of multiple instances of journeys, where each
journey has the same set of in-line stations that the train plies
through. Table II has important fields of interest in Train Data.

TABLE I
DATA STATISTICS FOR 135 TRAINS COMPLETE DATA

Total number of trains considered 135
Total number of unique stations covered 819
Maximum number of journeys made by a train 334
Average number of journeys made by a train 48
Maximum number of stations in a train’s route 129
Average number of stations in a train’s route 30

ar
X

iv
:1

80
6.

02
82

5v
1

 [
st

at
.A

P]
 7

 J
un

 2
01

8

135 Trains Complete Data: March 2016 to February 2018

52 Known Trains:
March 2016 to
February 2018

83 Unknown Trains:
March 2016 to
February 2018

52 Trains
Training &

Cross-validation
Data

March 2016 to
June 2017

(52TrnsTrCv)

52 Trains
Test Data

July 2017 to
February 2018

(52TrnsTe)

83 Trains
Test Data

March 2016 to
February 2018

(83TrnsTe)

Fig. 1. Segregation of Complete Data of 135 Trains for Experimentation.
The complete data is divided into two sets: 52 Known Trains and 83 Unknown
Trains. Known Trains data is further subdivided into 52 Trains Training &
Cross-validation Data (52TrnsTrCv) and 52 Trains Test Data (52TrnsTe) with
different time periods. The Unknown Trains data (83TrnsTe) is kept intact to
assess knowledge transfer from Known Trains to Unknown Trains.

Due to the infrequent running of trains, the amount of
data collected for each of the trains greatly varied. Using the
file size as criterion, we selected Train Data of 52 frequent
trains (henceforth mentioned as Known Trains), out of 135,
as training data. The data of remaining 83 trains (henceforth
mentioned as Unknown Trains) were used for testing and
evaluating the transfer of knowledge through trained models.
Figure 1 pictorially illustrates the actual segregation of col-
lected Train Data from March 2016 to February 2018 for 135
trains. One may recall that in traditional machine learning, the
training and test data are drawn from the same set (or class).
In contrast, we train our models on a seen set of Known Trains
and test it on an unseen set of Unknown Trains, thus employing
zero data of Unknown Trains for training, hence the term Zero-
Shot. This problem setting is similar to Zero Shot Learning [8]
where training and test set classes’ data are disjoint. Figure 2
shows a train journey and related notations used in this paper.

B. Data Preparation

We define a data-frame as a collection of multiple rows with
fixed number of columns. For our experiments we prepared
two types of data-frames, with one type being a data-frame
Table III for each station (henceforth mentioned as Known
Stations, totaling 621 out of 819) falling in the journey route
of Known Trains by extracting required information from Train
Data Table II of respective trains (in whose route the station
fell) to train the models. Another type consisted of only one
data-frame Table IV capturing certain information of all 819
stations; irrespective of whether they are in-line to Known
Trains or Unknown Trains. We divided the journey data in

TABLE II
DESCRIPTION OF Train Data COLLECTED FOR EACH TRAIN

Field Name Description
actarr date Actual arrival date of train at a station e.g. 19 Sep 2016
station code Station code name (acronym) for a station e.g. MGS
latemin Late minutes (arrival delay) at station e.g. 107
distance Distance of a station from the source in kilometers e.g. 204
month Jan, Feb, Mar... extracted from actarr date
weekday Mon, Tue, Wed... extracted from actarr date

52TrnsTrCv Data in ratio 4 to 1 to train and cross-validate the
models and prepared data-frame (Table III) for the chosen 80%
journey data. However we did not prepare any data-frames
(Table III) for rest 20% of 52TrnsTrCv Data, 52TrnsTe Data
and 83TrnsTe Data, thereby leaving them in their native format
of Train Data Table II.

C. Data Analysis

Here we analyze the most important factors which drive
our learning and prediction algorithm. As observed in Figures
3, 4, and 5, the spikes in each month signify that mean late
minutes at a station varies monthly (the colored dots are the
individual late minutes during the month). This premise was
verified with similar graphs obtained for other trains and their
in-line stations. In Figures 6, 7, and 8, the dots represent the
mean of late minutes at each in-line station during a train’s
journey in a particular month. In Figure 6 we can see that the
mean late minutes increase during journey up-till station BBS
and later it decreases. We observed similar graphs for other
trains and found that partial sequences of consecutive in-line
stations characterize the delays during a train’s journey.

III. PROPOSED MODEL

In this section, we explain our proposed regression-based
N -OMLMPF algorithm and its components. Regression is the
task of analyzing the effects of independent variables (in a
multi-variate data) on a dependent continuous variable and pre-
dicting it. In our setting, the independent variables are the ones
mentioned in Table III and the dependent continuous variable
to be predicted is the target late minutes (Stn0 late minutes).
Our regression experiments with low RMSE and significant
accuracy under 95% Confidence Interval back our hypothesis
to cast it as a Regression based problem. We used Random
Forest Regressors (RFRs) and Ridge Regressors (RRs) as two
types of individual regression models in N -OMLMPF to learn,
predict, evaluate, and compare results.

For real-time deployment and scalability, we avoided build-
ing train-specific models. Hence we looked for entities which
would help us to frame a train-agnostic algorithm as well as
enable knowledge transfer from Known Trains to Unknown
Trains. A train’s route is composed and characterized by the
Stations in-line in its journey. Significant delays along a route
which has more number of busy stations can be expected
compared to the ones having lesser number of busy stations.

Through the analysis of multiple figures similar to the
ones mentioned in subsection II-C we observed the following
details about the delay at in-line stations during a journey:

• It highly depends on the months during which the journey
is made. One can observe the variations during summer
(Jun in Fig.3) and winter months (Dec in Fig.3).

• Partial routes of consecutive Stations can be identified
during journey which either increase or decrease the delay
at next stations (CNB →MGS → BBS in Fig.6).

• Stations with a high traffic and degree strength tend to
be the bottleneck in a journey, thus increasing the overall
lateness (MGS-a busy station in Fig.6, Fig.7, and Fig.8).

RNC BKSC KQR GAYA DOS MGS CNB NDLS

Source
Station

Destination
Station

Current
Station (Stn0)

1st Previous
Station (Stn1)

2nd Previous
Station (Stn2)

3rd Previous
Station (Stn3)

4th Previous
Station (Stn4)

Fig. 2. Train Route of Train 12439. The above figure shows the route of train 12439 which starts at the station RNC and ends at the station NDLS. For
current station MGS, 4 previous stations are considered; whose information we can use for preparing a 4-prev-stn data-frame (Table III). Stni notation
for ith previous station is used throughout this paper.

TABLE III
DESCRIPTION OF TRAINING DATA PREPARED FROM Train Data TABLE II

train type zone is superfast month weekday

Is it Special, Express or Other? What zone does the
train belong to? Is it super fast? Month in which the journey is made Weekday on which

the journey is made
Obtained from [2] through train number (e.g. 13050 for Train 13050) Obtained from actarr date (Table II)

Stn1 code ... Stnn code late mins Stn1 ... late mins Stnn db Stn0 Stn1 ... db Stnn-1 Stnn
Station Code

of Stn1
... Station Code

of Stnn

Late Minutes
at Stn1

... Late Minutes
at Stnn

Distance between
Stn0 and Stn1

... Distance between
Stnn 1 and Stnn

Obtained from station code (Table II) Obtained from latemin (Table II) Obtained from distance (Table II)

Stn1 dfs ... Stnn dfs tfc of Stn1 ... tfc of Stnn deg of Stn1 ... deg of Stnn
Stn1 distance

from source station ... Stnn distance
from source station

Traffic Strength
of Stn1

... Traffic Strength
of Stnn

Degree Strength
of Stn1

... Degree Strength
of Stnn

Obtained from distance (Table II) Obtained from Open Government Data (OGD) [4]

Stn0 dfs Stn0 tfc Stn0 deg Stn0 late minutes
Stn0 distance from source station Stn0 traffic strength Stn0 degree strength Current Station’s target late minutes to be predicted
Obtained from distance (Table II) Obtained from OGD [4] Obtained from latemin (Table II)

The bold font texts are the columns in our prepared data-frame for each Known Station. We assert that Stn0 late minutes depends on the values mentioned
in other columns. tfc of Stni and deg of Stni are the total number of trains passing through Stni and total number of direct connections of Stni to other
stations respectively. Such a data-frame is called n-prev-stn data-frame of a target station (Stn0) for which it is prepared, where n depends on the number

of previous stations (a partial sequence of consecutive stations) considered.

Fig. 3. Monthly variation of late minutes at station CNB for Train 12307

Above points suggest that multiple deciding factors (e.g. the
month of travel, the sequence of stations during a journey etc.)
determine the late minutes at a station considered. Since we
sought to use Stations to frame a train-agnostic late minutes
prediction algorithm and for knowledge transfer, we prepare a
data-frame Table III for each of the Known Stations capturing
the details mentioned. Later, we train n-Order Markov Process
Regression models for each Known Station; described next.

A. n-Order Markov Process Regression (n-OMPR) Models

The Markov Process asserts that the outcome at a current
state depends only on the outcome of the immediately previous

Fig. 4. Monthly variation of late minutes at station BBU for Train 12802

state. However if the current state’s outcome depends on n
previous states, we call it an n-Order Markov Process. Here
we assert that the late minutes at a current target station
depends on the details of its n-previous stations (henceforth
mentioned as n-prev-stns). This notion is effectively captured
in data-frame Table III where we capture general features of
a train, day and month of a journey and the characteristics
of the n-prev-stns along with that of the current target
station. The idea is to learn n-OMPR models (Random Forest
Regressors and Ridge Regressors) for each of the Known
Stations using Algorithm 1 and later use those trained models
to frame a train-agnostic late minutes prediction algorithm (N -

Fig. 5. Monthly variation of late minutes at station KGP for Train 12816

Fig. 6. Mean late minutes during Train 12282’s journey in June 2017

OMLMPF Algorithm 2). Regression models are trained on
each of the Known Stations’ corresponding n-prev-stn data-
frame Table III with the values of n depending on the number
of stations previous to it, subject to its positions during the
journeys of multiple trains. This design will be clarified in
section III-C. We used python sklearn.ensemble library [9] and
sklearn.linear model library [9] for learning Random Forest
Regressor and Ridge Regressor models respectively.

B. k-Nearest Neighbor (k-NN) Search

Unknown Stations (USs) are the ones which, along with the
Known Stations (KSs), build the journey route of Unknown

TABLE IV
DESCRIPTION OF Station Features

station latitude longitude stn tfc stn deg

Stn Latitude Longitude Traffic Strength
of station

Degree
Strength
of station

Obtained from
station code

Obtained from
Google Maps APIs Obtained from OGD [3]

The bold font texts are the columns in our prepared data-frame for
collectively all 819 stations of Known Trains and Unknown Trains. station
is used as a key to obtain rest 4 features on which k-NN is run. This data-
frame helps to determine the semantically nearest station to a given station.

Fig. 7. Mean late minutes during Train 12395’s journey in December 2017

Fig. 8. Mean late minutes during Train 12444’s journey in April 2017

Trains. Since we made Unknown Trains’ data Zero Shot, data-
frame Table III is not prepared for USs, thus we do not have
n-OMPR models for them. Hence, we look for a KS which is
best similar to the current target US with respect to features
stated in Table IV; whose model could be used to approximate
the predicted late minutes at the US.We employ k-NN search
algorithm (Algorithm 3) to fulfill this objective. A two-step
k-NN search is applied since latitude and longitude data are
semantically different from traffic and degree strength data. We
used python sklearn.neighbors library [9] with default options.

C. Example

In our example, let there be five Known Trains (KTi) routes
and two Unknown Trains (UTj) routes with dummy stations
KSα and USβ to explain our proposed framework, where
KSα ∀ α ∈ (a..q) and USβ ∀ β ∈ (r..w) are Known Stations
and Unknown Stations, respectively. Figure 9 shows the train
route map where source stations are colored green.

• KT1 Journey: KSa → KSb → KSc → KSd →
KSe → KSf

Algorithm 1: Training n-OMPR Models
Input: List Of Known Stations (KS): < KS1, ...KSM >
Output: n-OMPR Models for Known Stations
for i = 1; i <= 5; i+ = 1 do

ipslist ← Initialize empty list (stores stations having
i-OMPR models)

end
for ∀ stnk ∈ Known Stations do

for i = 1; i <= 5; i+ = 1 do
df ← Get stnk’s i-prev-stn data-frame (Table III)
if df is not empty then

mdl
stnk
i ← Train RFR & RR Models on df

ipslist ← ipslist + stnk . Include stnk in list
Save mdl

stnk
i

end
end

end
for i = 1; i <= 5; i+ = 1 do

Save ipslist
end

• KT2 Journey: KSg → KSb → KSh → KSi → KSe →
KSj

• KT3 Journey: KSm → KSa → KSb → KSc →
KSk → KSl

• KT4 Journey: KSg → KSb → KSh → KSi →
KSn → KSo

• KT5 Journey: KSp → KSc → KSi → KSn →
KSo → KSq

• UT1 Journey: KSq → USr → KSi → USs → USt →
KSf

• UT2 Journey: USu → USv → KSb → KSm →
USw → KSj

USw KSm KSa KSg USr

KSj KSe KSf USt KSo

USv

USu

KSd

KSb

KSp

KSh

KSi

KSn

KSc

KSk

KSl

USs

KSq

Fig. 9. Visual view of example trains routes KTi and UTj . Starting stations
are highlighted.

Algorithm 2: N -OMLMPF for Known Trains and Un-
known Trains (here the value of N is set as 3 =⇒ limit
the models up to 3-OMPR models)

Input: Train number trnum, in-line stations list (stnjrny),
journey route information (Table II), ipslist

Output: A list (lmsstn) of predicted late minutes at each
station during the journey

lmsstn ← Initialize late minutes list with entry < 0 > (0
minutes late at source)

for i = 1; i < length(stnjrny); i+ = 1 do
crntstn = stnjrny .At(i) . Station at ith position
if crntstn is at position i = 1 then

dfstn ← Prepare crntstn’s 1-prev-stn row data-frame
(Table III) using Table II with late mins Stn1 set as
lmsstn.At(0)

if crntstn /∈ 1pslist then
crntstn ← Get nearest Known Station in 1pslist

using Algorithm 3
end
lmsstn.At(i) ← Predict late minutes at crntstn for
dfstn using mdlcrntstn

1 model
else if crntstn is at position i = 2 then

dfstn ← Prepare crntstn’s 2-prev-stn row data-frame
(Table III) using Table II with late mins Stn1 set as
lmsstn.At(1) and late mins Stn2 set as lmsstn.At(0)

if crntstn /∈ 2pslist then
crntstn ← Get nearest Known Station in 2pslist

using Algorithm 3
end
lmsstn.At(i) ← Predict late minutes at crntstn for
dfstn using mdlcrntstn

2 model
else

. crntstn is at position i ≥ 3 during the journey
dfstn ← Prepare crntstn’s 3-prev-stn row data-frame

(Table III) using Table II with late mins Stn1 set as
lmsstn.At(i-1), late mins Stn2 set as lmsstn.At(i-2)
and late mins Stn3 set as lmsstn.At(i-3)

if crntstn /∈ 3pslist then
crntstn ← Get nearest Known Station in 3pslist

using Algorithm 3
end
lmsstn.At(i) ← Predict late minutes at crntstn for
dfstn using mdlcrntstn

3 model
end

end

Algorithm 3: k-NN search framework to get a Known
Station best similar to any type of Station (k set to 10)

Input: A Station stnS , Valid ipslist of Known Stations
Output: A nearest Known Station stnKS

stnnll
KS ← Get k-NN Known Stations to stnS among stations

in ipslist on the basis of Latitude and Longitude
stnndt

KS ← Get k-NN Known Stations to stnS among stations
in stnnll

KS on the basis of Degree and Traffic
Return the first station among stnndt

KS

1) Data Preparation and Training: We collect Train Data
Table II for each of the seven trains and divide them into
two categories: Known Trains (KTi ∀ i ∈ < 1..5 >) and
Unknown Trains (UTj ∀ j ∈ < 1..2 >) based on the amount
of data collected for each train. After the actual segregation
of collected data as showed in Fig.1, we prepare n-prev-stn

data-frame Table III for each KSα using KTi’s Table II data.
• Preparation of n-prev-stn data-frames Table III for KSa:

We prepare a 1-prev-stn data-frame for KSa owing to
Train KT3 only since it has KSm as one station previous
to it. It is navigated by KT1 also, but it is the source
station there, thus has zero stations previous to it.

• Preparation of n-prev-stn data-frames Table III for KSb:
We prepare a 1-prev-stn data-frame for KSb owing to
trains KT1, KT2, KT3 and KT4 since it has a valid set
of one station previous to it and a 2-prev-stn data-frame
owing to train KT3, as it has two stations previous to it.

• Preparation of n-prev-stn data-frames Table III for KSc:
We prepare a 1-prev-stn data-frame for it owing to Train
KT1, KT3 and KT5 as they have a valid one station
previous to KSc during the journey. Another 2-prev-stn
data-frame is prepared for it owing to Train KT1 and
KT3, and a 3-prev-stn data-frame owing to Train KT3.

Similarly, for each of the Known Stations, we prepare valid
n-prev-stn data-frames Table III, depending on the number of
stations previous to them during the journey of Known Trains.
Later we use those n-prev-stn data-frames to train n-OMPR
models (RFR and RR) for each Known Station as explained in
Algorithm 1. While training the models, we also maintain a list
of stations ipslist which stores the names of stations (station
codes) which have ith-OMPR models. For example, in context
of all five Known Trains here, the stations in 1pslist are (KSb,
KSc, KSd, KSe, KSf , KSh, KSi, KSj , KSa, KSk, KSl,
KSn, KSo, KSq) since they have one valid station previous to
them during the journey of various KTi; ... 4pslist has stations
(KSe, KSf , KSj , KSk, KSl, KSn, KSo, KSq) since each
of them has a valid set of 4 stations previous to them.

2) Prediction of Late Minutes for Train Journeys: We
explain N -OMLMPF algorithm (Algorithm 2) here with the
help of above train examples. We employ a feed-forward
method for late minutes prediction at each of the in-line
stations where the late minutes predicted for the n previous
stations and their other details are incorporated in current
target station’s n-prev-stn row data-frame. (A row data-frame
consists of only one row of Table III).

a) Known Trains Late Minutes Prediction: Stations in-
line during the journeys of cross-validation set and the test set
of Known Trains consist of only Known Stations for which
we have trained models saved from Algorithm 1. The column
entries in n-prev-stn row data-frame (Table III) for the current
station at which late minutes are to be predicted are filled ac-
cordingly as explained in the table, except Stn0 late minutes
since we aim to predict it here. Say for train KT3’s cross-
validation or test data, we predict late minutes at each station.
As per the execution steps of Algorithm 2 the late minutes at:

• KSm is assumed to be 0 since it is a source station thus
list lmsstn is < 0 >.

• KSa is predicted through mdlKSa
1 since we have this 1-

OMPR model trained over the 1-prev-stn training data-
frame for KSa. We fill the 1-prev-stn row data-frame for
KSa with Stn1 set as KSm and late minutes at Stn1 set

as the first entry in lmsstn i.e. 0. Say the predicted late
minutes at KSa is 5, hence lmsstn extends to < 0, 5 >.

• KSb is predicted through mdlKSb
2 as we have this 2-

OMPR model trained for it. The first and second entry in
lmsstn list, (0 and 5) are used as late minutes at station
Stn2 and Stn1 respectively in the 2-prev-stn row data-
frame for station KSb to predict the late minutes at it;
say 10 minutes. So the list lmsstn becomes < 0, 5, 10 >.

• In a similar fashion, we keep feed-forwarding the pre-
dicted late minutes at previous stations to predict the late
minutes at KSc, KSk, and KSl through 3-OMPR models
mdlKSc

3 , mdlKSk
3 , and mdlKSl

3 respectively.

b) Unknown Trains Late Minutes Prediction: We choose
train UT2 for explaining Algorithm 2 to predict late minutes
for Unknown Trains’ in-line stations. The late minutes at:

• USu is assumed to be 0 since it is the source station. Thus
the late minutes list lmsstn is initialized with < 0 >.

• USv is predicted as follows. We do not have a trained
1-OMPR model (neither RFR nor RR) for USv since
it is an Unknown Station, thus not in 1pslist. Hence, via
Algorithm 3 we find a Known Station nearest to it among
the ones in 1pslist which have a 1-OMPR model (RFR
and RR), say station KSa is found. Next, the 1-prev-stn
row data-frame prepared for USv with USu set as Stn1 is
fed to the model mdlKSa

1 to predict late minutes at USv ,
say 10 minutes. Thus lmsstn list extends to < 0, 10 >.

• KSb is predicted through model mdlKSb
2 with Stn1,

Stn2 and late minutes at Stn1, late minutes at Stn2 set
as USv , USu and 10, 0 respectively; say 15 minutes is
predicted, thus the list lmsstn becomes < 0, 10, 15 >.

• KSm is predicted as follows. It can be noticed from
above set of Known Trains journey that we do not have a
valid trained model mdlKSm

3 in spite of the current target
station being a Known Station since no 3-prev-stn data-
frame for station KSm could be prepared from any of
the Known Trains. So we choose a station among 3pslist
which is best similar to KSm through Algorithm 3 (say
station KSe is chosen). Thus mdlKSe

3 is used to predict
the late minutes (say 40 minutes) on the row data-frame
for KSm with Stn1, Stn2, and Stn3 being KSb, USv ,
and USu respectively with corresponding late minutes as
15, 10 and 0. Thus the list becomes < 0, 10, 15, 40 >.

• USw is predicted through a 3-OMPR model; say mdlKSi
3

where KSi is obtained through Algorithm 3 for USw.
The 3-prev-stn row data-frame for it has KSm, KSb,
USv set as Stn1, Stn2, and Stn3 respectively.

• KSj is predicted through model mdlKSj

3 on its 3-prev-
stn row data-frame with USw, KSm, and KSb set as
Stn1, Stn2, and Stn3 respectively.

IV. EXPERIMENTS AND RESULT ANALYSIS

The N -OMLMPF Algorithm 2 was executed on three sets of
data, namely Cross-validation Data of Known Trains, Test Data
of Known Trains and Test Data of Unknown Trains as men-
tioned in Figure 1 for different values of N (in N -OMLMPF).

We enumerate four detailed experiments below, which were
conducted with both RFR and RR models individually:

1) Exp 1: We ignored tfc of Stni, deg of Stni and
Stni dfs columns from data-frame Table III since these
features are implicitly captured in Stni code. Experi-
ment was conducted on dataset 52TrnsTrCv.

2) Exp 2: We ignored the Stni code columns from
data-frame Table III as tfc of Stni, deg of Stni and
Stni dfs numerically capture the property of station
codes. This was done for Unknown Trains case because
we did not have partial consecutive in-line station path
of KSs and USs (hence no Stni codes) due to the test
data being Zero-Shot. The experiment was conducted on
83TrnsTe data after learning the prediction models from
52TrnsTrCv data to assess the transfer of knowledge
from Known Trains to Unknown Trains.

3) Exp 3: We conducted Exp 2 again on 52TrnsTrCv data,
where results similar to that obtained in Exp 1 for
cross-validation data endorses our notion of vice-versa
representation of stations, as done in Exp 1 and Exp 2.

4) Exp 4: We conducted Exp 2 on 52TrnsTe data with
prediction models learned from 52TrnsTrCv data.

After conducting the experiments we analyzed the results to
evaluate the performance of trained models and to determine
the optimum value of N (in N -OMLMPF). For brevity, we
do not present the detailed results for all 135 trains, but we
do justice by presenting 4-OMLMPF output on test data of
few trains in Tables V, VI, VII (negative numbers in tables
suggest that the train arrived early by those many minutes).

A. Performance Evaluation of Models

We begin by noting again that a train’s Train Data consists
of multiple instances of journeys, where each journey has the
same set of stations that the train plies through. For each in-
line station during a train’s journey, we calculated monthly
68%, 95%, and 99% Confidence Intervals (CI) around the
mean of late minutes in a month, considering the train’s
complete Train Data with outlier late minutes removed by
Tukey’s Rule [6]. For each train’s cross-validation/test Train
Data, the percentage of the number of times the predicted
late minutes for an in-line station fell under each matching
CI was calculated. Then we averaged out all the percentages
(calculated for each train) in different experiments enumerated
above. Table VIII shows the corresponding figures. In Table IX
we present the mean Root Mean Square Error (RMSE) values
for few Known Trains and Unknown Trains obtained from their
Test Data, where RMSE for a journey was calculated between
the predicted late minutes and the actual late minutes. It is
to be noted that reported results in Table VIII and IX are
inclusive of journeys where the train actually got late at the
source station, but these details could not be captured by our
models due to their scarce occurrences.

Preliminary analysis of CI and mean RMSE observations
showed that RFR models outperformed RR models. However,
for sake of completion, we present CI observations of RR

models for some selected experiments in Table VIII. The scat-
tering of individual late minutes at a station during a month; as
observed in Figures 3, 4, and 5 suggests to consider CI95 (or
higher) since the late minutes are not closely centered around
mean but cover a wider distribution around it. Under RFR
Models column in Table VIII, the figures in CI95 columns for
Exp 1 and Exp 3 suggest that at an average we were able to
predict late minutes at in-line stations during cross-validation
journey data of Known Trains for approximately 62% times
within 95% CI (say accuracy is 62%). Figures in Exp 2 under
both RFR and RR Models columns in Table VIII for Unknown
Trains’ test data do not seem promising, but since these results
are for Zero-Shot trains for which significant amount of data
is not available, the observations are appreciable. One should
also note here the low mean RMSE values for Unknown Trains
in Table IX. The higher accuracies (around 56% and 66% for
CI95 and CI99) for Known Trains’ test data in Exp 4 column
under RFR Models column compared to that under RR Models
column signify a very important conclusion. Random Forest
Regressors (which are an ensemble of multiple decision trees)
very well model the deciding factors (in Table III) compared
to Ridge Regressors, thus the results state that the prediction
of late minutes is effectively a decision-based regression task.

B. Determination of Optimum value of N in N -OMLMPF

We executed Algorithm 2 with values of N ∈ (1..5), but
which one truly captures the Markov Process property of
delays along a train’s journey? To answer this we employ
two common model selection criterion [1]: Akaike Information
Criterion (AIC) and Schwartz Bayesian Information Criterion
(BIC) to choose the statistically best regression model.

AIC = n× ln
(SSE

n

)
+ 2p (1)

BIC = n× ln
(SSE

n

)
+ p× ln(n) (2)

where n stands for the number of observations used to train a
model, SSE is the Squared Sum of Errors (between predicted
late minutes and the actual late minutes) and p is the number
of parameters in the model (number of columns in formatted
data-frame Table III). Lower the score, better the model. The
count of the number of times a run of N -OMLMPF (for a
particular value of N) yielded the least AIC and BIC scores
among all five runs for each train in all four experiments is
noted in Table X. In Table X we see that delays along journey
undertaken by 40.38% to 67.30% of Known Trains under
related experiments follow a 1-Order Markov Process since 1-
OMLMPF scores minimum AIC and BIC score among other
frameworks. Similarly 71.08% to 81.93% of Unknown Trains
follow a 1-Order Markov Process. Rest of the trains follow
a higher order Markov Process with diminishing indications.
However lower cumulative RMSE scores (summed over all
trains) obtained for 3- and 4-OMLMPF under different exper-
imental settings suggest to use them for real-time deployment.

TABLE V
PREDICTED LATE MINUTES FOR Known Train 22811 TEST DATA (OBTAINED FROM 4-OMLMPF WITH RFR MODELS)

Stations: BBS CTC JJKR BHC BLS KGP BQA ADRA GMO KQR GAYA MGS CNB NDLS
Actual Late

Minutes: 0 2 8 -1 13 25 19 18 2 9 -21 -5 6 15

Predicted Late
Minutes: 0 2.75 6.83 0.01 17.44 16.52 11.22 17.65 1.94 16.01 -8.77 -0.25 12.26 23.10

TABLE VI
PREDICTED LATE MINUTES FOR Known Train 12326 TEST DATA (OBTAINED FROM 4-OMLMPF WITH RFR MODELS)

Stations: NLDM ANSB RPAR SIR UMB SRE MB BE LKO BSB MGS PNBE KIUL JAJ JSME ASN KOAA
Actual Late

Minutes: 0 3 4 -11 0 -6 15 55 30 10 18 10 11 0 7 3 5

Predicted Late
Minutes: 0 9.38 7.87 -2.43 3.61 0.50 26.13 36.14 29.42 32.14 20.38 3.296 6.87 -3.80 17.55 14.30 13.91

TABLE VII
PREDICTED LATE MINUTES FOR Unknown Train 12356 TEST DATA WITH 3 Unknown Stations (OBTAINED FROM 4-OMLMPF WITH RFR MODELS)

Stations: JAT PTKC JRC LDH UMB SRE MB BE LKO RBL JAIS AME PBH BOY BSB MGS DNR PNBE RJPB
Actual Late

Minutes: 0 8 3 0 -5 -15 -10 -1 30 41 51 57 74 111 75 123 130 120 120

Predicted Late
Minutes: 0 10.19 10.74 10.17 11.60 11.97 27.24 34.63 28.45 40.15 41.29 42.94 60.71 72.51 75.25 70.50 74.45 67.95 71.80

TABLE VIII
CONFIDENCE INTERVAL (CI) OBSERVATIONS FOR DIFFERENT EXPERIMENTS

Random Forest Regressor (RFR) Models Ridge Regressor (RR) Models
Exp 1 (Avg %age) Exp 2 (Avg %age) Exp 3 (Avg %age) Exp 4 (Avg %age) Exp 2 (Avg %age) Exp 4 (Avg %age)

CI68 CI95 CI99 CI68 CI95 CI99 CI68 CI95 CI99 CI68 CI95 CI99 CI68 CI95 CI99 CI68 CI95 CI99
1-OMLMPF 34.65 61.37 70.47 5.90 14.73 18.51 33.67 61.05 70.21 27.60 55.41 65.57 4.97 12.87 17.29 22.34 44.30 55.71
2-OMLMPF 35.28 61.36 70.85 5.72 14.17 18.41 33.72 61.03 70.65 27.51 56.32 66.87 5.34 12.65 16.80 22.81 43.67 56.59
3-OMLMPF 33.86 62.31 71.42 6.00 14.79 18.81 33.80 62.13 71.58 27.81 55.89 66.98 4.89 12.46 16.76 22.21 44.05 55.67
4-OMLMPF 34.39 62.53 71.74 5.66 14.96 18.97 33.67 61.57 71.49 27.82 55.80 66.82 4.66 12.35 16.35 21.85 43.89 55.83
5-OMLMPF 34.77 62.70 72.10 5.51 14.52 18.75 33.45 62.03 71.96 27.93 56.20 67.07 4.61 12.43 16.16 21.85 43.87 55.18

CI68, CI95, and CI99 respectively stand for 68% CI, 95% CI, and 99% CI. Avg %age stands for Average Percentage.

V. CONCLUSION AND FUTURE WORK

Our objective was to predict the late minutes at an in-
line station given the route information of a train and a
valid date. The significant accuracy results in Table VIII
for Known Trains’ and Unknown Trains’ data demonstrates
the efficacy of our proposed algorithm for a highly dynamic
problem. We also determine experimentally and statistically
that the delays along journey for most of the trains follow
a 1-Order Markovian Process, while other few trains follow
a higher order Markovian Process. Reasonably low RMSE
results obtained for Unknown Trains in Table IX also show
that we were able to transfer knowledge from Known Trains to
Unknown Trains. The N -OMLMPF algorithm is so designed
that it can leverage different types of prediction models and
predict delay at stations for any train, thus it is train-agnostic.
With just 1.2% of total trains in India, our approach was
able to cover more than 11.3% of stations, thereby illustrating
scalability . There are many avenues for future work: (a) one
can expand the data collection and extend the analysis to trains
India-wide, (b) one can also explore other approaches like time
series prediction and neural networks. In particular, Recurrent
Neural Networks (RNN) have the property of memorizing
past details and predicting the next state. The prediction of
delays along stations is inherently dynamic which implicitly

calls for an online learning algorithm to continuously learn the
changing behavior of railway network and delays. Thus one
can attempt to develop an Online RNN algorithm for it. One
can also consider predicting delay of trains in other countries.

VI. ACKNOWLEDGMENT

We would like to thank Debarun Bhattacharjya for his help
in statistically discovering the order of Markovian delays
through mathematical equations. We also thank Nutanix
Technologies India Pvt Ltd for the computational resources.

REFERENCES

[1] D. Beal, “Information criteria methods in sas for multiple linear regres-
sion models,” SESUG Proceedings. Paper SA05, 2007.

[2] I. R. F. Club, “Faqs about indian railway numbers,”
https://www.irfca.org/faq/faq-number.html, 2016.

[3] I. O. Data, “Indian railway time table,”
https://data.gov.in/resources/indian-railways-time-table-trains-
available-reservation-03082015, 2016.

[4] S. Ghosh, A. Banerjee, N. Sharma, S. Agarwal, N. Ganguly, S. Bhat-
tacharya, and A. Mukherjee, “Statistical analysis of the indian railway
network: a complex network approach,” Acta Physica Polonica B
Proceedings Supplement, vol. 4, no. 2, pp. 123–138, 2011.

[5] S. Ghosh, A. Banerjee, N. Sharma, S. Agarwal, A. Mukherjee, and
N. Ganguly, “Structure and evolution of the indian railway network,”
in Summer Solstice International Conference on Discrete Models of
Complex Systems, 2010.

TABLE IX
MEAN RMSE VALUES FOR FEW Known Trains AND Unknown Trains TEST DATA (OBTAINED FROM 4-OMLMPF WITH RFR MODELS)

Known Trains Unknown Trains
Trains 12305 12361 12815 12307 13131 13151 22811 22409 18612 13119 15635 03210 04401 04821 12141 12295 22308 12439 18311
Number of Journeys 16 14 39 84 19 83 28 14 47 25 13 2 1 6 3 4 28 2 3
Mean RMSE 87.12 89.38 96.61 88.26 62.84 82.34 53.71 44.72 29.42 80.66 80.22 57.37 23.86 31.97 53.38 68.49 44.83 11.75 36.20

Trains row consists of unique Train Numbers. Number of Journeys row denotes the number of journeys undertaken by the corresponding train in its Test
Data. Mean RMSE row presents the average of the RMSEs of all journeys. For example, Train 12305 covered 16 journeys with a mean RMSE of 87.12.

TABLE X
BIC AND AIC ANALYSIS OF N -OMLMPF WITH RFR MODELS

Random Forest Regressor Models
BIC Analysis AIC Analysis

Exp 1 Exp 2 Exp 3 Exp 4 Exp 1 Exp 2 Exp 3 Exp 4
1-OMLMPF 32 68 35 29 21 59 31 23
2-OMLMPF 7 7 9 14 9 12 9 10
3-OMLMPF 9 5 6 5 12 7 7 11
4-OMLMPF 4 3 1 4 8 2 3 6
5-OMLMPF 0 0 1 0 2 3 2 2

The figures in each cell denote the number of times an N -OMLMPF scored
minimum score among other runs, e.g. in BIC Analysis column for Exp 1,
1-OMLMPF scored minimum BIC score for 32 trains among other runs.

[6] D. C. Hoaglin, B. Iglewicz, and J. W. Tukey, “Performance of some
resistant rules for outlier labeling,” Journal of the American Statistical
Association, 1986.

[7] R. M. India, “Indian railways yearbook 2015-2016,” in Ministry of
Railways (Railway Board), 2015.

[8] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based
classification for zero-shot visual object categorization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 3, pp. 453–465, Mar. 2014.
[Online]. Available: http://dx.doi.org/10.1109/TPAMI.2013.140

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[10] RailApi, “Indian railway apis,” https://railwayapi.com, 2016.

http://dx.doi.org/10.1109/TPAMI.2013.140

	I Introduction
	I-A Contributions

	II Data Preprocessing and Analysis
	II-A Data Collection and Segregation
	II-B Data Preparation
	II-C Data Analysis

	III Proposed Model
	III-A n-Order Markov Process Regression (n-OMPR) Models
	III-B k-Nearest Neighbor (k-NN) Search
	III-C Example
	III-C1 Data Preparation and Training
	III-C2 Prediction of Late Minutes for Train Journeys

	IV Experiments and Result Analysis
	IV-A Performance Evaluation of Models
	IV-B Determination of Optimum value of N in N-OMLMPF

	V Conclusion and Future Work
	VI Acknowledgment
	References

